导热性硅脂组合物的制作方法

文档序号:13342911阅读:212来源:国知局

本发明涉及导热性硅脂组合物,特别是涉及低粘度且导热性优异的导热性硅脂组合物。



背景技术:

一般地,由于电气·电子部件在使用中产生热,因此为了使这些部件适当地工作,需要除热,以往,提出了在其除热中使用的各种导热性材料。作为这种情况下的导热性材料,有(1)处理容易的片状的导热性材料和(2)称为散热用脂的糊状的导热性材料这样的2种形态。

这些中,(1)的片状的导热性材料具有不仅处理容易,而且稳定性也优异的优点,另一方面,由于接触热阻必然变大,因此散热性能比散热用脂的情形差。另外,为了保持片状,需要某种程度的强度和硬度,因此不能吸收在元件与壳体之间产生的公差,也有时由于它们的应力而使元件受到破坏。

相比之,(2)的散热用脂的情况下,具有如下的优点:不仅通过使用分配装置、印刷装置等也能够应对电气·电子制品的大量生产,而且由于接触热阻低,因此散热性能也优异。但是,为了获得良好的分配性能、印刷性能而降低了散热用脂的粘度的情况下,限制导热性无机填充材料的量,不能确保足够的热导率,因此除热变得不充分,其结果有时元件发生误动作。

因此,提出了将特定的有机聚硅氧烷、氧化锌、氧化铝、氮化铝、氮化硼、碳化硅等增稠剂和在1分子中具有至少1个与硅原子直接结合的羟基的有机聚硅氧烷以及烷氧基硅烷组合而抑制了基油的渗出的脂状有机硅组合物(专利文献1);将液体有机硅、具有一定的热导率且摩氏硬度为6以上的导热性无机填充剂和具有一定的热导率且摩氏硬度为5以下的导热性无机填充剂组合而成的、导热性和分配性优异的导热性有机硅组合物(专利文献2);将特定的基油与平均粒径为0.5~50μm的金属铝粉体组合而成的导热性脂组合物(专利文献3);通过将平均粒径不同的2种氮化铝粉末混合使用而提高了硅脂中的氮化铝的填充率的硅脂组合物(专利文献4);以及提高油的粘性而抑制了渗出的硅脂组合物(专利文献5)等更高性能的导热性硅脂组合物,但尚未得到能够充分地应对所使用的电子·电气部件的高性能化的导热性硅脂组合物。

现有技术文献

专利文献

专利文献1:日本特开平11-49958号公报

专利文献2:日本特开平11-246884号公报

专利文献3:日本特开2000-63873号公报

专利文献4:日本特开2000-169873号公报

专利文献5:日本特开2003-301184号公报



技术实现要素:

发明要解决的课题

因此,本发明的目的在于提供导热性优异、低粘度的导热性硅脂组合物。

用于解决课题的手段

本发明人为了实现上述的目的进行了深入研究,结果发现通过将特定的有机聚硅氧烷、sp值比上述有机聚硅氧烷高的非有机硅系有机化合物、导热性无机填充材料组合,从而能够得到低粘度的高导热性硅脂组合物,完成了本发明。

即,本发明提供下述高导热性硅脂组合物。

[1]导热性硅脂组合物,其特征在于,该导热性硅脂组合物含有:

(a)有机聚硅氧烷:20~90质量份、

(b)非有机硅系有机化合物:80~10质量份、

(其中,(a)、(b)成分的合计为100质量份。)

(c)平均粒径为0.5~100μm的导热性无机填充材料:相对于(a)、(b)成分的合计100质量份,为200~2,000质量份,

有机聚硅氧烷(a)与非有机硅系有机化合物(b)的sp值为(b)>(a),且为(b)成分的sp值-(a)成分的sp值>2,并且导热性硅脂组合物的粘度在25℃下为50~1,000pa·s。

[2][1]所述的导热性硅脂组合物,其中,有机聚硅氧烷(a)是由下述通式(1)

[化1]

(式中,r1为相同或不同的1价烃基。x为由r1或-r2-sir1(3-a)(or3)a表示的基团,r1如上述那样,r2为氧原子或碳数1~4的亚烷基,r3为碳数1~4的烷基、烷氧基烷基、烯基或酰基,a为1~3的整数。m和n分别为1≤m≤1,000、0≤n≤1,000。)

表示、25℃下的粘度为0.005~100mpa·s的水解性有机聚硅氧烷,

非有机硅系有机化合物(b)为在分子中具有选自环氧基、酚性羟基和氨基中的有机基团的sp值为10以上的化合物,

导热性无机填充材料(c)为选自金属系粉末、金属氧化物系粉末、金属氢氧化物粉末和金属氮化物粉末中的至少1种。

[3][2]所述的导热性硅脂组合物,其中,有机聚硅氧烷(a)为具有3个或6个or3基(r3如上述那样)的水解性有机聚硅氧烷。

[4][2]或[3]所述的导热性硅脂组合物,其中,非有机硅系有机化合物(b)为在分子中具有选自环氧基、酚性羟基和氨基中的有机基团的3官能以下的芳香族液体化合物。

[5][4]所述的导热性硅脂组合物,其中,非有机硅系有机化合物(b)为3官能以下的芳香族液体环氧树脂。

[6][1]~[5]的任一项所述的导热性硅脂组合物,其中,上述导热性无机填充材料(c)为选自铝、银、铜、镍、氧化锌、氧化铝、氧化硅、氧化镁、氮化铝、氮化硼、氮化硅和金属硅中的1种或2种以上的组合。

发明的效果

本发明的导热性硅脂组合物不仅为低粘度、分配性和印刷性优异,而且导热性优异,因此适于从使用中产生热的电气·电子部件中除热。

具体实施方式

构成本发明的导热性硅脂组合物的(a)成分的有机聚硅氧烷优选采用brookfield型旋转粘度计得到的25℃下的粘度为0.005~100mpa·s的范围,特别是更优选为0.005~50mpa·s。如果25℃下的粘度比0.005mpa·s小,则发生得到的硅脂组合物的保管时的分离等,变得缺乏稳定性,如果比100mpa·s大,则与(b)成分的混合有可能变得困难。

(a)成分的有机聚硅氧烷优选至少含有由下述通式(1)表示的水解性有机聚硅氧烷。

[化2]

(式中,r1为相同或不同的1价烃基。x相互独立地为由r1或-r2-sir1(3-a)(or3)a表示的基团,r1如上所述,r2为氧原子或碳数1~4的亚烷基,r3为碳数1~4的烷基、烷氧基烷基、烯基或酰基,a为1~3的整数。m和n各自为1≤m≤1,000、0≤n≤1,000。)

本发明中使用的更优选的有机聚硅氧烷(a)成分由下述通式(2)表示。

[化3]

(式中,r1独立地为未取代或取代的1价烃基,r3独立地为烷基、烷氧基烷基、烯基或酰基,p为5~100的整数,a为1~3的整数。)

有机聚硅氧烷(a)也兼具如下的职能:即使为了得到高导热性硅脂组合物而在本发明组合物中高填充(c)成分的导热性无机填充材料,也保持该组合物的流动性,对该组合物赋予良好的处理性。

上述式(1)和(2)中,r1独立地为未取代或取代的优选碳数1~10、更优选1~6、进一步优选1~3的1价烃基,作为其例子,可列举出直链状烷基、分支链状烷基、环状烷基、烯基、芳基、芳烷基、卤代烷基。作为直链状烷基,例如可列举出甲基、乙基、丙基、己基、辛基。作为分支链状烷基,例如可列举出异丙基、异丁基、叔丁基、2-乙基己基。作为环状烷基,例如可列举出环戊基、环己基。作为烯基,例如可列举出乙烯基、烯丙基。作为芳基,例如可列举出苯基、甲苯基。作为芳烷基,例如可列举出2-苯基乙基、2-甲基-2-苯基乙基。作为卤代烷基,例如可列举出3,3,3-三氟丙基、2-(九氟丁基)乙基、2-(十七氟辛基)乙基。作为r1,优选为甲基、苯基、乙烯基。

上述r3独立地为烷基、烷氧基烷基、烯基或酰基。作为烷基,例如可列举出与对于r1例示的烷基同样的直链状烷基、分支链状烷基、环状烷基。作为烷氧基烷基,例如可列举出甲氧基乙基、甲氧基丙基等。作为酰基,例如可列举出乙酰基、辛酰基等。r3优选为烷基,特别优选为甲基、乙基。

n、m如上所述,优选n+m为10~50,p为5~100的整数,优选为10~50。a为1~3的整数,优选为3。再有,分子中优选具有1~6个、特别优选具有3个或6个or3基。

有机聚硅氧烷(a)的25℃下的粘度通常优选为0.005~100mpa·s,特别优选为0.005~50mpa·s。如果该粘度比0.005mpa·s低,则从得到的室温湿气固化型导热性硅脂组合物容易发生渗油,另外容易垂挂,如果该粘度比100mpa·s大,得到的导热性硅脂组合物的流动性变得缺乏,有可能分配性、印刷性变差。

作为有机聚硅氧烷(a)的优选的具体例,可以列举出下述的实例。

[化4]

该有机聚硅氧烷(a)如果在(a)成分与(b)成分的合计100质量份中比20质量份少,则导热性有机硅组合物增粘而变得不能排出,如果比90质量份多,则过度地成为低粘度,有机聚硅氧烷(a)渗出,因此以20~90质量份的范围使用,优选为30~80质量份的范围。

作为(b)成分的非有机硅系有机化合物,优选为在分子中具有选自环氧基、酚性羟基和氨基中的有机基团的有机化合物,更优选为3官能以下的芳香族液体化合物,特别优选3官能以下的芳香族液体环氧树脂。

这种情况下,作为具有环氧基的化合物,可列举出下述的环氧树脂。就分子结构、分子量等而言,将采用brookfield型旋转粘度计得到的25℃下的粘度限制在10~1,000,000mpa·s。作为这样的环氧化合物,例如可列举出双(4-羟基苯基)甲烷、2,2'-双(4-羟基苯基)丙烷或其卤化物的二缩水甘油醚及它们的缩聚物(所谓的双酚f型环氧树脂、双酚a型环氧树脂等)、丁二烯二环氧化物、乙烯基环己烯二氧化物、间苯二酚的二缩水甘油醚、1,4-双(2,3-环氧丙氧基)苯、4,4'-双(2,3-环氧丙氧基)二苯基醚、1,4-双(2,3-环氧丙氧基)环己烯、双(3,4-环氧-6-甲基环己基甲基)己二酸酯、1,2-二氧基苯或间苯二酚、使多元酚或多元醇与表氯醇缩合而得到的环氧缩水甘油醚或多缩水甘油酯、采用过氧化法环氧化的环氧化聚烯烃、环氧化聚丁二烯、含有萘环的环氧树脂、联苯型环氧树脂、苯酚芳烷基型环氧树脂、联苯芳烷基型环氧树脂、环戊二烯型环氧树脂等。

再有,可在上述环氧树脂中将单环氧化合物适当地并用,作为该单环氧化合物,可例示氧化苯乙烯、氧化环己烯、环氧丙烷、甲基缩水甘油基醚、乙基缩水甘油基醚、苯基缩水甘油基醚、烯丙基缩水甘油基醚、环氧辛烷、氧化十二碳烯等。

另外,使用的环氧树脂未必只限定于1种,能够将2种或2种以上并用。

作为含有氨基的化合物,可列举出下述的化合物,即,二亚乙基三胺、三亚乙基四胺、二乙基氨基丙胺、n-氨基乙基哌嗪、双(4-氨基-3-甲基环己基)甲烷、间苯二甲胺、甲烷二胺、3,9-双(3-氨基丙基)-2,4,8,10-四氧杂螺(5,5)十一烷等胺系化合物;环氧树脂-二亚乙基三胺加成物、胺-环氧乙烷加成物、氰基乙基化多胺等改性脂肪族多胺;4,4'-二氨基二苯基甲烷、邻苯二胺、间苯二胺、对苯二胺、双[4-(3-氨基苯氧基)苯基]砜、2,4-二氨基甲苯、2,5-二氨基甲苯、2,4-二氨基二甲苯、3,6-二氨基杜烯、2,2'-二甲基-4,4'-二氨基联苯、2,2'-二烷基-4,4'-二氨基联苯、2,2'-二甲氧基-4,4'-二氨基联苯、2,2'-二乙氧基-4,4'-二氨基联苯、4,4'-二氨基二苯基醚、3,4'-二氨基二苯基醚、4,4'-二氨基二苯基砜、3,3'-二氨基二苯基砜、4,4'-二氨基二苯甲酮、3,3'-二氨基二苯甲酮、1,3-双(3-氨基苯氧基)苯、1,3-双(4-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯、4,4'-双(4-氨基苯氧基)联苯、双[4-(4-氨基苯氧基)苯基]砜、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-双[4-(3-氨基苯氧基)苯基]丙烷、2,2-双[4-(3-氨基苯氧基)苯基]六氟丙烷、2,2-双[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷、2,2-双[4-(3-氨基-5-三氟甲基苯氧基)苯基]六氟丙烷、2,2-双(4-氨基苯基)六氟丙烷、2,2-双(3-氨基苯基)六氟丙烷、2,2-双(3-氨基-4-羟基苯基)六氟丙烷、2,2-双(3-氨基-4-甲基苯基)六氟丙烷、4,4'-双(4-氨基苯氧基)八氟联苯、2,2'-双(三氟甲基)-4,4'-二氨基联苯、3,5-二氨基次苄基三氟、2,5-二氨基次苄基三氟、3,3'-双(三氟甲基)-4,4'-二氨基联苯、3,3'-双(三氟甲基)-5,5'-二氨基联苯、4,4'-双(4-氨基四氟苯氧基)四氟苯、4,4'-双(4-氨基四氟苯氧基)八氟联苯、4,4'-二氨基联萘、4,4'-二氨基苯酰替苯胺等。

作为含有酚基的化合物,可列举出双酚a、双酚f、三羟甲基烯丙氧基苯酚、低聚合度的苯酚酚醛清漆树脂、环氧化或丁基化酚醛树脂或以“superbeckcite”1001[日本ライヒホールド化学工业(株)制造]、“hitanol”4010[(株)日立制作所制造]、scadoforml.9(奥兰多scadozwoll公司制造)、methylon75108(美国通用电气公司制造)等商品名已知的酚醛树脂等。

如果列举出特别优选的含有酚基的化合物,可列举出后述的实施例中示出的b-1~b-7中所示的化合物。

本发明中,如果将上述有机聚硅氧烷(a)和非有机硅系有机化合物(b)的sp值分别设为sp(a)、sp(b),则为sp(b)>sp(a),并且为sp(b)-sp(a)>2,优选为sp(b)-sp(a)≥2.5,更优选为sp(b)-sp(a)≥3。

上述sp(a)为7~9,更优选为7.5~8.5,sp(b)为10~16,更优选为11~15。

再有,上述(b)成分的配合量为10~80质量份,特别为20~70质量份,以与上述(a)成分的合计成为100质量份的方式使用。

本说明书中,sp值意味着冲津俊直、《接着》、高分子刊行会、40卷8号(1996)第342-350页中记载的、使用下述表1中记载的根据冲津的各种原子团的δf、δv值利用下述式(3)算出了的溶解性参数δ。另外,在混合溶剂、共聚物的情况下,意味着利用下述式(4)算出了的溶解性参数δ。

δ=σδf/σδv(3)

δmix=φ1δ1+φ2δ2+···φnδn(4)

式中,δf表示下述表1中的δf,δv表示下述表1中的摩尔容积δv。φ表示容积分率或摩尔分率,为φ1+φ2+···φn=1。

[表1]

注解(poly)=聚合物;(arom)=(芳香族);(lm)=连接(link)

例如,作为溶剂的庚烷的sp值如以下所述求出。

庚烷作为原子团具有2个-ch3、5个-ch2-。对于各个原子团,由表1求出δf、δv值。

σδf=205×2+132×5=1070

σδv=31.8×2+16.5×5=146.1

因此,由上述式(3),如以下所述求出庚烷的δhep。

δhep=σδf/σδv=1070/146.1=7.32

同样地,2官能环氧树脂gan(日本化药社制造)庚烷作为原子团分别具有4个-ch2-、2个>ch-、2个-o-(芳香族,连接)、2个-o-(环氧)、1个-n<、1个-c6h5(芳香族)。对于各个原子团,由表1求出δf、δv值。

σδf=1869.2

σδv=145

因此,由上述式(3),如以下所述求出庚烷的δgan。

δgan=d*σδf/σδv=1.15*1869.2/145=14.8

[化5]

例如,作为聚合物的液体双酚a环氧的sp值如以下所述求出。

使用的液体环氧树脂为re310s(日本化药社制造)。

由所测定的环氧当量,平均聚合数n设为0.069。

比重使用了1.15。

括号内的重复单元右侧为σδf=538.6、σδv=40.9。

括号内为σδf=2352.9、σδv=280.3。

括号内的重复单元右侧为σδf=2176.9、σδv=243.3。

因此,由上述式(3),如以下所述求出双酚a环氧re310s的δre310s。

δre310s=1.15*(538.6/40.9+0.069*2352.9/280.3+2176.9/243.3)=10.9

[化6]

由理科年表、第84册、物54(410),有机硅的热导率成为了0.16w/mk,环氧树脂(双酚a)成为了0.21w/mk。

将聚有机硅氧烷与非有机硅系有机化合物混合时,如果sp值之差比2大,则两者分离。金属、金属氧化物、金属氮化物的表面由于大气中的氧和水分的影响,在表面存在羟基或氨基。由于该表面官能团,使sp值高的非有机硅系有机材料具有与导热性无机填充材料强的相互作用。通过有意地使sp值不同、sp值高的非有机硅系有机化合物在有机硅的基体中漂浮,在导热性无机填充材料的岛之间利用非有机硅系有机材料进行桥连,从而显示出以往的有机硅系导热性散热脂中不存在的散热特性。

另外,通过对非有机硅系有机材料赋予热固化性,从而即使在脂偏离而变形的情况下、低温、高温环境下也保持导热性无机填充材料与非有机硅系有机材料的热的通道,因此能够期待热传导特性没有变化。

(c)成分是对本发明的导热性硅脂组合物赋予导热性的填充材料。

本发明中使用的导热性无机填充材料(c)的平均粒径需要为0.5~100μm。无论平均粒径比0.5μm小还是比100μm大,脂都变得不均一而成为高粘度,因此特别优选为1~20μm。再有,本发明中,平均粒径采用激光衍射法测定。

作为(c)成分的导热性无机填充材料,可列举出金属系粉末、金属氧化物系粉末、金属氢氧化物粉末、金属氮化物粉末,具体地,优选铝、银、铜、镍、氧化锌、氧化铝、氧化硅、氧化镁、氮化铝、氮化硼、氮化硅、金属硅或它们的2种以上的组合。

就(c)成分的配合量而言,相对于(a)成分的有机聚硅氧烷与(b)成分的非有机硅系有机化合物的合计100质量份,需要为200~2,000质量份的范围,优选为700~1,500质量份的范围。如果比200质量份小,不仅没有获得充分的热导率,而且没有保持作为脂的强度,因此变得容易偏离。另外,如果比2,000质量份大,则不能保持脂状。

制造本发明的导热性硅脂组合物的情况下,添加(a)、(b)、(c)成分和其他成分,使用トリミックス、ツウィンミックス、プラネタリーミキサー(均为井上制作所(株)制混合机的注册商标)、ウルトラミキサー(みずほ工业(株)制混合机的注册商标)、ハイビスディスパーミックス(特殊机化工业(株)制混合机的注册商标)等的混合机进行混合。如果必要,可加热到50~170℃。

本发明中,脂粘度(导热性硅脂组合物的粘度)在25℃下为50~1,000pa·s,优选为100~500pa·s。

这种情况下,粘度是采用malcom粘度计测定试样的粘度,将绘图机中的记录的最大值作为粘度。

转子:a(10rpm)

测定条件:25℃±0.5℃

如果粘度过低,则填料的沉降剧烈,使用前混合搅拌变得必要,如果粘度过高,则精密的排出变得困难。

实施例

以下通过实施例对本发明进一步详述,但本发明并不受其限定。为了进一步明确本发明的优势性而进行的实施例和比较例涉及的试验如下所述进行。

[有机聚硅氧烷、非有机硅系有机化合物的粘度]

使用brookfield型旋转粘度计在25±0.5℃、转子no.4、10rpm的转速下进行了测定。

[脂粘度]

导热性硅脂组合物的粘度的测定使用(株)malcom制造的型号pc-1tl(转速10rpm)在25℃下进行。

[热导率]

热导率使用京都电子工业(株)制造的tpa-501、在25℃下测定。

[实施例、比较例]

以表2、3中所示的配合量使用行星式混合机将表2、3中所示的配合成分在150℃下混合2小时,得到了导热性硅脂组合物。将得到的组合物的脂粘度、热导率的结果示于表2、3中。

应予说明,表中的(a)~(c)成分如下所述。

作为有机聚硅氧烷(a),

a-1:有机聚硅氧烷(sp值8.0,粘度30mpa·s)

[化7]

a-2:有机硅烷(sp值8.2,粘度3mpa·s)

[化8]

a-3:有机聚硅氧烷(sp值8.1,粘度80mpa·s)

[化9]

作为非有机硅系有机化合物(b),

b-1:双酚a型环氧树脂(sp值10.9,粘度16,000mpa·s)

[化10]

b-2:双酚f型环氧树脂(sp值12.7,粘度1,300mpa·s)

[化11]

b-3:epicoat630(sp值14.6,粘度250mpa·s)

[化12]

b-4:gan(sp值14.5,粘度130mpa·s)

[化13]

b-5:got(sp值12.9,粘度55mpa·s)

[化14]

b-6:二氨基二甲基二苯基甲烷(sp值11.8,粘度1,500mpa·s)

[化15]

b-7:二羟基二烯丙基二苯基甲烷(sp值12.9,粘度2,500mpa·s)

[化16]

作为导热性无机填充材料(c),

c-1:氧化锌粉末(平均粒径1.1μm)

c-2:铝粉末(平均粒径10μm)

另外,作为环氧均聚、环氧-胺聚合、环氧-酚聚合催化剂,使用了双氰胺(dicy)。

[有机聚硅氧烷:硅氧烷(1)]

在设置了搅拌机、温度计、冷却管和氮气导入管的内容积100ml的烧瓶中装入两末端用二甲基乙烯基甲硅烷基封端、主链的5摩尔%为苯基、其余的95摩尔%为甲基的、25℃下的粘度在转子no.4/10rpm下为1,100mpa·s的有机聚硅氧烷39g、和下述式的有机氢聚硅氧烷1g。进而,投入铂-二乙烯基四甲基二硅氧烷络合物的二甲基乙烯基甲硅烷基封端的二甲基聚硅氧烷溶液(含有1质量%的铂原子的铂催化剂)0.03g,得到了有机聚硅氧烷(硅氧烷(1))。sp值为8.1。

[化17]

导热性无机填充材料的粒径是采用日机装(株)制造的粒度分析计即microtracmt3300ex测定的、体积基准的累计平均粒径。

表2、3的结果证实:本发明的导热性硅脂组合物不仅高导热性优异,而且粘度低,因此生产率也优异。

[表2]

[表3]

产业上的可利用性

本发明的导热性硅脂组合物不仅高导热性优异,而且为低粘度,因此作业性良好,因此适于从使用中产生热的电气·电子部件中除热。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1