AIE高分子结晶度荧光可视化方法与流程

文档序号:23355932发布日期:2020-12-18 19:15阅读:598来源:国知局
AIE高分子结晶度荧光可视化方法与流程

本发明属于聚集诱导发光分子在通用高分子领域的应用,特别涉及一种聚集诱导发光分子在高分子结晶度荧光可视化方面的应用。



背景技术:

同质多晶是自然界和工业材料中普遍存在的现象。它描述了一种物质以多种形式或晶体结构存在的能力,这些形式或晶体结构具有不同的分子排列方式,但具有相同的化学式。同质多晶是决定材料功能性质的重要因素。例如,在天然矿物中,石墨和金刚石的多晶型表现出不同的力学性能;在药物中,同一种具有不同多晶型的药物对溶解速率和生物活性有很大的影响。在光电子学领域,π-共轭小分子作为刚性的积木来构建有序的组装结构,在数据存储和先进传感等方面具有潜在的应用前景。分子结构、堆积方式、构象及其分子间的非共价相互作用共同决定了分子的组装结构,组装结构直接影响了π-共轭分子的光物理性质,如光致发光颜色、量子产率和发光寿命。

单个π-共轭分子可能存在不同的多晶型晶体,每个多晶型由于其分子组装结构的不同而表现出不同的发光性质,大多数π-共轭发光体系表现出两种或多种发光状态。控制不同多晶型的实验通常是在本体溶液中进行的,并受自组织过程的驱动,但这往往会产生不确定性和不均匀性,阻碍了对大面积分子系统多态性的精确控制。最近的研究表明空间限制可以用来解决上述问题。由于受限纳米空间的比表面积与体积之比很大,嵌入的晶体表现出一系列的相行为,如多晶选择形成、尺寸依赖的多态性和亚稳相的热力学稳定性。尽管多孔玻璃粉体和聚合物整体的纳米孔已经被用作空间限制,但在变形时仍需要能够保持连续活性层的可靠材料来适应未来的柔性器件。高分子网络通常由纳米尺度的本质自由体积组成,半结晶聚合物的结晶区和非晶区的自由体积大小不同,显示了利用半结晶聚合物作为可裁剪的纳米约束环境实现分子系统多态性控制的潜力。

具有的聚集诱导发光(aie)活性分子在稀溶液或单分子分散状态下发光微弱,而聚集状态下发光强烈。分子内运动的限制(rim)被认为是aie现象的机制,它阻止了激发态能量通过非辐射衰变通道的耗散。根据rim机制,aie系统已被成功地用于局部微环境的研究。此外,aie分子扭曲的三维分子构象和弱的分子间相互作用使其表现出多重结构的可转化性,利用半结晶聚合物的aie特性和可调控的受限空间,实现宏观和连续样品中的多晶型选择性。



技术实现要素:

本发明采用一种d–a结构并依赖于多态性的发光型aie发光化合物,并与聚乳酸(plla)高分子混合,发现在所述aie发光化合物在无定形/高分子相中表现出多晶型选择行为。两亲性d–a基aie分子(称为tpe-ep)通过双键连接吡啶盐单元到四苯乙烯(tpe)基团,通过分离其亲水和疏水单元产生分离的固体结构。聚合态tpe-ep的荧光依赖于多晶型:晶型g(热力学稳定态)、y(亚稳态)和o(亚稳态)分别显示绿色、黄色和橙色。两亲性结构迫使分子在疏水性plla中形成分离的纳米晶:在非晶态plla中,多晶型g中的分子聚集体稳定在松散的网络中;在晶态plla中,多晶型y中的分子聚集体限制在片层之间。这种现象使得tpe-ep可以作为一种荧光标记,用于显示高分子结晶微观结构,包括非晶和结晶相分布、定量聚合物结晶度测量和空间形态排列。具有适当单分子多晶型aie分子有望在多种聚合物中得到广泛的应用,促进了纳米约束中多态性控制机制的研究和可调控荧光材料发展。

附图说明

图1所示为tpe-ep的结构和光学特性,其中:(a)基于d-a结构的aie发光分子;(b)多态g-、y-和o-晶体的荧光照片及其(c)相应的发射光谱;激发波长为405nm。

图2所示为晶型g和y的晶体结构,其中:(a)用交叉间隔方式绘制g晶体结构的椭球面(50%概率水平)二聚体单元由晶体学上有序的单元(g1)和无序的单元(g2)组成,具有两个构象构象i和ii分别用蓝色和粉色着色;构象i和ii的占有率分别为75%和25%;(b)沿着b轴,g的晶体结构被描述为木棍模型;(c)沿着a轴观察到的g的晶体结构;(d)采用平行叠加方式绘制y晶体结构的椭球面图;(e和f)y的晶体结构;为了清楚起见,省略了g和y晶体中的氢原子。

图3所示为tpe-ep二聚体的分子轨道,其中,从单晶中选出的(左)g-和(右)y-二聚体的homo和lumo水平;使用高斯09程序以b3lyp/6-311g(d,p)进行计算。

图4所示为利用tpe-ep可视化聚合物相,其中,(a)包埋tpe-ep的无定形和结晶plla的制备;tpe-ep在不同聚合物相中的微环境敏感性荧光示意图;(b和c)插图(b)无定形和(c)结晶聚合物薄膜的荧光照片及其相应的放大图像;激发波长:365nm;插图嵌入比例尺:1厘米;(d)归一化pl光谱和(e)包埋tpe-ep的plla薄膜在不同相情况下的waxd图像;激发波长为405nm。

图5所示为聚合物结晶度可视化,其中,(a)概述plla膜的晶态和非晶态混合区外表面的荧光显微图;(b)在405nm激光照射下球晶的共聚焦荧光三维图像;(c)在365nm紫外光照射下记录的不同结晶度包埋tpe-ep的plla的荧光图像;标尺为5毫米;(d)不同聚合物结晶度条件下包埋tpe-ep的plla薄膜的归一化pl光谱;激发波长:405nm;(e)用线性拟合曲线估计最大发射量与结晶度的相关性。

具体实施方法

在本申请中,采用一种具有d–a结构的高扭曲aie发光剂tpe-ep。tpe-ep由三个基团组成:疏水tpe作为给电子体单元,亲水吡啶盐基团作为电子受体单元,双键作为间隔单元(图1a)。我们初步研究了本体溶液制备的tpe-ep的多晶型,以了解其光物理行为与结构排列的关系。通过控制沉淀条件,可以得到三种晶型(g、y和o)。图1b示出了在荧光显微镜下拍摄的g-晶体、y-晶体和o-晶体的照片。在紫外激发(405nm)下观察到g-晶体的绿色光致发光,最大发光波长为507nm,量子产率(φf)为0.21,寿命为2.1ns(图1c,绿色实线)。用单晶x射线衍射(xrd)分析了g的晶体结构。发现g-晶体是单斜的(p21/n,a=11.25251(2),α=90°,β=93.8053(14)°,在100.03k时γ=90°,z=4,拟合优度(gof)为1.036,计算密度:1.384g/cm-3,表s2,esi)。多形y-晶体(图1b)是由tpe-ep的四氢呋喃/正己烷混合物缓慢蒸发产生的,在紫外光照射下呈黄色(λem=543nm)发光(405nm,图1c,黄色实线)。发现y-晶体的φf为0.32。y的晶体结构也是单斜的,空间群为p21/cα=90°,β=98.168(3)°,在100.01k时γ=90°,z=4,拟合优度(gof)为1.036,计算密度:1.390g/cm-3)。o-晶体的发光光谱为橙色(λem=575nm),但其脆性太大,无法用单晶xrd进行研究。在116℃高温下,y转变为g。当样品冷却时未观察到反相现象。y-晶体只能通过再溶解和再结晶过程获得。在o-晶体中也观察到类似的现象。热分析表明,g是热力学上稳定的形式,而y和o晶体是亚稳态的形式。

g-晶体和y-晶体的分子式分别为c69h58cl2-f12n2p2(tpe-ep二聚体与二氯甲烷的比例为1:2)和c34h28f6np(图2a-f)。在g-晶体的情况下,g1和g2形成一对,其中两个分子与排列在同一侧的两个tpe单元交叉填充(图2a)。未发现明显的p-面重叠。另外,由于采用了两种晶体独立构象,占据率为75:25(i:ii)。有序(g1)和无序(g2)构象从一行到另一行交替放置。此外,g-晶体中存在无限通道,这些通道足以容纳晶体晶格中的小溶剂分子(图2b)。g晶体中的空隙可以解释观察到的相对于y晶体(2845.01立方埃米/四个分子)的较大晶体体积(6121.68立法埃米/八个分子)。二氯甲烷溶剂在g-晶体中的溶解使分子的存在性增加,辐射跃迁降低。这些交叉堆积的二聚体解释了针状晶体(图1b),其通过多个分子间相互作用而稳定。与g-晶体相比,y-晶体的吡啶环和双键之间的重叠增加,说明分子间相互作用更强,从而导致发光红移(图2d)。两个相邻的分子采用相对平行的头对头排列,其中一个分子沿着分子长轴向其相邻的分子滑动。它们显示出沿着晶体a–b平面(图2e)的强烈二维生长趋势,从而形成板状晶体(图1b)。同时,在y-晶体中观察到越来越多更强的原子间氢键而在g-晶体中观察到的氢键进一步强化了分子构象并抑制了分子内旋转。这些结果与y-晶体的φf(0.32)高于g-晶体(φf=0.21)一致。tpe-ep分子在g-和y-晶体中具有分离结构,聚集成具有分离疏水和亲水单元的层状结构。y-晶体(图2f)和g-晶体(图2c)的层结构周期距离分别为

为了更深入地了解不同晶型g-晶体和y-晶体荧光性质的机理,采用密度泛函理论(dft)进行了理论计算。根据单晶的构象建立了基态单体和二聚体的几何结构。如所料,homo(最高占据分子轨道)主要由tpe单元的轨道贡献,而lumo(最低未占据分子轨道)主要位于吡啶部分。这种d-a结构赋予tpe-ep一种溶剂变色效应。与晶体中的tpe-ep单体不同,y-二聚体(0.852ev)计算所得的能隙小于g-二聚体的能隙(g1/g2,0.978ev)(图3)。能隙的变化进一步表明,分子间相互作用对g-晶体向y-晶体的红移有重要影响。因此,这提供了一个在纳米尺度上干预结晶过程来控制凝聚态的多态性的机会,特别是它们之间的分子堆积和相互作用。

plla是一种可生物降解的生物基聚合物,是l-丙交酯聚合的产物(图4a)。为了在plla中施加纳米约束,聚合物结晶在纳米尺度上形成晶片层和非晶区的交替层。tpe-ep在plla网络中的荧光和聚集如图4a-d所示。通过蒸发结晶制备相应的非晶(图4b)和结晶(图4c)plla膜,其中tpe-ep的多晶型在plla网络中同时生长。将聚乳酸中tpe-ep的含量控制在0.1wt%,同时减小tpe-ep对聚合物形貌的影响,保持聚合物薄膜的发光亮度。如图4b和c插图所示,非晶和晶体薄膜在紫外线照射下显示出明显的发光。在非晶态区域,随机分子混杂使链相互交叉,提供了具有柔韧性和弹性的非晶态聚合物网络(图4a)。由于非晶态聚合物网络中存在大量自由体积,因此允许tpe-ep分子在非晶态区域中定向流动并堆积成具有类似于g-晶体结构的聚集体(图4a和b,插图)。相反,在结晶区,分子链基本上相互锁定并折叠成结晶片层,从而赋予材料强度和刚度(图4a)。由于刚性非晶态相(大约5nm)在两个结晶层之间的纳米空间,y-聚集中结合的tpe-ep分子被动力学地困在受限空间中(插图,图4a和c)。

当在荧光显微镜下观察时,均匀的非晶薄膜显示绿色发光,而由相互连接的球晶组成的结晶薄膜显示黄色发光(图4b和c)。通过光致发光(pl)光谱进一步证实了上述两种薄膜的荧光性质(图4d)。结果表明,非晶态plla薄膜的pl光谱在512nm处有最大发光,而晶态plla薄膜在539nm处有最大发光。这两个值都非常接近于g-(λmax=507nm)和y-晶体(λmax=543nm)。块状单晶(g-和y-晶体)和tpe-ep嵌段聚合物基体(非晶和结晶)的最大发光峰差异是由于纳米尺度上的分子排列不完善所致。对这两种聚合物薄膜进行了广角x射线衍射(waxd)测量,进一步证实了非晶态和结晶态之间plla聚合物链顺序的显著差异(图4e)。非晶态plla具有宽而无结构的形貌,晶态plla的waxd形貌显示出许多与α晶相对应的尖峰。通过改变聚合物基质中的染料比从0.1wt%到0.001wt%和膜厚度,进行了类似的实验以制备一系列非晶和结晶plla膜。结果表明,在不同的tpe-ep浓度和不同的厚度下,最大排放量几乎没有变化。这些数据表明,客体tpe-ep分子的聚集状态主要取决于其宿主聚合物的微环境,显示出易于检测的颜色变化,以区分非晶态和晶态plla。

plla的结晶相包括叠层片晶和夹在片晶之间的刚性非晶区,在这些非晶区中分布着嵌入的tpe-ep分子,它们在晶化过程中被挤出片晶区。层状非晶区的厚度约为5纳米。此外,由于聚合物分子的构象从晶态转变为非晶态,聚合物链在非晶态区域的柔性受到周围晶态区域的阻碍。因此,片层非晶区的刚性比晶体球晶周围的流动非晶区高。这些因素共同促进了y-晶体在晶相中的形成和稳定。片晶之间的纳米限制间距可能是形成密集排列的y-晶体的有利因素(晶胞体积比g-晶体小)。同时,片层间的刚性环境可以进一步稳定和玻璃化亚稳态y晶体。两亲性tpe-ep与疏水性plla聚合物链之间的不相容性导致在聚合物基质中形成纳米晶状聚集体而不是非晶态聚集体。纳米晶体的形成可以用tpe-ep的分离结构来解释,这种结构迫使分子以相同的方向排列,形成有序的结构。此外,还通过监测一段时间的pl光谱,研究了聚合物基质中g-晶体和y-晶体的tpe-ep纳米聚集体的稳定性。稳定的pl光谱表明荧光薄膜在室温下具有良好的光稳定性。此外,当薄膜被加热到高于其玻璃化转变温度(tg=63℃)时,发光颜色不受影响。未改变的发光波长表明该系统具有热稳定性。

通过对tpe-ep在plla不同相态的高荧光发光对比,激发了我们探索其通过多晶型选择性来检测微相分布和组成的潜力。通过控制蒸发结晶得到聚合物薄膜。半结晶聚合物的微相结构是在材料加工过程中形成的,它有助于我们全面了解其物理性质。半结晶plla薄膜的2d和3d显微图像如图5a和b所示。通过从氯仿溶液中小心但相对快速地结晶,产生了具有结晶区和非晶区的混合物的薄膜(图5a)。大量圆形和黄色发光的球晶被明显识别出来,并随机分布在无定形的绿色区域。在聚合物晶相/非晶相的荧光发光照亮了聚合物薄膜的整个形貌。观察到的球晶的形状和分布与在亮场下的观察结果一致。聚合物球晶的结晶性质可由偏光显微镜观测。此外,在晶态球晶周围的明亮发光中,可以清楚地观察到明显的边界环。在这些边界环中观察到的相对较高的强度是由于在结晶过程中被排斥的tpe-ep分子的积累造成的。荧光显微照片在非晶态边界环球晶上的强度范围表明tpe-ep存在g-和y-多晶型。根据g-聚集体和y-聚集体发光特性的不同,利用共焦荧光显微镜(cfm)可以直接观察到聚集体的内部形貌。共焦图像(xy平面)是使用线性分解方法获得的,与荧光显微镜下的观察结果具有极好的一致性。使用z扫描技术在不同深度收集xy平面中的总共22个图像,从而在薄膜中形成plla球晶结构(图5b)。荧光检测表明,在非晶区和结晶区之间存在明显的亮环。进一步使用扫描电子显微镜(sem)验证内部形貌。在溶剂(丙酮)处理的帮助下,蚀刻出非晶区以形成伪三维结构。蚀刻膜表面的sem图像显示出明显的圆形球晶和结晶-非晶界面,与荧光图像一致。在不同的工艺条件下,聚合物的结晶度可以改变tpe-ep在非晶相和晶相中的g-y纳米晶比例,从而调节聚合物的发光响应。图5c显示结晶度在0%到48%之间的tpe-ep嵌入plla膜的荧光响应。结晶度(χc)分别通过waxd和差示扫描量热法(dsc)进行估算。观察到从绿色到黄色的逐渐红移,这提供了一个可见的结晶度检测平台。用荧光光谱进一步研究了上述薄膜的荧光性质。图5d显示了tpe-ep嵌入plla薄膜在0%、16%、25%、32%和48%结晶度下的归一化pl光谱。随着χc(0-48%)的增加,pl光谱从511nm逐渐红移到531nm。发光最大值与χc之间存在线性关系,表明多态性tpe-ep可作为结晶度可视化的比色标记(图5e)。由dsc和pl数据计算的结晶度也符合线性关系。这样的校准线可以从pl变化中定量测量χc。结果表明,aie发光剂的多晶型选择性不仅可以揭示样品中聚合物的晶相分布,而且可以提供样品的平均结晶度。此外,由于荧光光的敏感性,我们的定量测量的结晶度适用的样品尺寸甚至小于微米级。

本申请证明了多态性tpe-ep是如何在半晶体plla中选择性生长以实现受限空间识别的。plla结晶过程所提供的纳米约束产生亚稳态的多晶型y,而其缺失将导致热力学稳定的多晶型g。因此,基于特定聚合物相中tpe-ep的多晶状态,聚合物相(非晶态和结晶态)的信息用不同的颜色标记。结果,聚合物形态的复杂层次结构被转化为光信号,通过颜色和偏振可以看到光信号。通过适当的分子结构设计,本申请将适用于多种商品聚合物。这些形态传感特性有可能对聚合物制造过程进行现场监测,进而预测材料的物理特性。此外,发光分子组装体与聚合物微结构之间的协同效应导致了发光强度、颜色和极化等多种发光操作,为开发可折叠器件和可穿戴系统提供了连续的发光材料。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1