用于微流体细胞培养的微型培育系统和方法与流程

文档序号:12913666阅读:192来源:国知局
用于微流体细胞培养的微型培育系统和方法与流程

本申请是申请号为201280068836.4、国际申请日为2012年12月3日的同名的发明专利申请的分案申请。

相关申请的交叉引用

本申请要求保护在2011年12月3日提交的临时专利申请61/566,651的优先权的权益,该专利申请以引用的方式并入到本文中用于所有目的。

本申请以引用的方式并入了以下临时专利申请中的每一个:

在2010年7月23日提交的61/367,371

在2010年1月21日提交的61/297,278

在2011年4月1日提交的61/471,103。

本申请涉及在以下申请中的一个或多个中讨论的材料,其中的每一个以引用的方式并入到本文中用于所有目的:在2008年3月17日提交的临时专利申请61/037,297;在2008年1月3日提交的临时专利申请61/018,882;在2008年8月11日提交的美国申请11/994,997,其为在2006年7月6日提交的pct/us06/26364的国家阶段进入并且其要求保护在2006年2月14日提交的临时专利申请60/773,467和2005年7月7日提交的临时专利申请60/697,449的优先权;在2008年1月25日提交的美国申请12/019,857,其要求保护在2007年2月8日提交的美国临时专利申请no.60/900,651的优先权;在2006年12月29日提交的美国申请号11/648207,其要求保护在2006年1月4日提交的美国临时专利申请no.60/756,399的优先权;在2009年1月5日提交的美国申请12/348907。

版权通知

依照37c.f.r.1.71(e),申请人指出,本公开的一部分包含要求版权保护的材料,(例如但不限于图表、装置照片、或者本提交物任何其它方面,对这些方面在任何权限中版权保护是或者可能是有用的)。本版权所有人对于任何一个专利文档或专利公开文本的传真复制没有异议,如出现在专利商标局专利文件或记录中,但所有其它版权被保留。

本发明在各种实施例中涉及用于在受控制的环境中培养细胞或其它生物材料的化验、系统和/或装置并且其可适用于通常使用微流体系统的相关领域。特定实施例涉及可以结合各种标准自动化处置系统使用的配置,具有主动或被动培养基(medium)加载和灌注,并且提供高处理量的多化验自动化系统用于培养、查看和分析细胞生长、侵入、移动、趋化性或其它性质。更具体而言,本发明在具体实施例中涉及用于微流体培养板的热控制系统和用于培养板的其它自动化系统。



背景技术:

在本提交物中任何位置对于任何作品、出版物、销售或活动的讨论,包括随着本申请提交的任何文档,不应认为承认任何这样的作品构成现有技术。在本文中对于任何活动、作品或出版物的讨论并不以任何特定的权限承认这样的活动、作品或出版物存在或已知。

微流体细胞培养为用于在药物筛选、组织培养、毒性筛选和生物研究中应用的重要技术,并且可以提供改进的生物功能,更高品质的基于细胞的数据、减少的试剂消耗,和更低成本。高品质分子和细胞样品制备对于各种临床、研究和其它应用而言是重要的。接近地示样品的体内特征的体外样品(invitrosample)可能受益于很多种分子和细胞应用。细胞或其它生物或化学活性材料(诸如被涂布了各种生物分子的珠粒)的处置、表征、培养和可视化已在药物发现、疾病诊断和分析以及很多种其它治疗和实验工作中变得越来越重要/有价值。

涉及微流体系统、装置、方法和制造的许多方面在上文引用和相关的专利申请中讨论。对那些申请的阅读不应向本文所提出的任何权利要求施加任何特定限制,这些并入的文档提供与具体实施例有关的适用的背景资料。

讨论了与使用微流体系统进行细胞培养和相关活动有关的各种策略的其它出版物和/或专利文档包括以下美国专利申请和非专利文献,其与本文中所有引文一起通过引用并入到本文中用于所有目的。这里给出的这些引用的列表并不表示这些引用构成现有技术。

cytoplex,inc.6,653,124“array-basedmicroenvironmentforcellculturing,cellmonitoringanddrug-targetvalidation。”

cellomics,inc.6,548,263“miniaturizedcellarraymethodsandapparatusforcell-basedscreening。”

fluidigm,inc.公开申请20040229349(2004年11月8日)“microfiuidicparticle-analysissystems。”。

如上文所引用的、涉及本发明者中至少一个的早期工作和专利申请讨论了与微流体细胞培养有关的各种配置、方法和系统并且那些工作和那些公开以引用的方式并入到本文中。



技术实现要素:

本发明涉及与改进的微流体细胞培养装置和系统,特别是用于在受控制的温度和气体参数下培养和/或分析和/或查看细胞的系统有关的各种部件、系统和方法。在一方面,本发明涉及新颖的微流体细胞培养装置、系统和方法,其优于先前提出的培养系统,在某些实施例中提供更方便和不明显/不醒目的加热和气体控制并且也提供自动处置。在另一方面,本发明涉及用于在各种多细胞培养单元系统中集成加热和气体控制与多个微流体细胞培养单元的新颖的结构和方法,诸如包括各种标准孔板格式的微量滴定孔板结构,例如96孔sbs培养板、或其它板格式,包括具有6个、12个、24个、96个、384个或1536个样品孔的板,以及开放底部标准孔板、以及具有用于细胞培养和/或查看的特定区域的板。

具有气体和/或温度控制的可移除的多腔室板歧管

在特定实施例和示例中,设计特征包括提供呈适宜格式的细胞培养装置,其允许排除到板本身的管件和连接器并且提供温度控制和监视,大部分或完全容纳于可移除的歧管内,可移除的歧管利用气体密封件装配到板上,从而提供利用在培养平台中的温度和/或气体控制来维持长期细胞培养的能力,培养平台维持易于观察细胞的能力并且可容易地从培养板移除。本发明的系统可以用于在培养板上的多种细胞培养单元,诸如在上文引用的专利申请中所描述的那些,包括用于确定细胞侵入的细胞培养单元、具有凝胶培养基的培养单元和本文和在所并入的相关申请中所描述的多种其它培养单元。

活细胞通常需要谨慎地控制它们的物理环境,包括营养物和气体交换、温度调节和对于应力的防护。诸如在上文所引用的专利申请中所描述的先进的微型细胞培养方法能允许进行结构控制(微型制作)、灌注控制(微流体)。

微型培育和微型培育器腔室/在接触微流体细胞培养腔室中的孔

根据具体实施例,本发明针对于这个领域的额外方面,在本文中有时被称作微型培育,用来提供对温度和气氛的控制以用于微型细胞培养系统中使得相对于观察装备而言其并不明显并且在具体实施例中易于附连到培养板和从培养板移除。

根据具体实施例,本发明提供传统细胞培养培育器构思的微型化以向微流体腔室直接执行动态、连续温度和气体调节。在示例实施方式中,通过形成与微流体细胞培养腔室(1ul)接触的约5ml体积的微型培育器腔室,这是可能的。微型培育器的温度和气体含量快速转移到细胞培养腔室(通过传导和扩散)。在具体实施例中,利用如本文所描述的新颖歧管设计来维持微型培育器。根据本发明的具体实施例的歧管可以由各种系统和软件加以控制。

用于对活细胞进行延时显微镜检查的系统

许多产品和方法能允许对活细胞进行延时的(time-lapse)显微镜检查。通常已知的三种方案可通常被理解为:(1)完整的显微镜封壳;(2)载物台上的培育器;以及(3)灌注腔室。

完整的显微镜封壳包围整个显微镜,除了某些发热或热敏感部件诸如照相机和照明源之外。在封壳内的空气被循环并且维持在样品的所希望的温度和气体环境。这种方法的一种优点在于整个显微镜的温度控制大幅减小了由于室温波动所造成的焦点漂移,但许多缺点包括昂贵并且定制的构造、对于接近显微镜的阻碍,以及能量与气体的大量消耗。而且,向湿气和重复的温度变化暴露可能损坏显微镜。

载物台上的培育器仅包围计划用来容纳一个或多个培养皿(petridish)、载玻片或其它培养平台的较小体积。这些提供局部温度调节并且能允许有限的气体环境控制。它们是适宜的,但并不提供与显微镜封壳相同水平的控制,因为载物台上培育器必须模仿封壳的机械结构,但呈更小的大小并且适用于显微镜。例如,在载物台上培育器中的均匀温度控制受到载物台本身的散热器限制,并且切口适于提供用于光学透明度的光路径,进一步减小了均匀性。此外,载物台上培育器设计的复杂性使得它们较为昂贵。

灌注腔室通常包括封闭着流动液体体积的组件,具有直接穿过腔室壁或者在入口流动路径的紧邻上游的加热元件。需要谨慎地考虑控制元件的设计,因为诸如热/质量转移这样的问题可能使得适当维持稳态条件较难。目前,流动腔室并不常用于活细胞成像,这归因于使它们适应典型用途的无数困难。

相比而言,本发明,经由使用密封到微流体板上的歧管而将温度、流量和气体控制直接集成到微流体培养板。虽然在某些方面类似的歧管在上文所参考的申请中的某些中被讨论以控制微流体板上的灌注,先前的设计并未合并本文所描述的特征中的所有特征,由于歧管和培养板紧凑的性质,这种合并是较难的。本歧管设计包括通过歧管操作而形成的新颖的温度或气体“微型培育器”隔室。这些隔室已被展示为对于活细胞成像需要的适当集成提供新颖和关键的优点。

本发明能允许在显微镜载物台上直接进行细胞培养,而不使用外部环境腔室诸如封壳或载物台上的加热器。根据本发明的具体实施例的“微型培育器”构思提供精确控制、长期细胞培养和容易使条件进行动态变化,在其它设计中,就此而言这点是尚难以实现的。

虽然本文详细地讨论的示例中的许多示例被设计为结合标准或定制孔板使用,根据具体实施例,本文所描述的各种配置的微流体结构和培养单元和系统和方法也可以独立于任何孔板而部署,诸如在并不被配置成结合孔板或各种其它微流体装置或系统使用的各种集成的芯片实验室(lab-on-a-chip)系统中。

出于清楚目的,这个讨论在具体示例方面参考装置、方法和构思。然而,本发明和其各方面可以适用于多种类型的装置和系统。因此,预期本发明并不受到除了所附权利要求和其等效物之外的限制。

而且,在本领域中熟知的是,诸如本文所描述的系统和方法可以用模块化方式包括多种不同部件和不同功能。本发明的不同实施例可以包括元件和功能的不同的混合并且可以将各种功能作为各种元件的部分而分组。出于清楚目的,在包括许多不同创新性部件以及创新性部件与已知部件的创新性组合的系统方面描述了本发明。不应得出限制本发明为包含本说明书中的任何说明性实施例中列出的所有创新性部件的组合的推论。除非在本文中具体地陈述为其它情况,本文所描述的元件的任何组合应被理解为包括那些元件的任何子集的每个子组合以及也包括与本文所描述或者本领域从业人员将会理解的任何其它元件相组合的那些元件的任何子集的任何子组合。

在附图和下文的详细描述的某些中,在多部件装置或系统的重要独立实施例的方面描述了本发明。这不应认为限制本发明的各种新颖方面,本发明的各种新颖方面使用本文所提供的教导内容,可以适用于多种其它情形。在附图和下文的描述中的某些中,在包括与结构尺寸、液体体积或压力、温度、电气值、持续时间等有关的具体参数的多个具体示例实施例的方面描述了本发明。除非在所附权利要求中这样提供,这些参数作为示例而提供并且不限制本发明,本发明涵盖具有不同尺寸的其它装置或系统。出于提供更明确阐述描述的目的,作为示例给出特定已知的制作步骤、细胞处置步骤、试剂、化学或机械过程、和可能被包括以用来制造根据本发明的具体实施例的系统或装置的其它已知部件。本领域技术人员将了解除非在上下文中具体地指出为其它情况,在本文所描述的过程中可以做出各种已知的替代。

在本提交物中所引用的所有参考、出版物、专利和专利申请以它们全文引用的方式并入到本文中用于所有目的。

附图说明

图1示出了根据本发明的具体实施例的示例微型培育器歧管的侧视图,其被示出处于具有孔板和显微镜查看器的微型培育器系统中的适当位置。

图2示出了根据本发明的具体实施例带有热控制器的歧管的顶视平面图的一示例。

图3为根据本发明的具体实施例带有密封到孔板上和安装到显微镜的查看器中的热控制器的歧管的顶侧视图的一示例。

图4示出了放置于96孔标准sbs板上的具有四个培养单元的培养板的一示例。这个示例示出了带有六个入口孔(标记为a1-d6)、放置于较大查看椭圆形下的四个微流体培养区、和两个出口孔(7-8)的四个培养单元(对应于标记为a-d的行)。这只是示例并且各个孔和部件的放置和名称对于不同实施方式将不同。

图5a至图5d为根据本发明的具体实施例从各个视角观察的带有热控制器的歧管的示例实施方式的示意图。

图6(a)示出根据本发明的具体实施例的热交换模块的底部。底部附连到歧管的充气(pneumatic)部分。图6(b)示出了根据本发明的具体实施例的热交换模块的顶部。

图7为密封到培养板上的歧管的充气部分的示意侧视图并且示出了根据本发明的具体实施例连接到环境控制体积的管线中的气体。

图8为根据具体实施例的歧管与微流体板如何形成接口连接的方式的示意图,其中,通过向所有孔周围的腔体施加真空而形成可靠密封。加热元件在附图中并未示出。

图9示出了根据早期歧管设计的具有额外气体管线和受热物镜的歧管。

图10a至图10c为根据早期设计的示例充气歧管的示意图的顶视图、侧视图和平面图。在此示例中,在右边的八个管路用于压缩空气,并且每个被配置成向微流体阵列中的细胞入口孔的列提供压力。在附图中最左边的管线用于真空并且连接到歧管周围的外部真空环。使用本文的教导内容来修改这种基本歧管设计以产生受热的歧管。

图11示出了根据本发明的具体实施例的示例微流体灌注系统(onix™)、微型培育器控制器和歧管(mic)。

图12示出了根据本发明的具体实施例的示例微流体灌注系统(onix™)、微型培育器控制器和歧管(mic)以及计算机控制系统。

图13示出了根据本发明的具体实施例使用微型培育器系统在t=0(左)和在15小时(右)之后培养的nih-3t3小鼠成纤维细胞,示出了细胞生长和生存力。当不对温度或co2进行控制时,细胞在2小时内快速死亡。

图14示出了根据本发明的具体实施例的板和培养单元设计的一个替代方案,其具有填充了蓝染料的示例培养单元,从顶部拍摄图像。

图15为onix微流体灌注系统与开源显微镜检查应用的集成的屏幕截图。

图16示出了与用于细胞分析的显微镜系统集成的微型培育系统。在具体实施例中歧管的尺寸允许它承座/安放在标准孔板载物台上,具有并不干扰光显微镜检查的透明的光路径。这允许对微型培育器中培养的细胞进行延时成像。

图17为示出代表性示例逻辑装置的框图,其中可以实施本发明的各个方面。

图18为示出根据本发明的具体实施例的自动化活塞驱动的系统的框图。

图19(表1)示出了根据本发明的具体实施例可以被评估或者可以用来测试药物或其它疗法的疾病、病症或状态的示例。

图20a至图20d为根据本发明的具体实施例用于歧管的电子控制电路的示例实施方式的示意图。

具体实施方式

1.概述

定义

“粒子”指生物细胞,诸如哺乳动物或细菌细胞、病毒粒子或脂质体或可以用来根据本发明进行化验的其它粒子。这样的粒子具有在约50-100nm之间的最小尺寸并且可以如20微米般大或更大。当用来根据本发明进行细胞化验时,术语“粒子”和“细胞”可以互换地使用。

“微通道”或“通道”或“流动通道”通常指用于流体地连接根据本发明的具体实施例的系统和装置的各个部件的微米级通道。微通道通常具有矩形,例如正方形或圆形截面,在优选实施例中,分别具有介于10微米与500微米之间和10微米与500微米之间的侧部和深度尺寸。在微通道中流动的流体可以表现出微流体行为。当用来指本发明的微孔阵列装置内的微通道时,术语“微通道”和“通道”互换地使用。“流动通道”通常表示被设计用于传递培养基、试剂或其它流体或凝胶和在某些实施例中细胞的通路。“培养通道”或者“细胞培养通道”大体上表示在细胞培养期间细胞被设计流过并且也保留于其中的细胞培养结构的一部分(但在某些实施例中细胞可以定位于培养通道的特定培养区中)。“空气通道”通常表示用来允许气体诸如空气、富含氧气的混合物等传递到流动通道或培养区附近的大致微米级通道。“灌注通道”有时用来指示允许培养基灌注到培养区的流动通道和任何灌注通路或结构。

“灌注屏障”指大体上分隔流动通道与细胞培养区或腔室的坚实结构和灌注通路的组合。灌注通路通常小于微通道高度和/或宽度(例如,大约5至50%或者大约10%)并且被设计成防止细胞、其它培养物和在某些实施例中凝胶迁移到流动通道内,同时允许具有比流动通道中的流体流动高很多的流体阻力的某些流体流动。在一示例实施例中,灌注屏障具有4微米高并且原本沿着微通道的大部分长度延伸的灌注通路。在其它实施例中,灌注屏障具有与微流体通道大约一样高但约4微米宽的许多灌注通路。

“微流体装置”指具有由微米级微通道连接的各种工位或孔的装置,其中,流体将在它们通过通道流动时表现出微流体行为。

“微孔阵列”指形成于基板上的两个或更多个微孔的阵列。

“装置”为在本领域中广泛地使用并且涵盖很多种意义的术语。例如,在其最基本并且最不详细水平上,“装置”可简单地表示具有诸如通道、腔室和端口这样的特征的基板。在增加的详细水平,“装置”还可包括封闭所述特征的基板,或者具有协同地或者独立地操作的微流体特征的其它层。以其最详细水平,“装置”可包括全功能基板,其与便于在外部世界与基板的微流体特征之间相互作用的物体相配合。这种物体可以以不同地被称作保持器、封壳、外壳或类似术语,如下文所讨论。如本文所用的术语“装置”指这些实施例中的任何实施例或者上下文可指示的详细水平中的任一个。

微流体系统提供一种强力工具来执行生物实验。近来,基于弹性体的微流体特别地已变得越来越流行,这归因于其光学透明性、透气性和简单的制作方法。本发明涉及用于各种培养和化验应用和系统的集成的微流体,其用于对培养板提供加热控制和自动化的各种处置。具体实施例的优点包括使用标准大小的微量滴定板格式,管自由板和容易地并且有效地使得板与歧管配合以提供气体再循环和加热控制。

根据本发明的另一实施例,如先前已描述,一种新颖的细胞加载系统使用充气歧管和充气压力来将细胞放置到微型培养区内。通过添加这种细胞加载系统,微流体细胞培养和分析可以使用现有的用于处置标准滴定板的其它自动化装备而全自动化。在本发明中,加热和气体循环元件合并到歧管内以提供微型培育器系统。

在另一实施例中,重力驱动的流动培养配置利用在入口与出口孔之间的培养基高度差以及将流体阻力设计成实现在nl/min单位体系(regime)中的所希望的流率,可以用于使培养基长时间(例如,多达4天)“被动地”流动而无需在诸如培育器的环境中使用庞大的外泵或管来控制温度并且如本文所提供的热控制的歧管可以用来在观察期间控制细胞培养。

在某些实施例中,定制的充气流动控制器可以附连到歧管中的气体和电连接器并且因此用于将细胞加载到培养区域内,在不同的暴露溶液之间切换,并且控制所述培养区域的温度。数字软件界面可以用来允许使用者随着时间编程具体输入(脉冲、斜坡等)以使细胞在延时成像期间向复杂功能暴露,同时根据需要维持或者改变温度和气体暴露。

2.微流体培养系统和阵列

上文所引用的应用讨论了多种不同的细胞培养配置和制作技术。细胞培养区的操作和材料的部分适用作本文讨论的背景。在本文的示例中,一个或多个微型培养区经由流体通路的网格(或者扩散入口或管道)连接到培养基或试剂通道,其中网格包括多个相交的高流体阻力灌注通路。在一个讨论的示例中,在网格中的通路具有约1至4μm的高度,25至50μm的长度和5至10μm的宽度,网格允许在培养基或试剂通道与培养区之间更均匀扩散并且允许更易于制造和更均匀扩散。早期的申请还讨论了在微型腔室与灌注/扩散通路或网格之间的高流体阻力比(例如,在约10:1、20:1至30:1范围的比例)提供用于细胞培养的许多优点,诸如:(1)细胞的大小排除;(2)将细胞定位于微型腔室内;(3)促进用于细胞生长的均匀的流体环境;(4)配置微型腔室或培养区的阵列的能力;(4)易于制作;以及(5)操纵试剂而无需大量的阀网络。示出了其中根据本发明的具体实施例一种网格状灌注屏障可能比培养区更短得多或者可能靠近相同高度或者在相同高度的示例,并且另外示出了用于培养装置的各种配置的示例。

3.具有热控制的充气歧管

如上文所讨论,在多种培养系统中的一个困难在于如何控制培养区的加热和温度而同时允许观察细胞过程。先前的解决方案已依靠于施加到孔板上的加热源,例如,从显微镜查看器(例如,参看图11),或者在受控制的环境中容纳整个系统。

本发明通过将所有或几乎所有热和气体控件放置于典型可移除的歧管中或者将所有热和气体控件附连到典型可移除的歧管来提供改进的培养系统,典型可移除的歧管被配置成操作,而不干扰观察装备。参考图示的具体示例,将更易于理解本发明,但这些示例预期为说明性的而非限制性的。图1示出了根据本发明的具体实施例的示例微型培育器歧管的侧视图,其被示出处于具有孔板和显微镜查看器的微型培育器系统中的适当位置。图2示出了根据本发明的具体实施例的具有热控制器的歧管的顶视平面图的一示例。图3示出了根据本发明的具体实施例具有密封到孔板上并且安装到显微镜查看器中的热控制器的歧管的顶侧视图的一示例。图4示出了放置到96孔标准sbs板上具有四个培养单元的培养板的一示例。这个示例示出了带有六个入口孔(标记为a1至d6)、放置于较大查看椭圆形下方的四个微流体培养区、和两个出口孔(7-8)的四个培养单元(对应于标记为a-d的行)。

因此,根据具体实施例,微型培育器歧管可以与多种微流体板形成接口连接并且提供细胞加载、灌注、温度和气态环境控制中的一个或多个。对流热交换器使用珀尔贴热电装置向气体混合物添加热或者从气体混合物移除热。通过来自温热气体混合物传导的热来保持细胞温热并且所希望的气体浓度通过在微流体板上的透气膜在细胞周围的培养基中扩散。

如从图1可以看出,当根据具体实施例的歧管放置于培养板上的适当位置时,从热交换器,在歧管下方并且向培养微流体上方的区域内形成密封气体腔室。被引入到微流体上方区域中的气体由热交换器中的风扇或其它气体循环器件循环,从而使用歧管对于培养区上方的气体环境和温度进行控制。

根据本发明的具体实施例,这种设计解决了在较小空间中提供有效加热以向细胞本身递送受控制的温度同时也控制气体组成的问题。根据本发明的具体实施例,微型培育器歧管包括气体输入和再循环风扇二者以控制气体组成。

在图1所示的示例实施方式中,受控制并且经加压的气体通过气体管线5进入歧管。在此示例中,为了方便起见,歧管的充气部分被示出为呈两件,顶件10a和底件10b,底件10b包括用于紧密装配到板20上的垫片,板容纳多个孔22。歧管的充气操作和到孔板上的装配如在本文引用的专利申请中所描述。歧管还包括热交换模块40,其具有内部热交换翅片42和透明盖板(例如,玻璃或丙烯酸)44。当歧管放置于板10上时,在培养区上方的开放区域与加热元件相连接以形成气体循环区域30。为了示出在背景下的装置,显微镜和照明元件102和104被图示为它们将会通常在操作中使用。孔板可以是如本文所描述的任何标准或定制孔板。从本文所提供的教导内容将了解歧管40的不同配置被构建为用以适应不同的孔板设计。

在歧管上的再循环

在此示例设计中,气体和加热控件和元件完全容纳于歧管中并且歧管可以与任意数目的不同配置的微孔板配合,包括并不具有具体修改以允许它们接纳热源的微孔板。

根据一具体实施例,两个风扇用于热交换元件中,一个用来循环在气体区中的密封气体,一个用于与热交换器相互作用。

图5a至图5d示出了根据本发明的具体实施例从各个视角观察的具有热控制器的歧管的示例实施方式的示意图。歧管的充气部分类似于先前所公开的设计那样操作。热交换模块在下文中更详细描述。

歧管热交换模块

在一示例实施例中的热交换模块通过使得处于所希望温度的空气进行循环来控制在腔室内的温度。在具体实施例中,由热电珀尔贴模块来提供温度控制,热电珀尔贴模块为熟知的装置,其将电流转变为温度梯度并且也可以用作温度控制器,温度控制器加热或冷却。虽然其它加热源可以用于本发明的歧管中,珀尔贴模块是目前优选的机构,因为其可以完全合并到热交换模块和歧管内。

在示例实施例中,热交换模块具有三个主要外部件:(1)金属顶部封壳;(2)塑料底部封壳;以及,(3)具有椭圆形切口的歧管,椭圆形切口允许空气流入到板的细胞培养腔室内并且往回循环出来。

塑料底部封壳

图6(a)示出了根据本发明的具体实施例的热交换模块的底部。底部附连到歧管的充气部分,图6(b)示出了根据本发明的具体实施例的热交换模块的顶部。在具体实施例中,底部的塑料封壳附连到歧管顶部(例如利用螺钉或胶或其它手段)。这种封壳的底部具有两个2mm深流动路径的切口。这些路径在成像腔室上合并为一个。当它们合并时,路径的深度升高到3mm。围绕着流动路径的外裙部的是o形环,o形环防止在流动路径与环境之间进行空气交换。流动路径的大小必须足够宽以允许所希望量值的流量循环到细胞培养腔室内。这减小了在板细胞培养区域与热交换器模块之间(在温度探针的位置处)的温差。

立式/竖直挤出部位于/安放于路径上方。其包含3个腔室。在一个流动路径上方是散热器并且在另一个上方安放着风扇。第三腔室连接到金属顶部封壳中的另一腔室以留出空间用于pcb板,pcb板连接着珀尔贴模块的线、小温度探针、继电器、到微型培育器控制器的连接件和2个热断路器(cutoff)(每一个散热器对应一个热断路器)。温度探针从电子腔室通过在风扇上的螺纹孔发送到其流动路径顶部内以测量循环经过的空气的温度。

塑料封壳还具有从顶部的切口,其形成用于2mm玻璃片的框架,这个玻璃片安放于细胞培养腔室正上方以形成用于显微镜成像的最佳条件而不破坏加热。

金属顶部封壳

金属顶部封壳(图6b)具有翅片挤出特征,这允许它充当用于珀尔贴模块的另一侧的散热器。此外,其可选地包含/容纳了用于第二风扇的腔室以加速冷却过程,以及包含用于热断路器的空间,热断路器连接到塑料底部封壳的电子腔室。

在风扇放置于封壳内侧并且热断路器附连到较小腔室之后,将热油脂施加到珀尔贴模块顶部上以便使之附连到金属顶部封壳。在一具体示例中,塑料封壳的底部牢固地紧固到顶部封壳,例如使用螺钉或胶。

当细胞培养区域中的温度必须升高时,珀尔贴模块通过冷却所述顶部散热器来加热底部散热器。底部风扇吹送热空气跨越过底部散热器到其下方的流动路径内。在更冷的空气往回循环到风扇时,受热的空气进入细胞培养腔室。当在培养区域中的温度降低时,珀尔贴模块通过升高在顶部上的温度(直到周围温度)来冷却底部散热器。

图7为密封到培养板上的歧管的充气部分的示意侧视图并且示出了根据本发明的具体实施例连接到环境控制体积的管线中的气体。

图8示出了根据具体实施例的歧管与微流体板如何形成接口连接的方式的示意图,其中,通过向所有孔周围的腔体施加真空而形成可靠密封。加热单元在此附图中并未示出。

4.早期的充气歧管

虽然重力或被动加载对于某些微流体细胞培养装置而言是有效的并且在某些实施例中是合乎需要的,专有的充气歧管是在上文引用的申请中在先前描述的。其可以与板配合并且充气压力被施加到细胞入口区用于在侵入化验期间的细胞加载和培养。图10a至图10c示出了根据早期设计的示例充气歧管的顶视图、侧视图和平面图。在此示例中,右边的八个管路用于压缩空气,并且每个被配置成向微流体阵列中的细胞入口孔的列提供压力。在附图中最左边的管线用于真空并且连接到歧管周围的外真空环。歧管放置于标准孔板的顶部上。橡胶垫片位于板与歧管之间,具有匹配着歧管(未图示)的孔。真空管线在孔之间的腔体中形成真空,保持着板和歧管在一起。压力被施加到孔以将液体驱动到微流体通道(未图示)内。使用1psi的典型压力,因此真空强度足以维持气密密封。在一示例中存在通往压力控制器的9个管路,8个管线用于压缩空气并且1个管线用于真空(最左边)。在具体示例实施例中,每个列连接到单个压力管线。跳过在细胞成像区域上方的列。

已发现加压细胞加载在制备培养凝集细胞(例如,实体肿瘤、肝、肌肉等)方面是特别有效的。加压细胞加载也允许具有细长培养区域的结构被有效地加载。将加压歧管用于细胞加载和将被动流动用于灌注操作允许了本发明利用相当简单的两个入口设计,而无需如在其它设计中所用的额外的入口孔和/或阀。

虽然这种歧管有效地用于细胞加载和某些灌注任务,歧管并不有效地提供气体在培养区上的再循环或者用于任何热控制。如图所示,当需要时,从培养板的相反侧,例如从显微镜查看器的附近提供加热。

板歧管可选地还包括额外“气体管线”,其用于使细胞浸泡在具有规定气体环境(例如,5%co2)的微流体装置中。其它示例包括氧气和氮气控制,但任何气态混合物可以发送到细胞。气体通过歧管流动到细胞培养区上方的密封孔的内并且在微流体装置中的孔能允许气体流入到规定的微流体空气通道内,如上文所描述。透气装置层(pdms)允许气体扩散到培养基内,之后暴露细胞。通过使气体持续地穿过微流体板流动,维持了稳定的气体环境。这提供了用于控制气体环境以将微流体版放置于培育器内的可选的手段。

图12示出了根据本发明的具体实施例的示例微流体灌注系统(onix™)、微型培育器控制器和歧管(mic)和计算机控制系统。

仅作为一示例,图14示出了根据本发明的具体实施例,板和培养单元设计的一个替代方案,其具有填充了蓝色染料的示例培养单元,从顶部拍摄图像。然而,在培养板的任何配置中的任何培养单元可以用于根据本发明的具体实施例的正确尺寸的歧管。其包括开放的顶部单元、侵入单元、肝模仿单元、凝胶单元等,如在上文引用的申请中所描述。

细胞化验和/或观察

可以使用标准的基于光学的试剂套件(例如,荧光、吸收度、发光等)来在微流体细胞培养上直接执行细胞化验。例如,已展示了利用活细胞而运用基板至荧光分子的转换的细胞生存力化验(promegacorporation的celltiterbluereagent)。试剂被分配到流动入口储器并且经由重力灌注在一段时间(例如,21小时)暴露于细胞。为了更快速地引入试剂或其它流体,可将新流体添加到流动入口储器,之后抽吸所述细胞入口储器。

可以在微流体板中在细胞/液体上收集数据,诸如将板放置于标准荧光板读取器内(例如,biotekinstrumentssynergy2型)。在某些反应中,基板可以扩散到出口培养基内,并且因此易于在细胞入口储器中检测到。为了进行细胞成像化验,板可以被放置于扫描显微镜或高含量系统上。例如,可以使用自动化olympus1x71倒置显微镜工位来利用20x物镜捕获/采集培养的肝细胞的生存力。

通过重复地填充/抽吸所述孔,可以以最小努力维持细胞较长时段(例如,与标准“生物反应器”相比,标准生物反应器需要较大流体储器的大量无菌制备,在操作期间,这种较大流体储器不能被容易地交换)。

示例细胞培养

使用微型培育系统来培养细胞以控制温度和气氛。在一示例中,在37℃和5%co2中培养人癌细胞(ht-1080,mcf-7,mda-mb-231)以在24小时监视细胞分裂。使用微型培育系统已成功地培养了额外细胞类型,包括酵母、细菌、原发细胞、神经元等。作为一示例,图13示出了根据本发明的具体实施例使用微型培育器系统在t=0(左)和15小时后(右)培养的nih-3t3小鼠成纤维细胞,示出了细胞生长和生存力。当不控制温度或co2时,细胞在2小时内快速死亡。

集成系统

用于收集和分析细胞和其它数据以及用于编译、存储和访问本发明的数据库的集成系统通常包括数字计算机,数字计算机包括用于顺序搜索和/或分析的指令集,和可选地,高处理量样品控制软件、图像分析软件、收集数据解释软件、用于将来自源的溶液转移到可操作地连结到数字计算机上的目的地(诸如检测装置)的机器人控制电枢、用于将受检者数据录入到数字计算机的输入装置(例如,计算机键盘)中的一个或多个,或者控制分析操作或者由机器人控制电枢进行的高处理量样品转移。可选地,集成系统还包括阀、浓度梯度、流体多路传送器(multilextor)和/或用于如所描述那样与微型腔室形成接口连接的其它微流体结构。

使用标准操作系统的普遍易得的计算硬件资源可以被采用并且根据本文提供的教导内容修改,例如pc(intelx86或pentium芯片兼容型dos™、os2™、windows™、windowsnt™、windows95™、windows98™、linux或甚至macintosh、sun或pc将是足够的)以用于本发明的集成系统。软件科技中的当前技术足以允许在计算机系统上实施本文所教导的方法。因此,在具体实施例中,本发明可以包括用于执行本文所教导的方法中的一个或多个方法的逻辑指令集合(软件、或硬件编码指令)。例如,用于提供数据和/统计分析的软件可以由本领域技术人员使用标准编程语言诸如visualbasic、fortran,basic、java等来构建。这种软件也可以使用多种统计编程语言、工具包或库来构建。

图17示出了信息器具(或数字装置)700,其可以被理解为能从介质717和/或网络端口719读取指令的逻辑设备,网络接口719可以可选地连接到具有固定介质722的服务器720。设备700之后可以使用那些指令来指导服务器或客户端逻辑,如本领域中理解,来实施本发明的方面。可以实施本发明的一种类型的逻辑设备为如以700所示的计算机系统,包含cpu707、可选的输入装置709和711、磁盘驱动器715和可选的监视器705。固定介质717、或者在端口719上的固定介质722可以用于将这种系统编程并且可以表示圆盘型光学或磁性介质,磁带、固态动态或静态存储器等。在具体实施例中,本发明可以总体上或部分地实施为在这种固定介质上记录的软件。通信端口719还可以用于最初接收可用于将这种系统编程的指令并且可能表示任何类型的通信连接。

各种编程方法和算法,包括一般算法和神经网络,可以用于执行数据集、相关性和储存功能的方面,以及其它所希望的功能,如本文所描述那样。此外,数字或模拟系统诸如数字或模拟计算机系统可以控制多种其它功能诸如显示和/或输入和输出文件的控制。用于执行本发明的电分析方法的软件也包括于本发明的计算机系统中。

自动密封器自动化系统

图18为示出根据本发明的具体实施例的自动化活塞驱动系统的框图。根据另外的具体实施例,自动密封器略微类似于通常用于生物科技中的板读取器,主要差别在于系统部件的设计允许自动化处置微流体板。在此实施方式中。仍通过向间隙区施加真空而实现了在歧管与微流体板之间的可靠密封,但机械地施加了所必需的初始向下力。在歧管上方的区域为畅通的以允许由自动化液体处置器诸如tecanevo接近。真空和压力传感器以及板存在和托架位置传感器允许基于智能软件的误差处置。图18b为示出自动密封装置接受和密封歧管到微流体板的图像顺序。单个充气线性促动器(例如,活塞)提供水平和竖直运动。已发现这单个操作允许更精确地控制歧管和板并且在充气歧管操作期间保持板就位。

其它实施例

尽管关于各种具体实施例描述了本发明,预期本发明并不限于这些实施例。在本发明的精神内的修改对于本领域技术人员显然。

应了解本文所描述的示例和实施例是出于说明目的并且其各种修改或变化将由本文的教导内容暗示给本领域技术人员并且包括于本申请的精神和范畴内以及权利要求的范围内。

本文所引用或者与本提交物一起提交的所有公告、专利和专利申请,包括作为信息公开陈述的部分提交的任何引用,以全文引用的方式并入到本文中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1