一种耐水解聚氨酯鞋底及其制备方法与流程

文档序号:14826626发布日期:2018-06-30 08:43阅读:588来源:国知局

本发明涉及鞋底材料技术领域,更具体地说,它涉及一种耐水解聚氨酯鞋底及其制备方法。



背景技术:

聚氨酯作为新型多功能高分子材料,属于高科技、高性能、高附加值的产品,具有优越的物理机械性能、耐酸碱腐蚀性能、高承载性能,以及硬度范围宽等优点,在材料工业中占有重要地位,目前已经成为鞋底市场的主流材料之一,在劳保鞋上的应用也较为广泛。聚酯型聚氨酯最大的缺陷在于耐水解性能差,在潮湿环境中使用时,容易降解而缩短使用寿命,造成材料浪费与巨大的经济损失。

在公开号为CN103073697A的中国发明专利中公开了一种热塑性聚氨酯弹性体的加工工艺,包括以下步骤:聚己二酸乙二醇酯、二苯基甲烷二异氰酸酯和1,4-丁二醇的预干燥;原料的初混,其中加入0.1-10wt%的碳化二亚胺类耐水解剂;初混后的物质从浇注头进入双螺杆反应挤出机中,反应温度为140-250℃,压力为4-7MPa,并且机筒的温度控制至少分为四段;反应完成后,由机头挤出胶条,经水下拉条切粒并和脱水得到产物粒子;然后再干燥。

上述专利中为了提高聚氨酯材料的耐水解性能,添加了耐水解剂,但是耐水解剂会迁移到聚氨酯的表层,导致聚氨酯材料的耐水解性下降,因此,需要提出一种新的方案来解决上述问题。



技术实现要素:

针对现有技术存在的不足,本发明的目的一在于提供一种耐水解聚氨酯鞋底,通过除去聚氨酯鞋底中的金属离子、加入抗水性较好的芳香环类原料以及防腐剂,解决聚氨酯鞋底耐水解性差的问题,其具有耐水解性好的优点。

为实现上述目的一,本发明提供了如下技术方案:

一种耐水解聚氨酯鞋底,包括A组分和B组分,A组分包括如下重量份数的组分:

聚醚多元醇40-60份;

聚酯多元醇30-50份;

非金属催化剂1-2份;

扩链剂1-5份;

匀泡剂1-2份;

水1-2份;

B组分包括如下重量份数的组分:

异氰酸酯20-40份;

聚己二酸乙二醇酯10-30份。

通过上述技术方案,通过在聚氨酯鞋底中引入聚醚多元醇,聚醚多元醇中的醚官能团具有较好的耐水解性能,克服了聚酯型的缺点;由于柔性的聚氨酯容易水解成分子量较低的产物,在有碱和某些金属离子催化剂存在的情况下,这种水解能够迅速发生,因此,本发明采用非金属催化剂,避免引入能够使聚氨酯水解的金属离子,提高聚氨酯鞋底的耐水解性能。

进一步的,所述耐水解聚氨酯鞋底还包括0.1-0.5份金属螯合剂。

通过上述技术方案,由于在生产过程中不可避免的会引入少量的金属离子,而这些金属离子会导致聚氨酯鞋底发生水解,通过加入金属螯合剂将金属离子包合到螯合剂内部,变成稳定的、分子量更大的化合物,从而进一步提高聚氨酯鞋底的耐水解性能。

进一步的,所述金属螯合剂包括氨基三亚甲基膦酸、乙二胺四甲叉膦酸、氨基三甲叉膦酸中的任意一种。

通过上述技术方案,上述的螯合剂属于有机膦酸型类螯合剂,对Ca、Mg盐有较好的螯合作用。

进一步的,所述耐水解聚氨酯鞋底还包括0.5-2.5份异噻唑啉酮。

通过上述技术方案,由于聚氨酯中存在酯键,自然界中的微生物(例如霉菌)通过进攻酯键能够引起聚氨酯降解,这种细菌降解比金属离子引起的水解更加迅速;配方中的聚醚还能够阻碍霉菌的接近,加入防腐剂异噻唑啉酮能抑制或者杀灭微生物,避免微生物引起聚氨酯鞋底降解。

进一步的,所述聚醚多元醇包括聚氧化丙烯二醇、聚氧化乙烯共聚醚多元醇、聚四氢呋喃多元醇中的任意一种。

通过上述技术方案,聚醚多元醇中的醚官能团具有较好的耐水解性能,弥补了聚酯型的缺点,提高聚氨酯鞋底的耐水解性能。

进一步的,所述聚酯多元醇包括聚葵二酸-聚丁二烯二元醇酯多元醇、聚乙二醇二乙二醇葵二酸酯多元醇、聚己二酸乙二醇二乙二醇甘油酯多元醇中的任意一种。

通过上述技术方案,二元醇的性质影响着聚氨酯的耐水解性,上述的聚酯多元醇具有较长亚甲基链,降低了氢链比例,提高了疏水性,减少水的渗入,从而提高聚氨酯鞋底的耐水解性能。

进一步的,所述非金属催化剂包括吗啉、N,N二甲基环己胺、三乙醇胺中的任意一种。

通过上述技术方案,非金属催化剂不仅增加了反应速度,而且避免引入金属离子。

进一步的,所述扩链剂包括乙二醇、甲基丙二醇、甘油中的任意一种;所述匀泡剂为二甲基硅氧烷或者聚醚硅氧烷。

通过上述技术方案,扩链剂通过使生长中的自由基发生链转移而降低形成的共聚物的分子量,由此降低影响聚合物多元醇的粘度和分散稳定性以及过滤性的聚合物分子间的交联作用;匀泡剂使得聚氨酯发泡时成孔均匀,结构一致性强。

进一步的,所述异氰酸酯包括二苯基甲烷二异氰酸酯、二环已基甲烷二异氰酸酯、萘二异氰酸酯中的任意一种。

通过上述技术方案,纯线性的聚氨酯受到其低结晶度的影响,在非晶区比较高的区域湿气容易进入聚氨酯,进攻高分子链造成水解,带苯环的异氰酸酯提高了聚氨酯的结晶度,使得水气扩散速度减慢,从而提高聚氨酯鞋底的耐水解性能;而且异氰酸酯大大增多了反应物的硬段含量,保证了鞋底的硬度和强度指标。

本发明的目的二在于提供一种耐水解聚氨酯鞋底的制备方法,采用该方法制备的鞋底耐水解性好。

为实现上述目的二,本发明提供了如下技术方案:

一种耐水解聚氨酯鞋底的制备方法,其特征在于,包括以下步骤:

步骤一,按比例称取A组分和B组分;

步骤二,将A组分在100-110℃条件下加热1-2小时,熔融后加入金属螯合剂和异噻唑啉酮,搅拌混合均匀,注入灌注机的第一料罐中;

步骤三,将B组分混合均匀并在120-130℃条件下加热2-3小时,注入灌注机的第二料罐中;

步骤四,将混合后的A组分、金属螯合剂和异噻唑啉酮与B组分浇入鞋模内,并将鞋模放入发泡机内进行发泡;

步骤五,发泡后冷却,修理,成型得到所述耐水解聚氨酯鞋底。

通过上述技术方案,本发明在聚氨酯鞋底中引入聚醚多元醇,聚醚多元醇中的醚官能团具有较好的耐水解性能,克服了聚酯型的缺点;同时采用非金属催化剂,避免引入能够使聚氨酯水解的金属离子,提高聚氨酯鞋底的耐水解性能;再加入金属螯合剂将生产时引入的金属离子杂质包合到螯合剂内部,从而进一步提高聚氨酯鞋底的耐水解性能;再加入防腐剂异噻唑啉酮抑制或者杀灭微生物,避免微生物引起聚氨酯鞋底降解;带苯环的异氰酸酯提高了聚氨酯的结晶度,使得水气扩散速度减慢,从而提高聚氨酯鞋底的耐水解性能,五者相互配合,协同增效,使得本发明中的耐水解聚氨酯鞋底的耐水解性能大大提升,延长其在潮湿环境中的使用寿命。

综上所述,与现有技术相比,本发明具有以下有益效果:

(1)本发明在聚氨酯鞋底中引入聚醚多元醇,聚醚多元醇中的醚官能团提高聚氨酯鞋底的耐水解性能;

(2)本发明采用非金属催化剂,避免引入能够使聚氨酯水解的金属离子,再加入金属螯合剂将生产时引入的金属离子杂质包合到螯合剂内部,从而进一步提高聚氨酯鞋底的耐水解性能;

(3)本发明采用防腐剂异噻唑啉酮抑制或者杀灭微生物,避免微生物引起聚氨酯鞋底降解;

(4)本发明采用带苯环的异氰酸酯提高了聚氨酯的结晶度,使得水气扩散速度减慢,从而提高聚氨酯鞋底的耐水解性能;

(5)聚醚多元醇、非金属催化剂、金属螯合剂、异噻唑啉酮、带苯环的异氰酸酯相互配合,协同增效,使得本发明中的耐水解聚氨酯鞋底的耐水解性能大大提升,延长其在潮湿环境中的使用寿命。

附图说明

图1为本发明的工艺流程图。

具体实施方式

下面结合附图和实施例,对本发明进行详细描述。

实施例1:一种耐水解聚氨酯鞋底,各组分及其相应的重量份数如表1所示,其工艺流程参照图1,并通过如下步骤制备获得:

步骤一,按比例称取A组分和B组分;

步骤二,将A组分在100℃条件下加热1小时,熔融后加入金属螯合剂和异噻唑啉酮,搅拌混合均匀,注入灌注机的第一料罐中;

步骤三,将B组分混合均匀并在120℃条件下加热2小时,注入灌注机的第二料罐中;

步骤四,将混合后的A组分、金属螯合剂和异噻唑啉酮与B组分浇入鞋模内,并将鞋模放入发泡机内进行发泡;

步骤五,发泡后冷却,修理,成型得到所述耐水解聚氨酯鞋底。

实施例2-8:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,各组分及其相应的重量份数如表1所示。

表1实施例1-8中各组分及其重量份数

实施例9-16:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,各组分及其相应的重量份数如表2所示。

表2实施例9-16中各组分及其重量份数

实施例17-25:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,各组分及其相应的重量份数如表3所示。

表3实施例17-25中各组分及其重量份数

实施例26:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,通过如下步骤制备获得:

步骤一,按比例称取A组分和B组分;

步骤二,将A组分在110℃条件下加热1小时,熔融后加入金属螯合剂和异噻唑啉酮,搅拌混合均匀,注入灌注机的第一料罐中;

步骤三,将B组分混合均匀并在120℃条件下加热2小时,注入灌注机的第二料罐中;

步骤四,将混合后的A组分、金属螯合剂和异噻唑啉酮与B组分浇入鞋模内,并将鞋模放入发泡机内进行发泡;

步骤五,发泡后冷却,修理,成型得到所述耐水解聚氨酯鞋底。

实施例27:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,通过如下步骤制备获得:

步骤一,按比例称取A组分和B组分;

步骤二,将A组分在100℃条件下加热2小时,熔融后加入金属螯合剂和异噻唑啉酮,搅拌混合均匀,注入灌注机的第一料罐中;

步骤三,将B组分混合均匀并在120℃条件下加热2小时,注入灌注机的第二料罐中;

步骤四,将混合后的A组分、金属螯合剂和异噻唑啉酮与B组分浇入鞋模内,并将鞋模放入发泡机内进行发泡;

步骤五,发泡后冷却,修理,成型得到所述耐水解聚氨酯鞋底。

实施例28:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,通过如下步骤制备获得:

步骤一,按比例称取A组分和B组分;

步骤二,将A组分在100℃条件下加热1小时,熔融后加入金属螯合剂和异噻唑啉酮,搅拌混合均匀,注入灌注机的第一料罐中;

步骤三,将B组分混合均匀并在130℃条件下加热2小时,注入灌注机的第二料罐中;

步骤四,将混合后的A组分、金属螯合剂和异噻唑啉酮与B组分浇入鞋模内,并将鞋模放入发泡机内进行发泡;

步骤五,发泡后冷却,修理,成型得到所述耐水解聚氨酯鞋底。

实施例29:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,通过如下步骤制备获得:

步骤一,按比例称取A组分和B组分;

步骤二,将A组分在100℃条件下加热1小时,熔融后加入金属螯合剂和异噻唑啉酮,搅拌混合均匀,注入灌注机的第一料罐中;

步骤三,将B组分混合均匀并在120℃条件下加热3小时,注入灌注机的第二料罐中;

步骤四,将混合后的A组分、金属螯合剂和异噻唑啉酮与B组分浇入鞋模内,并将鞋模放入发泡机内进行发泡;

步骤五,发泡后冷却,修理,成型得到所述耐水解聚氨酯鞋底。

对比例1:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,不加入聚氧化丙烯二醇。

对比例2:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,将吗啉替换为等重量份数的醋酸钾。

对比例3:一种耐水解聚氨酯鞋底,与实施例1的不同之处在于,将二苯基甲烷二异氰酸酯替换为等重量份数的六甲基二异氰酸酯。

对比例4:采用公开号为CN103073697A的中国发明专利中公开的一种热塑性聚氨酯弹性体的加工工艺制备耐水解聚氨酯鞋底。

试验一耐水解性能测试

试验样品:采用实施例1-29中获得的耐水解聚氨酯鞋底作为试验样品1-29,采用对比例1-4中获得的耐水解聚氨酯鞋底作为对照样品1-4。

试验方法:每组样品分别取十个,参照GB/T20991-2007《个体防护装备鞋的测试方法》中8.5的规定测试试验样品1-29和对照样品1-4的耐水解性能,舍弃每组的最大值以及最小值,剩余的取其平均值,成品常规物理力学性能标准参照QB/T4345-2012《防护鞋底用聚氨酯树脂》中的规定,切口增长≤6mm。

试验结果:试验样品1-29和对照样品1-4的耐水解性能检测结果如表4所示。由表4可知,试验样品1-29的切口增长量明显小于对照样品1-4,由试验样品1和试验样品6-14的测试结果可知,加入金属螯合剂和/或防腐剂异噻唑啉酮后,其切口增长量进一步降低,说明金属螯合剂和异噻唑啉酮能够增强耐水解聚氨酯鞋底的耐水解性能,而且本发明中聚醚多元醇、非金属催化剂、金属螯合剂、异噻唑啉酮、带苯环的异氰酸酯相互配合,协同增效,使得本发明中的耐水解聚氨酯鞋底的耐水解性能大大提升,延长其在潮湿环境中的使用寿命。

表4试验样品1-29和对照样品1-4的耐水解性能检测结果

试验二 物理力学性能测试

试验方法:参照QB/T4345-2012《防护鞋底用聚氨酯树脂》中的规定测试试验样品1、6、11、14的常规物理力学性能,并记录在表中。

试验结果:试验样品1、6、11、14物理力学性能检测结果如表5所示。

表5试验样品1、6、11、14物理力学性能检测结果

以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1