一种柔性导电超疏水涂层及其制备方法与流程

文档序号:14191960阅读:688来源:国知局

本发明涉及一种超疏水涂层领域,具体涉及一种柔性导电超疏水涂层及其制备方法。



背景技术:

受自然界中“荷叶效应”的启发,人们发现存在超疏水表面,其静态水滴接触角大于150°,滚动角小于10°。由于这种独特的浸润性,超疏水表面在自清洁、防覆冰、防污染、阻燃、油水分离等领域具有重要的应用价值,因此引起了研究者们的广泛关注。传统方法制备的超疏水涂层存在制备工艺繁琐、反应条件苛刻、化学稳定性及机械耐久性差等缺点。为了解决以上问题,国内外研究人员进行了一系列探索研究,虽然在超疏水涂层的制备方法及耐久性上取得了一定进展,但其仍存在柔软性差、不耐拉伸和弯折等缺点。

近年来,随着科学技术的发展,人们对功能性的超疏水涂层的需求越来越大。作为一种重要的功能性超疏水涂层,导电超疏水涂层在电子电器设备中具有广泛的用途,但与其相关的研究还鲜少报道。目前用于电子电器中的导电涂层通常不具备超疏水性,主要是以高分子材料为基体并掺杂一定数量的导电物质(如银纳米线、纳米银粉、碳纳米管、石墨烯等)以及溶剂和助剂组合而成,且在外力作用下导电通路容易被破坏而失去导电性。



技术实现要素:

本发明针对目前超疏水涂层柔软性差、不耐拉伸和弯折等缺点以及导电涂层不具备疏水性、在外力作用下导电性易破坏等缺点,提供一种操作简单的柔性导电超疏水涂层的制备方法,所得涂层具有优良的疏水性、导电性和耐酸碱稳定性等优点,且涂层在拉伸状态下也能保持疏水性和导电性。

本发明首先采用烷基硫醇对银颗粒进行疏水化改性,再将热塑性弹性体、疏水性银颗粒和有机溶剂的混合溶液喷涂在用外力预拉伸至一定比例的橡胶基底上,待涂层干燥后松弛橡胶基底得到柔性导电超疏水涂层。本发明制备的超疏水涂层具有优良的导电性、耐酸碱稳定性和可拉伸性,且涂层在拉伸状态下也能保持疏水性和导电性,在防覆冰、抗粘附、导电通路及应变传感上具有广阔的应用前景。

本发明的目的通过如下技术方案实现:

一种柔性导电超疏水涂层,以橡胶为基底,含有疏水性银颗粒;室温下水接触角为152‐162°,电阻为101‐103ω;将强酸和强碱液滴滴在涂层上保持10‐30min或者涂层在拉伸‐松弛20个循环后,其接触角均保持在150°以上并导电;涂层在拉伸状态下保持疏水性和导电性。

所述的柔性导电超疏水涂层的制备方法,包括以下步骤:

1)按质量份数计,将1‐3份银颗粒分散在100份质量浓度为0.5‐3wt%的烷基硫醇的乙醇溶液中,超声分散,并在室温下继续搅拌,离心处理,洗涤后真空干燥,即得疏水性银颗粒;

2)按质量份数计,首先将0.5份热塑性弹性体加入20‐50份有机溶剂中,在30‐60℃下搅拌3‐12h,再加入1‐2份疏水性银颗粒,超声分散0.5‐2h,制得混合分散液;然后用外力将橡胶基底预拉伸至原长的2‐3倍,利用喷枪将混合分散液喷涂在橡胶基底上;最后,涂层干燥后,将外力去除,使橡胶基底回复到原来的长度,制得柔性导电超疏水涂层。

为进一步实现本发明目的,优选地,所述的烷基硫醇为十二硫醇、十四硫醇、十六硫醇和十八硫醇中的任意一种或两种的混合物。

优选地,所述的热塑性弹性体为苯乙烯‐丁二烯‐苯乙烯嵌段共聚物、苯乙烯‐异戊二烯‐苯乙烯嵌段共聚物、氢化苯乙烯‐丁二烯‐苯乙烯嵌段共聚物和氢化苯乙烯‐异戊二烯‐苯乙烯嵌段共聚物中的任意一种或两种的混合物。

优选地,所述的银颗粒的尺寸为100‐300nm。

优选地,所述的有机溶剂为甲苯、二甲苯、四氢呋喃和环己烷中的任意一种。

优选地,所述的橡胶基底为天然橡胶、硅橡胶、丁基橡胶和丁腈橡胶中的任意一种。

优选地,所述喷涂的工作压力为0.4‐0.7mpa,喷枪与基底的喷涂距离为10‐20cm,喷枪的移动速度为1‐2cm/s,且往复移动1‐3个循环。

优选地,步骤1)所述超声分散的时间为5‐30min,所述继续搅拌的时间为3‐12h;所述离心处理的转速为6000‐10000rpm,时间为10‐30min;所述洗涤是将产物用乙醇洗涤;所述真空干燥是30‐50℃下真空干燥5‐12h。

优选地,步骤2)所述涂层干燥是将涂层在30‐50℃下干燥10‐30min,使溶剂充分挥发。

本发明所述的柔性导电超疏水涂层的制备方法,与现有技术相比,具有如下优点:

(1)本发明制备的涂层除了具有超疏水性和导电性,还具备优良的耐酸碱稳定性和可拉伸性,属于一种多功能涂层。

(2)本发明制备的柔性导电超疏水涂层会随着橡胶基底的回复而收缩,使表面粗糙度增大和导电通路增多,在拉伸状态下能保持优良的疏水性和导电性,其中导电性随拉伸应变的增大呈递增关系,在应变传感器上有重要应用价值。

(3)本发明采用喷涂法制备涂层,工艺简单,可大面积生产。

附图说明

图1为实施例1中制备的柔性导电超疏水涂层在拉伸过程中的电阻变化。

具体实施方法

为更好地理解本发明,下面结合实施例对本发明作进一步说明,但是本发明的实施方式不限于此。

实施例1

将2g尺寸为100‐200nm的银颗粒分散在100g质量浓度为1wt%的十六硫醇的乙醇溶液中,超声分散15min并在室温下继续搅拌8h,然后以8000rpm的转速离心20min,将产物用乙醇洗涤后在40℃下真空干燥8h,即得疏水性银颗粒。将0.35g氢化苯乙烯‐丁二烯‐苯乙烯嵌段共聚物加入17.5g甲苯中,在40℃搅拌5h,再加入1.05g疏水银颗粒,超声分散1h,制得混合分散液。其次,用外力将天然橡胶基底预拉伸至原长的3倍,利用喷枪(工作压力为0.6mpa,喷枪距离橡胶基底15cm,移动速度1cm/s,喷枪往复喷涂2个循环)将混合分散液喷涂在橡胶基底上。最后,涂层在30℃下干燥15min使溶剂充分挥发后,将外力去除使橡胶基底回复到原来的长度,制得柔性导电超疏水涂层。

表1列出了本实施例制备的柔性导电超疏水涂层的水接触角和电阻。从表1可以看出,其接触角为162.0°,电阻为15ω,具有优良的疏水性和导电性。这主要是因为喷涂过程中随着溶剂的大量挥发,银颗粒会在涂层表面聚集形成一定的粗糙结构;随后预拉伸的橡胶基底在回复过程会使弹性涂层发生收缩,进一步增加表面粗糙度,并形成导电通路。

为了评价本实施例制备的柔性导电超疏水涂层的耐酸碱稳定性,将一滴体积10μl的ph=0的强酸液滴和一滴体积10μl的ph=14的强碱液滴分别滴在柔性导电超疏水涂层表面并保持20min,测试其接触角和电阻,所得结果列于表2。为了评价本实施例制备的柔性导电超疏水涂层的可拉伸性,将其拉伸至原长的3倍,再松弛回复,此过程重复20个循环,测试其接触角和电阻,所得结果列于表2。从表2可以看出,强酸(ph=0)和强碱(ph=14)液滴在本实施例制备的柔性导电超疏水涂层表面保持20min后,接触角均保持在150°以上,且涂层导电性基本不变。此外,本实施例制备的柔性导电超疏水涂层经20个拉伸‐松弛循环后,涂层的水接触角变为160.0°,电阻变为21ω,这是由于热塑性弹性体具有优异的柔韧性,涂层在拉伸‐松弛过程后保持表面的微纳粗糙结构,且大部分导电通路在涂层松弛过程中逐渐修复,涂层仍具有良好的疏水性和导电性。

为了评价本实施例制备的柔性导电超疏水涂层在拉伸状态下的疏水性,将其拉伸至原长的2、3、4、5和6倍并固定,对表面进行水接触角测试,所得结果列于表3。从表3可以看出,本实施例制备的柔性导电超疏水涂层在拉伸至原长的不同倍数时,涂层表面保持超疏水性。这主要是因为预拉伸的橡胶基底在回复过程中,涂层发生收缩,表面粗糙度大幅度增加,因此涂层在拉伸过程中表面形貌虽然发生变化,但仍能保持微纳粗糙结构,对超疏水性能的保持起到关键作用。

为了评价本实施例制备的柔性导电超疏水涂层在拉伸状态下的导电性,采用微欧计(tegam1740,usa)实时记录其拉伸至原长1.5倍的形变过程中的电阻,并以涂层拉伸状态下的电阻与涂层初始电阻的比值作为纵坐标,涂层拉伸过程中的应变(涂层拉伸长度变化量与涂层原长度的比值×100%)作为横坐标,所得结果如图1所示。从图1可以看出,本实施例制备的柔性导电超疏水涂层随拉伸应变的增大,电阻逐渐增加。这主要是因为在喷涂过程中随着溶剂的挥发,银颗粒会在涂层中形成少量导电通路;随后预拉伸的橡胶基底的回复过程使涂层发生收缩,进一步增加表面银颗粒堆积密度,形成较多的导电通路。而在拉伸过程中,部分堆积的银颗粒的导电通路发生破坏,使导电性下降。本发明制备的柔性导电超疏水涂层的电阻在拉伸过程中对拉伸应变的响应可以应用于传感器及其相关领域。

目前,大多数超疏水涂层仅具有超疏水这一特性,功能单一。而本发明采用银颗粒和热塑性弹性体为主要原料在橡胶基底上制备的超疏水涂层不仅具有超疏水性,而且还具有优良的导电性、耐酸碱稳定性和可拉伸性。涂层在拉伸状态下也能保持疏水性和导电性。因此,本发明所制备的超疏水涂层可在苛刻的环境条件和外力作用条件下保持和使用超疏水性及导电性。在严寒天气,超疏水性可以防止冰在表面粘附,而且利用导电性通电生热可以将表面粘附的少量冰融化,两者结合可以很好地应用于防覆冰领域。在拉伸过程中,利用电阻对拉伸应变的响应,本发明所制备的超疏水涂层还可应用于传感器及其相关领域。

实施例2

将3g尺寸为250‐300nm的银颗粒分散在100g质量浓度为0.5wt%的十四硫醇的乙醇溶液中,超声分散5min并在室温下继续搅拌3h,然后以6000rpm的转速离心30min,将产物用乙醇洗涤后在30℃下真空干燥12h,即得疏水性银颗粒。将0.4g苯乙烯‐异戊二烯‐苯乙烯嵌段共聚物加入16g二甲苯中,在30℃搅拌12h,再加入1.2g疏水性银颗粒,超声分散1h,制得混合分散液。其次,用外力将天然橡胶基底预拉伸至原长的2.5倍,利用喷枪(工作压力为0.7mpa,喷枪距离橡胶基底20cm,移动速度2cm/s,喷枪往复喷涂2个循环)将混合分散液喷涂在橡胶基底上。最后,涂层在30℃下干燥30min使溶剂充分挥发后,将外力去除使橡胶基底回复到原来的长度,制得柔性导电超疏水涂层。

表1列出了本实施例制备的柔性导电超疏水涂层的水接触角和电阻。从表1可以看出,其接触角为159.0°,电阻为246ω,具有优良的疏水性和导电性。

表2列出了本实施例中强酸(ph=0)和强碱(ph=14)液滴在制备的柔性导电超疏水涂层上保持20min及涂层在拉伸‐松弛20个循环后的水接触角和电阻。从表2可以看出,强酸(ph=0)和强碱(ph=14)液滴在本实施例制备的柔性导电超疏水涂层表面保持20min后,接触角均保持在150°以上,且电阻基本不变,具有优良的化学稳定性。此外,本实施例制备的柔性导电超疏水涂层经20个拉伸‐松弛循环后,涂层的水接触角为157.0°,电阻为269ω,涂层仍保持超疏水性和优良的导电性。

表3列出了本实施例制备的柔性导电超疏水涂层在拉伸至原长的2、3、4、5和6倍时的接触角。从表3可以看出,制备的柔性导电超疏水涂层在拉伸至原长的2、3、4、5和6倍时,涂层表面接触角均大于150°,具有优良的抵抗拉伸形变的能力。

实施例3

将2g尺寸为200‐300nm的银颗粒分散在100g质量浓度为2wt%的十二硫醇和十六硫醇(十二硫醇和十六硫醇质量比为1)的乙醇溶液中,超声分散20min并在室温下继续搅拌10h,然后以8000rpm的转速离心15min,将产物用乙醇洗涤后在40℃下真空干燥8h,即得疏水性银颗粒。将0.3g氢化苯乙烯‐异戊二烯‐苯乙烯嵌段共聚物加入15g甲苯中,在50℃搅拌5h,再加入1.2g疏水性银颗粒,超声分散2h,制得混合分散液。其次,用外力将硅橡胶基底预拉伸至原长的3倍,利用喷枪(工作压力为0.5mpa,喷枪距离橡胶基底15cm,移动速度1.5cm/s,喷枪往复喷涂1个循环)将混合分散液喷涂在橡胶基底上。最后,涂层在40℃下干燥15min使溶剂充分挥发后,将外力去除使橡胶基底回复到原来的长度,制得柔性导电超疏水涂层。

表1列出了本实施例制备的柔性导电超疏水涂层的水接触角和电阻。从表1可以看出,其接触角为160.0°,电阻为592ω,具有优良的疏水性和导电性。

表2列出了本实施例中强酸(ph=0)和强碱(ph=14)液滴在制备的柔性导电超疏水涂层上保持20min及涂层在拉伸‐松弛20个循环后的水接触角和电阻。从表2可以看出,强酸(ph=0)和强碱(ph=14)液滴在本实施例制备的柔性导电超疏水涂层表面保持20min后,接触角均保持在150°以上,且电阻基本不变,具有优良的化学稳定性。此外,本实施例制备的柔性导电超疏水涂层经20个拉伸‐松弛循环后,涂层的水接触角为158.5°,电阻为615ω,涂层仍保持超疏水性和优良的导电性。

表3列出了本实施例制备的柔性导电超疏水涂层在拉伸至原长的2、3、4、5和6倍时的接触角。从表3可以看出,制备的柔性导电超疏水涂层在拉伸至原长的2、3、4、5和6倍时,涂层表面接触角均大于150°,具有优良的抵抗拉伸形变的能力。

实施例4

将1g尺寸为100‐150nm的银颗粒分散在100g质量浓度为3wt%的十八硫醇的乙醇溶液中,超声分散30min并在室温下继续搅拌12h,然后以10000rpm的转速离心10min,将产物用乙醇洗涤后在50℃下真空干燥5h,即得疏水性银颗粒。将0.175g苯乙烯‐丁二烯‐苯乙烯嵌段共聚物加入17.5g四氢呋喃中,在60℃搅拌3h,再加入0.35g疏水性银颗粒,超声分散0.5h,制得混合分散液。其次,用外力将丁腈橡胶基底预拉伸至原长的2倍,利用喷枪(工作压力为0.4mpa,喷枪距离橡胶基底10cm,移动速度1cm/s,喷枪往复喷涂3个循环)将混合分散液喷涂在橡胶基底上。最后,涂层在50℃下干燥10min使溶剂充分挥发后,将外力去除使橡胶基底回复到原来的长度,制得柔性导电超疏水涂层。

表1为本发明实施例柔性导电超疏水涂层的水接触角和电阻;表1列出了本实施例制备的柔性导电超疏水涂层的水接触角和电阻。从表1可以看出,其接触角为160.0°,电阻为135ω,具有优良的疏水性和导电性。

表1

注:采用德国kruss公司的dsa100测试仪对接触角进行测试,每个样品取5个点计算平均值。

表2为本发明实施例柔性导电超疏水涂层在酸碱液滴处理或拉伸‐松弛循环后的水接触角和电阻;表2列出了本实施例中强酸(ph=0)和强碱(ph=14)液滴在制备的柔性导电超疏水涂层上保持20min及涂层在拉伸‐松弛20个循环后的水接触角和电阻。从表2可以看出,强酸(ph=0)和强碱(ph=14)液滴在本实施例制备的柔性导电超疏水涂层表面保持20min后,接触角均保持在150°以上,且电阻基本不变,具有优良的化学稳定性。此外,本实施例制备的柔性导电超疏水涂层经20个拉伸‐松弛循环后,涂层的水接触角为156.5°,电阻为178ω,涂层仍保持超疏水性和优良的导电性。

表2

注:采用德国kruss公司的dsa100测试仪对接触角进行测试,每个样品取5个点计算平均值。采用微欧计(tegam1740,usa)对电阻进行测量,每个样品取3个点计算平均值。

表3

注:采用德国kruss公司的dsa100测试仪对接触角进行测试,每个样品取5个点计算平均值。

表3为本发明实施例柔性导电超疏水涂层在不同拉伸倍数时的水接触角。表3列出了本实施例制备的柔性导电超疏水涂层在拉伸至原长的2、3、4、5和6倍时的接触角。从表3可以看出,制备的柔性导电超疏水涂层在拉伸至原长的2、3、4、5和6倍时,涂层表面接触角均大于150°,具有优良的抵抗拉伸形变的能力。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1