烯化氧催化剂及工艺的制作方法

文档序号:3704794阅读:154来源:国知局
专利名称:烯化氧催化剂及工艺的制作方法
技术领域
本发明涉及含银催化剂的制备及应用,这种含银催化剂适用于烯化氧的制备,特别适合用于环氧乙烷的制备。这些催化剂是采用独特的陶瓷材料作催化剂载体制备而成的。
用于乙烯和分子氧生产环氧乙烷的催化剂通常是载体上的银催化剂。这类催化剂通常采用碱金属作为助催化剂。在美国专利U.S3,962,136(1976年6月8日授权)和U.S4,010,115(1977年3月1日授权)中提到采用少量的碱金属钾、铷、铯作为载体上的银催化剂的有效助催化剂。美国专利U.S4,766,105(1988年8月23日授权)和U.S4,808,738(1989年2月28日授权)揭示了其他的共催化剂的应用,如铼或铼与硫、钼、钨或铬的混合物。美国专利U.S4,908,343(1990年3月13日授权)揭示出一种含有铯盐混合物的载体上的银催化剂,铯盐混合物由铯盐和一种或多种碱金属盐或碱土金属盐组成。
美国专利U.S4,897,498(1990年1月30日授权)揭示了由碱金属助催化的载体上的银催化剂在无烯丙基氢的烯烃环氧化中的应用。
多孔陶瓷催化剂载体的应用在许多专利中已有叙述,例如U.S5,100,895(1992年3月31日授权)、U.S5,055,442(1991年10月8日授权)、U.S5,037,794(1991年8月6日授权)以及U.S4,874,739(1989年10月17日授权)。这类催化剂载体在催化领域中具有广泛的潜在应用价值并且在陶瓷载体是氧化铝(如α型氧化铝)的场合特别有用。尽管α型氧化铝往往作为优先选用的催化剂的陶瓷载体,其他的陶瓷材料(如二氧化硅、碳化硅、四氮化三硅、氧化镁、二氧化钛、尖晶石、堇青石以及其他形式的氧化铝)当然也可以使用。在进一步的讨论中,以α型氧化铝为载体的催化剂作为示范例使用,但是应当理解本文中讲述的内容具有更为通用的用途。
催化剂的载体需要具有综合性能,至少需要将供催化成分沉积的最小的表面积、高吸水性和高破碎强度三者结合起来。往往是一种性质提高意味着另一种性质下降。因此,破碎强度高可能意味着孔隙度低。通常用试试改改的办法寻找平衡点,这使得催化剂载体工艺比其他的化工工艺更无法预测。
载体需要有均匀一致的孔隙度,这可以用许多途径实现,包括在载体配方中添加燃烧物质,这些燃烧物质在陶瓷煅烧成成品时将被除去。典型的燃烧物质包括木炭、石油焦、磨碎的核桃壳等。这些物质通常都留下可沥滤的残留物,这些残留物可能大大地削弱载体上的催化剂的性能。此外,这种可沥滤残留物的实际成分批间变化相当大,以致可预测性不能令人满意。
所以有必要设计一些催化剂,在设计中对最后的性能平衡要有把握。本发明提出的催化剂在破碎强度、抗磨性、多孔性和催化性能之间取得极好的平衡,这使它们在广泛的催化应用中成为理想的催化剂。
本发明涉及一种适用于无烯丙基氢的烯烃与分子氧在蒸汽相进行的环氧化反应催化剂,该催化剂特别适用于乙烯和分子氧在蒸汽相的环氧化反应。这种催化剂由有效催化剂量的银和助催化剂量的碱金属组成,并且可以任选地添加助催化剂量的铼和助催化剂量的铼的共催化剂,催化剂和助催化剂都沉积在载体上。载体的制造工艺包括将100份(按重量计)颗粒状的陶瓷成分和0.5份至50份(按重量计)有机合成聚合物混合,然后在足以使有机合成聚合物烧尽、使颗粒状成分烧结并形成载体的温度下煅烧,其中有机聚合物呈粉末状、平均粒度低于400微米并且灰分少于0.1wt%。
这样制备的载体只有少量的物质金属提取物。本文中所用的术语“金属提取物”指的是由燃烧物质带来的钠、钾、钙和(或)铝杂质。文中所用术语“提取物”指的是金属提取物和来自其他添加剂的提取物的总和,其中一些添加剂可能赋予载体和(或)催化剂一些期望的特性。
业已发现,具有独特的陶瓷载体的催化剂与含常规载体的催化剂相比物理性质得到改善。这些催化剂已改善了破碎强度和耐磨蚀性。
下面详细介绍载体、用该载体制备的催化剂、以及该催化剂的应用。
载体提取物的量用下述方法测量,将标准量的载体成品在标准量的10%的硝酸中沸腾30分钟。这样将金属成分以可溶性硝酸盐的形式提取出来,然后可以将金属硝酸盐分离出来并分析测定残留的金属含量值。用这种方法也可能将某些氧化硅提取出来,但是由于粘接成分和陶瓷成分作出贡献是易变的所以就这个试验目的而论这种情况不予考虑。
在载体经过煅烧除去有机合成聚合物燃烧物质之后,残留的和从中产生的金属提取物的数量希望低于2000ppm,低于1500ppm更好,能够低于1000ppm最好,金属提取物用载体成品中可提取的金属量表示。
在依据本发明制备催化剂载体的优先选择的工艺中,聚合物颗粒的平均粒度介于5至400微米,在10至300微米之间更好,介于15至200微米之间最好。
聚合物颗粒可以具有任何希望的构型,但是由于生产目的是生产孔隙度高而且均匀的载体材料,所以,如果颗粒具有一般的实心的构型(更接近球形),可以最有效地实现这个目的。孔隙度在很大程度上还受制作载体的陶瓷材料颗粒粒度的影响。这些颗粒及其粒度确实往往是主要因素,而燃烧物质的粒度对孔隙度只有边缘效应。
聚合物可以是任何一种聚合物,它只能是有机聚合物并且其制造方法使它不含可观数量的无机物。聚合物可以用乳液聚合工艺或者采用本体聚合制造,包括采用悬浮液聚合工艺,后者往往是优先选择的工艺,因为这样能够获得颗粒非常细的聚合物,该聚合物能够直接在本发明的载体制备工艺中使用。虽然用这项技术可以容易地获得这样细的颗粒,但是用常规的研磨技术也可以获取这样的细颗粒。
适当的聚合物包括烯烃的聚合物和共聚物,例如聚乙烯、聚丙烯、乙烯和乙烯基乙酸酯的共聚物以及乙烯和乙烯醇的共聚物;二烯类聚合物和共聚物,例如聚丁二烯、乙丙橡胶、苯乙烯和丁二烯的共聚物以及丁二烯和丙烯腈的共聚物;聚酰胺,例如尼龙6和尼龙66;聚酯,例如聚对苯二甲酸乙酯;和乙烯基聚合物,例如苯乙烯聚合物和共聚物。碳氢聚合物,例如聚烯烃,特别是聚丙烯,是优先选择的颗粒状的物质。在对提取物含量的要求不十分严格,允许少量的残留物存在的场合,有机合成聚合物燃烧物质还可以与少量的常规的燃烧物质结合使用。
聚合物燃烧时产生的燃烧产物最好无毒、无腐蚀性。为此,含卤素、氮或硫原子的聚合物一般宁可不用。
燃烧物质中可燃成分燃尽后留下统称为“灰”的物质,灰这种物质可以作为燃烧后留在陶瓷材料中的金属提取物数量的度量。对于任何具体的有机聚合物燃烧物质,灰和金属提取物的数量都是十分稳定的,这是一个重要的优点。
考虑到载体配方中其他成分对提取物成分的潜在的贡献,灰分和载体的提取物的数量之间没有精确的对应关系。形成载体的配方包括表面活性剂、临时粘接剂、 粘合材料等。后几种成分通常是依据具体的性质优先选择的,并且它们贡献的提取物作为无法避免的结果是可以接受的。如果象采用传统的燃烧物质(如磨碎的核桃壳)那样燃烧物质贡献的金属提取物大幅度变化,那么总的提取物可能变得无法预测并且往往超出优先选择的最大值。如果燃烧物质中金属提取物的数量是已知的并且是稳定的,那么使用这种燃烧物质时允许选择其他的配方成分,使金属提取物的水平不超过期望的最高水平。
如上所述,根据点火时留下的灰分残留物或从载体成品中提取的金属提取物确定较好的燃烧物质是可能的。就灰分而论,显然其数量应当尽可能地取其最小值,并且灰分最大值为0.1%(按重量计)是较好的选择。最大值为0.05%则更好。
制作载体的材料不是关键,任何陶瓷系的载体都适合使用有机聚合物燃烧物质。例如,载体可以是在美国专利中叙述的那类氧化铝系载体(参阅US5,266,548、U.S5,100,859、U.S5,055,042)。另一方面,也可以用二氧化硅、硅酸铝、堇青石、氧化锆、尖晶石、氧化镁、或二氧化钛以及这些物质的组合作为载体的基本原料。尽管可以有少量的其他陶瓷氧化物(氧化钙、氧化镁、氧化锶、二氧化钛和氧化锆)或硅酸盐存在,但是载体成分的基础最好以氧化铝为主(至少占陶瓷成分重量的90%),特别是α型氧化铝。
本发明中较好的氧化铝系催化剂载体的生产工艺的实施例包括下述步骤(i)制作混合物,混合物中包含(a)至少一种颗粒状的氧化铝成分;(b)按陶瓷成分总重量计,0.5%到50%有机合成的燃烧物质,该燃烧物质灰分要低于0.1%;(c)水,水量足以使上述混合物挤压成形;
(ii)将混合物挤压成要求的形状;(iii)用火煅烧将氧化铝颗粒烧结成α型氧化铝系的多孔载体,载体的其表面积为0.4m2/g至5.0m2/g,最好介于0.4m2/g至1.5m2/g之间,金属提取物低于2000ppm,最好低于1500ppm。
本发明中催化剂载体可以由多种氧化铝组成并且还可以任选其他的陶瓷原料,选择的目的是为了对期望的催化性质和(或)物理性质有所贡献,这些性质包括孔隙度、空隙容积、破碎强度等。两种不同的α型氧化铝结合往往比较好,其中一种颗粒较粗的成分与另一种颗粒较细的成分混合,两者的重量比从10∶90到90∶10。这样作的目的是使成品的表面积介于0.4m2/g至5m2/g之间。在本文中所用的“表面积”应理解为BET法测出的表面积,采用氮气或氪作为吸附气体。与三种氧化铝颗粒级配相比,这样获得的成品表面积稍微低一些。因此,简便的混合物可以由两种类型的α型氧化铝颗粒组成,第一种颗粒表面积大约是1m2/g,第二种表面积大约是3m2/g至5m2/g。其他成分(如二氧化钛)往往可以赋予这样的载体材料特殊的优点。
本发明中适合作催化剂的α型氧化铝系多孔载体含有金属提取物成分,含量在2000ppm以下。在载体的孔隙度和捣实密度以及陶瓷成分都相同时,与用常规的或传统的非有机聚合物燃烧物质制作的载体相比,本发明的载体显示出磨耗至少降低10%,较好的情况至少降低20%,破碎强度至少提高10%,较好的情况至少提高20%。
煅烧后的载体成品的孔隙度最好至少是50%,介于60%至75%之间更好,破碎强度至少是5磅,稳定的捣实密度至少是0.5公斤/升,最好至少是0.6公斤/升。经过煅烧的载体成品表面积最好介于0.4m2/g至5m2/g之间,介于0.6m2/g至1.5m2/g之间更好。
人们经常发现向待挤出的混合物中添加氧化钛是有利的,添加量按经过煅烧的载体的重量计算,一般介于0.05%至5.0%之间,介于0.05%至2.0%之间较好,介于0.08%至1%之间更好。作为杂质或成分,某些类型的氧化铝和粘合材料还包含着氧化钛。这种类型的氧化钛的贡献不包括在上述面规定之内。氧化钛可以作为二氧化物加入载体,也可以作为钛酸盐或氧化钛的母体加入载体。在下面的叙述中上述的所有的任选项都被包括在条目“氧化钛”之下。类似的其他材料(例如氧化锆或氧化镁)也可以利用。
载体的氧化铝成分还可以与粘接剂和水混合,作成一定的形状,然后煅烧。
在这里使用的术语“粘接剂”指的是在成形加工(如挤出或造粒)之后能够将载体的各种成分保持在一起的制剂。这些粘接剂允许成形后的材料进行干燥和煅烧,而不破碎。这种粘接剂通常是“黏稠的”有机物,例如聚乙烯醇或纤维素材料。粘接剂还可以起挤出助剂的作用。在某些情况下,胶溶酸(peptizing acid)可以代替粘接剂。
为了赋予煅烧过的载体附加强度,将陶瓷粘合材料添加到混合物中通常是比较好的办法。常规陶瓷粘合材料的用量按照陶瓷成分的总重量计算,陶瓷粘合材料被表示成氧化物,典型的用量从大约0.01%到大约5%。陶瓷粘合材料可以在煅烧前使用,也可以在煅烧后使用。这类材料通常由诸如氧化硅、氧化铝、碱金属氧化物、碱土金属氧化物、碱土金属硅酸盐、氧化铁和氧化钛之类成分(被表示成氧化物)组成。
载体的各种成分混合(比方说用研混)在一起之后,混合物被挤成一定形状的颗粒,例如圆柱形、环形、三叶形、四叶形等形状的颗粒。为了便于挤出,可以使用“挤出助剂”,诸如凡士林石油焦和其他的有机润滑材料。由于在煅烧期间水将转变成蒸汽并破坏挤出物形状,所以为了去除水分,挤出物料需要进行干燥。经过干燥含水量降低到大约低于2%以后,挤出物在足以除去燃烧物质、挤出助剂和粘接剂并且足以使氧化铝颗粒熔融成形成多孔的硬块的条件下煅烧。典型的煅烧过程是在氧化气氛中进行,比方说在氧气中进行、最好在空气中进行,煅烧的最高温度大约高于1300℃,最好在大约1350℃到大约1500℃的温度范围内煅烧。在最高温度下的时间通常为0.1小时到10小时,最好是从0.5小时到5小时。
煅烧后的载体和由它制作的催化剂将具有一定的空隙容积和表面积,典型的空隙容积(水)介于0.2cc/g至0.6cc/g之间,介于0.3cc/g至0.5cc/g之间更好,表面积通常介于0.15m2/g至3m2/g之间,介于0.3m2/g至2m2/g之间更好。
载体配方中最好有少量的苏打成分,含量低于0.06wt%。实际上获得无钠的配方是非常困难的,苏打含量介于0.02%至0.06%之间通常是能够接受的。
上述的载体特别适合用于制备环氧乙烷的催化剂,就破碎强度和抗磨耗性而论该催化剂的物理性质已得到改善。
催化剂本发明的催化剂包括沉积载体上的有效催化剂量的银和助催化剂量的碱金属,载体采用上述工艺制备。其他的助催化剂可以任选地以助催化剂量存在,这类助催化剂包括稀土元素、镁、铼和铼的共催化剂,铼的共催化剂在硫、铬、钼、钨、磷、硼以及它们的混合物中筛选。
一般地说,本发明提出的催化剂的制备方法是用溶解在适当的溶剂中的银离子、含银化合物、含银络合物和(或)银盐浸透由α型氧化铝构成的多孔的耐火载体,按催化剂总重量计算,该溶液足以使沉积在载体上的银介于1%到40%之间,最好介于1%至30%之间。然后将浸透的载体与溶液分开,并使沉积在载体上的银化合物还原成金属银。溶解在适当的溶剂中的适当的碱金属离子、碱金属化合物、碱金属盐在沉积银之前、或沉积银的同时、或沉积银之后也将沉积到载体上。溶解在适当的溶剂中的适当的任选助催化剂化合物、络合物和(或)盐在银和(或)碱金属沉积的同时也将沉积到载体上。
本发明采用这样的技术制备催化剂,在这项技术中碱金属助催化剂以及任何辅助助催化剂以可溶性盐和(或)化合物的形式在沉积银之前、或沉积银的同时、或沉积银之后被沉积到催化剂和(或)载体上或交替进行。较好的方法是将银和碱金属同时沉积在载体上,即在同一浸泡步骤中完成,尽管有人认为在沉积银之前和(或)之后让碱金属单独沉积或同时沉积到载体上也能生产出适当的催化剂。
助催化剂量的碱金属或碱金属混合物利用适当的溶剂沉积在多孔的载体上。虽然碱金属以金属的单质状态存在,但是不适合以这种形式应用。它们作为离子或化合物溶解在适当的溶剂中用于浸泡目的。在用银离子或银盐、含银络合物和(或)化合物的溶液浸泡之前、或浸泡期间、或在浸泡之后用碱金属助催化剂离子、碱金属盐、和(或)碱金属化合物的溶液浸泡载体。碱金属助催化剂甚至可以在银还原成金属银之后再沉积到载体上。碱金属助催化剂的使用剂量将取决于若干个变量,诸如采用的载体的表面积、孔隙结构和表面化学性质、催化剂中银的含量、用于与碱金属阳离子共催化的具体的离子、以及任选的共催化剂。沉积在载体上的碱金属剂量即出现在催化剂上的碱金属的剂量按催化剂总重量计一般是介于10ppm到3000ppm之间,比较好的是介于15ppm至2000ppm之间,介于20ppm至1500ppm之间更好。最好是按催化剂总重量计在50ppm至1000ppm之间。为了方便,沉积在载体上的碱金属的剂量即在催化剂中出现的碱金属的剂量以金属表示。并非企图限制本发明范围,人们相信碱金属化合物是氧化物。
在较好的实施方案中,至少大部分(大于50%)碱金属在钾、铷、铯以及它们的混合物中筛选。较好的碱金属助催化剂是铯。特别好的碱金属助催化剂是铯加至少一种辅助的碱金属。辅助的碱金属最好从钠、锂、以及它们的混合物中筛选,锂是比较好的。
当锂被用作辅助碱金属时,用量通常是以催化剂总重量为基础,每克催化剂一般含有40到150微摩尔的锂,在40至100微摩尔之间较好。
催化剂还可以包含适度的氯化物缓和剂以增强催化剂的启动过程。在给催化剂添加氯化物时,在银离子或银盐、含银络合物和(或)化合物浸透载体之前、之中或之后,以及在助催化剂的离子或助催化剂盐、含有助催化剂的络合物和(或)化合物浸透载体之前、之中或之后用氯化物溶液浸泡载体,让氯化物缓和剂的离子、盐类和(或)化合物浸透载体。氯化物缓和剂甚至可以在还原成金属银之后再沉积到载体上。用于制备浸泡溶液的适当的含氯盐包括助催化剂的氯化物,如氯化锂、氯化钠、氯化钾、氯化铷、氯化铯以及氯化铵。氯化铵是一种较好的盐,它适合制备含氯化物的浸泡溶液。其他的在加工催化剂时分解成氯化物离子的化合物也是适用的。含氯化物的浸泡溶液通常至少含有少量的水,以增强含氯化物的盐或化合物的溶解度。其他的助催化剂和共催化剂都可以与银和碱金属助催化剂协同使用。
其他助催化剂的非限制性实例包括铼、硫酸盐、钼酸盐、钨酸盐和铬酸盐(见美国专利U.S 4,766,105,1988年8月23日授权),以及磷酸盐和硼酸盐;硫酸盐阴离子、氟化物阴离子、3B至6B族的氧离子(见美国专利U.S5,102,848,1992年4月7日授权);(i)从3至7B族选出的元素的氧离子和(ii)有卤化物阴离子的碱金属盐,和从3A至7A族和3B至7B族选出的元素的氧离子(见美国专利U.S4,908,343 1990年3月13日授权)。
通常载体与溶解在水溶液中的银盐、银的化合物或银的络合物接触,使载体被所述水溶液浸透;然后将浸透了溶液的载体与水溶液分开,例如通过离心分离或过滤将两者分开,然后干燥。如此获得的浸泡过的载体通过加热将银还原成金属银。载体简单地被加热到还原温度,该温度范围从50℃到600℃,并维持一段时间,这足以引起银盐、银的化合物或络合物还原成金属银,并形成一层细碎的银,这层银牢固地附着在载体表面,包括载体的外表面和孔隙表面。在这个加热阶段可以引导空气,或其他的氧化气体、还原气体、惰性气体以及它们的混合物在载体上流过。
有几种已知的往载体上加银的方法。载体可以用硝酸银水溶液浸泡,然后干燥,在这个干燥步骤之后硝酸银用氢气或肼还原。载体也可以用草酸银或碳酸银的氨水溶液浸泡,然后干燥,在这个干燥步骤之后草酸银或碳酸银用加热的方法(例如加热到600℃)还原。也可以使用含有增溶剂和还原剂的特殊的银盐溶液,例如将链烷醇酰胺、烷基肼和氨结合起来。这样的银盐溶液的一个实例是由银的羧酸盐、有机胺增溶/还原剂、以及含水溶剂组成的浸泡溶液。
适当的银盐包括碳酸银和一元的或多元的羧酸或羟基羧酸的银盐(碳原子数可多达16左右)。碳酸银和草酸银是特别有用的银盐,草酸银最好。
有机胺增溶/还原剂存在于浸泡溶液之中。适当的有机胺增溶/还原剂包括1至5个碳原子的低级烷二胺、1至5个碳原子的低级链烷醇酰胺与1至5个碳原子的低级烷二胺的混合物、以及氨与1至5个碳原子的低级链烷醇酰胺或低级烷二胺的混合物。有四组有机胺增溶/还原剂是特别有用的。这四组包括2至4个碳原子的连位的烷二胺、2至4个碳原子的连位的链烷醇酰胺和2至4个碳原子的连位的烷二胺的混合物、2至4个碳原子的连位的烷二胺和氨的混合物、以及2至4个碳原子的连位的链烷醇酰胺与氨的混合物。通常按每摩尔银添加0.1摩尔至10摩尔的比例添加这些有机胺增溶/还原剂。
在美国专利U.S 3,702,259中能够找到一种制备含银催化剂的方法。在美国专利U.S 4,010,115、U.S 4,356,312、U.S 3,962,136和U.S 4,012,425中能够找到另一种制备含银催化剂的方法,该催化剂还含有高级碱金属助催化剂。在美国专利U.S 4,761,394中能够找到一些制备方法,这些方法用于制备含有高级碱金属和铼助催化剂的含银催化剂,在美国专利U.S4,766,105中也能够找到一些制备方法,这些方法制备的含银催化剂还含有高级碱金属和铼助催化剂以及铼的共催化剂。在美国专利U.S 4,908,343和U.S 5,057,481中介绍了含各种不同的助催化剂的含银催化剂的制备方法。
特别有利的载体浸泡工艺是用含有羧酸银盐、有机胺、铯盐和追加的碱金属盐的水溶液浸泡载体。草酸银是优先选择的银盐。用氧化银(用水调成淤浆)与乙二胺和草酸的混合物反应制备草酸银,或者用氧化银(用水调成淤浆)先与草酸反应然后再与乙二胺反应的方法制备草酸银,后者是优先选择的方法,这样获得了草酸银和乙二胺络合物的水溶液,然后添加一定剂量的铯化合物和追加的碱金属化合物。其他的二胺化合物和其他的胺类化合物,如乙醇胺,也可以添加进去。含铯的草酸银溶液也可以制备,让草酸银从草酸铯和硝酸银的溶液中沉淀出来,然后用水或乙醇漂洗获得的草酸银,以便除去附着的铯盐,直至铯含量达到要求为止。然后用氨水和(或)胺的水溶液溶解含铯的草酸银。含铷、钾、钠、锂的以及含碱金属的溶液也可以用这个方法制备。然后将浸泡过的载体加热到50至600℃,最好在75至400℃之间,以便液体蒸发和产生金属银。
工艺在工业生产中,乙烯和氧气在环氧乙烷反应器中转变成环氧乙烷,该反应器是一个大型的固定管热交换器,它由数千根充填了催化剂的管子组成。在反应器壳与固定管之间使用冷却剂除去反应产生的热量。经常利用冷却剂的温度作为催化剂活性的指示,冷却剂温度高相当于催化剂活性低。
在环氧乙烷与氧气反应生产环氧乙烷时,通常乙烯用量至少是氧气的两倍(按摩尔计),但是乙烯用量一般高得多。所以按照在形成环氧乙烷和被氧化的副产物的反应中消耗的氧气的摩尔百分比计算转化率是方便的。氧的转化率取决于反应温度,并且反应温度是所用催化剂活性的度量。数值T40表示反应器中氧的转化率为40%时的温度,数值T用摄氏度表示,数值T1.5表示环氧乙烷生产能力为1.5%时的温度。当氧的转化率比较高时,对于任何给定的催化剂这个温度也比较高。此外,这个温度强烈地取决于所用的催化剂以及反应条件。(对环氧乙烷的)选择性表示在反应产物中环氧乙烷的摩尔数与被转化的乙烯总摩尔数的比值。在本说明书中选择性用S40或S1.5表示,S40意味着氧的转化率为40%时的选择性,S1.5意味着环氧乙烷生产能力为1.5%时的选择性。
有依据本发明的银催化剂存在时,进行这样的氧化反应的条件大体上由早期工艺已叙述过的那些条件组成。例如,这包括提供适当的温度、压力、滞留时间、稀释材料(如氮气、二氧化碳、蒸汽、氩气、甲烷、或其他的饱和碳氢化合物),以及提供缓和剂以便控制催化作用,缓和剂包括1,2-二氯乙烷氯乙烯、氯乙烷或氯化的聚苯化合物,还包括为了提高得率满足使用反复循环作业或依次在不同的反应器中转化的客观需要,以及满足在制备环氧乙烷的工艺中选定的任何其它特殊条件。通常使用的压力在常压到500psig之间。但是不排除使用更高的压力。作为反应物使用的分子氧来自常规的氧气源。适当的氧气充气流可以由基本纯净的氧气或比较纯净的氧气组成,可以是浓缩的氧气流,该气流以氧气为主并含有少量的一种或多种稀释气体,如氮气和氩气,或者是另一类含氧气流,如空气流。所以很明显,本发明提出的银催化剂在制作环氧乙烷的反应中的应用决不被限于采用那些已知有效的条件中的某些特定条件。仅仅为了说明,表I列出当前工业用的环氧乙烷反应器单元中经常使用的条件范围,该条件范围也适合于瞬时工艺(the instant process)。
在依据本发明制作的银催化剂较好的应用中,环氧乙烷在下述条件下生产,即在含氧的气体与乙烯接触时要有本发明的剂存在并且温度在180…330℃的范围内,较好的温度范围是200℃至325℃。
表I*GHSV 1500-10000入口压力1000…3500kPa入口处配料乙烯1…40%氧气O23…12%乙烷0…3%
含氯烃缓和剂按总量计0.3…50ppmv氩气和(或)甲烷和(或)氮气稀释剂 平衡冷却剂温度 180…315℃催化剂温度 180…325℃氧气转化程度10…60%EO生产率32…320kgEO/m3催化剂/小时*在标准温度下,气体在压力作用下每小时穿越通过一个体积的密实充填的催化剂床的体积尽管本发明提出的催化剂最好用于乙烯和氧转化成环氧乙烷的反应,但是无烯丙基氢的烯烃也能够利用本发明提出的银催化剂氧化高选择性地生产它们的环氧衍生物,生产将在有上述的银催化剂和有机卤化物存在以及规定的氧化条件下借助于烯烃原料与含氧气体接触得以完成。
在这种氧化工艺中适用的烯烃的结构式如下
其中每个R都独立地从下述基团中选取(a) 氢(b) 6至20个碳的芳基或取代芳基(c) 结构如下式的烷基
其中R′是独立的为,
其中R″是氢、1至10个碳的烷基或取代烷基、6至20个碳的芳基或取代芳基,n是从0到12的整数;(d)CR3″---(CR2″)x---O--- ,其中x是1到12的整数;(e)
(f)R2″N-(g)R″S---(h)CR2″==CR″---(CR″==CR″)y---其中Y是从0至20的整数;(i)
其中X是O、S或NR″;m是从0至3的整数,条件是烯烃没有烯丙基氢(allylic hydrogen)并且至少有一个R基团不是氢。
满足上述结构式的烯烃实例包括丁二烯、叔丁基乙烯、乙烯基呋喃、丁烯酮、N-乙烯基吡咯烷等。在这种工艺实践中目前比较好用的烯烃是丁二烯,因为丁二烯易于利用,成本比较低并且反应产物环氧化物的可应用范围宽广。
用这种工艺生产的环氧化物具有如下结构式
其中每个R都是独立定义的,如前所述。在一个或多个R基团上含有不饱和碳--碳键的情况下,可以进行进一步的氧化反应,借此生产聚环氧化物产品。
生产工艺是让待氧化的烯烃与分子氧以及有机卤化物在氧化条件下接触,即在有充足的含氧气体和少量的有机卤化物的条件下让烯烃和分子氧接触,其中烯烃与氧的摩尔比从0.01到20,有机卤化物为投料总体积的百万分之0.1至百万分之1000。在本发明的实践中,有机卤化物较适宜的用量按投料总体积计介于百万分之一至至多百分之100。
适当的含氧气体包括空气、富氧空气、基本纯净的氧气、以及用惰性气体如N2、Ar、CO2、CH4等稀释的氧气等。
适当的反应温度介于75℃至325℃之间。较好的反应温度介于125℃至295℃之间;温度介于175℃至290℃之间最好,因为温度大大高于290℃时对期望的环氧化物的选择性跌落,而在温度对于175℃时时空产率极低不能满足需要。
反应压力在宽范围内变化,通常限制在0.1至100个大气压范围内,主要根据安全性、维护保养、设备以及其他的实际考虑选定。反应压力最好保持在1至30大气压范围之内。
适合这种工艺的反应时间可以在宽范围内变化。为了使烯烃每通过一次的转化率介于0.1至75mol%之间,烯烃、氧气和有机卤化物要保持足够的接触时间。烯烃每通过一次较好的目标转化率介于1至50mol%之间,就有效的利用反应器生产能力而言,反应时间足以使烯烃每通过一次的转化率达到5至30mol%是目前最好的。
本领域技术人员都清楚实现期望的转化率所需要的实际接触时间可以在宽范围内变化,这取决于诸如容器的大小、烯烃与氧的比例、催化剂上银的填充量、有无选用任何催化剂的改良剂以及改良剂的填充量、反应时间和压力等因素。
生产工艺既可以采用分批方式实现又可以采用连续方式实现。连续反应是目前较好的选择,因为采用这种方式能够使反应器获得高生产能力并且能够获得高纯度产品。在不需要反应物体积通过速度高的场合,如液相反应,分批方式能获得令人满意的效果。
连续反应模式在气相进行时,典型的气体时空速度(GHSV)介于100hr-1至30000hr-1。GHSV介于200hr-1至20000hr-1是比较好的,GHSV最好介于300hr-1至10000hr-1,因为在这种条件下烯烃投料的转化率与产物的选择性两者的结合达到最理想的结合。
连续反应模式在液相进行时,采用的典型的液体时空速度(LHSV)给出的接触时间类似于用上述的GHSV值获得的接触时间。最好选择使用的LHSV值的范围,为的是使烯烃投料的转化率与产物选择性的结合最理想。
使用本领域技术人员熟知的技术,使回收环氧化物产品能够容易进行。例如,在反应以连续方式进行时,开始先将未反应的原始物料与反应产物分离;然后采用蒸馏、结晶、萃取等方法将需要的产物与获得的产物混合物分离。由于对需要的环氧化物的选择性通常是非常高的,所以只有少量的不需要的产物被分离出来。
在用于无烯丙基氢的烯烃氧化之前,银催化剂(在用助催化剂进一步处理之前或之后)任选地在含氧的气氛(空气或增补了氧气的氦气)中在350℃下煅烧4小时。煅烧之后,银催化剂通常要在300至350℃下经受活化处理,开始时是在含有2%至5%氢气的惰性气体(如氦气或氮气)气氛中进行处理。活化气氛中的氢含量逐渐上升,最后氢的浓度达到20%至25%,控制这个上升速度以使活化温度不超过350℃。在氢气的浓度处在20%至25%之间的那个温度下保持1小时之后,催化剂准备使用。
有关银催化剂和它在无烯丙基氢的烯烃的氧化反应中的应用在美国专利中有更详细的叙述(参阅U.S 4,897,498和U.S 5,081,096)。
本发明将用下面的实施例进行说明。
载体的准备下述载体的基本原料如U.S 5,380,697所述配制。在载体A、C、E中燃烧物质是30份特殊的聚丙烯,其最大颗粒的粒径是150微米、平均粒径大约是90微米。在载体B、D、F中,燃烧物质是42份粉碎的核桃壳,其平均粒径是177微米。
载体A载体A采用下述配方制作,制作方法如下陶瓷成分(270份α型氧化铝、101份三水铝矿、22份勃母石)与燃烧物质混合。然后向这种混合物中添加5份无机粘合材料,15份有机粘接剂,7份淀粉和0.5份硼酸,然后将这些成分混合45秒钟。在混合操作之后,添加下述成分水、0.4份表面活性剂(商品名“Triton”,来自Union Carbide公司)、含二氧化钛的成分(0.6份锐钛矿,其表面积大约是16m2/g)、和8份α型氧化铝细晶粒成分。水的添加量是使混合物能够挤出所必要的量。一般说来,这大约是120至125份(按重量计)。混合物进一步混合4.5分钟,然后添加Vaseline(Vaseline是产品商标),形成可挤出的混合物。该混合物在被挤出之前再混合3.5分钟,然后被挤成空心圆筒,然后干燥至游离水少于2%。然后,这些干燥的挤出物在最高温度大约是1420℃至1425℃的隧道窑中煅烧大约4小时。这种载体的物理性质在表1中列出。
载体B载体B的制备方法与载体A类似。不同的是将传统的燃烧物质(即磨碎的核桃壳)加到载体配方中。这种载体的物理性质在表1中列出。
载体C载体C的制备方法与载体A类似。不同的是在载体中用水溶性的二氧化钛母体(4.4份乳酸螯合物,含有大约0.6份二氧化钛)代替粉末状的二氧化钛,以及载体在1385至1390℃的温度下煅烧。这种载体的物理性质在表1中列出。
载体D载体D的制备方法与载体C类似,不同的是采用传统的燃烧物质(即磨碎的核桃壳)。这种载体的物理性质在表1中列出。
载体E除了载体E不含二氧化钛且载体灼烧温度在1470至1480℃之外,载体E的制备方法与载体A类似。这种载体的物理性质在表1中列出。
载体F
载体F的制备方法与载体E类似,不同的是采用传统的燃烧物质,即磨碎的核桃壳。这种载体的物理性质在表1中列出。
催化剂的制备下面介绍的实施例说明制作本发明的催化剂(催化剂A、C、E)以及对照催化剂(催化剂B、D、F)的制备技术和测量这些催化剂性质的测量技术。
第一部分制备草酸银/乙烯二胺贮备溶液,该贮备液将在制备催化剂时使用(1)将415克试剂级的氢氧化钠溶于2340毫升去离子水中。将温度调整到50℃。
(2)将1699克(高纯度)硝酸银溶解在2100毫升去离子水中。将温度调整到50℃。
(3)边搅拌边缓慢地将氢氧化钠溶液加到硝酸银溶液中,并保持温度稳定在50℃。在添加完成之后,再搅拌15分钟,然后将温度降低到40℃。
(4)插进若干根清洁的滤纸棒,尽可能多地从第三步产生的沉淀物中吸收水分,以便除去钠离子和硝酸根离子。测量被除去的水的电导率,并补充新鲜的去离子水,补充的水量与用滤纸棒除去的水量一样多。在40℃下搅拌15分钟。重复这个工艺直至被除去的水的电导率低于90μmho/cm时为止。然后添加1500毫升去离子水。表1载体性质性质载体A 载体B 载体C 载体D 载体E 载体F煅烧温度(℃)1420-5 1420-5 1385-9 1385-9 1470-8 1420-8表面积11.010.941.091.2 3 1.131.02捣实密度248.548.644.743.343.544.9吸水性338.739.344.346.549.146.7平均破碎强度415.612.711.37.7 18.917.1磨耗(%)56.8 10.419.325.616.218.8提取物Na(ppm)6395 472 641 592 348 682提取物Na(ppm)6142 252 310 415 150 354提取物Na(ppm)6622 101411901204642 1460提取物Na(ppm)6224 378 354 497 220 518燃烧物质 合成的传统的合成的传统的合成的传统的1“表面积”是BET表面积,利用氮气或氪作为吸收气体进行测量2“捣实密度”是稳定的捣实密度,按照ASTM D-4699-87进行测量,改进之处在于使用内径3.75英寸长18英寸的量筒或等价物进行测量3“吸水性”是度量载体浸水后重量增加,用称重法测量4“破碎强度”在50-OP型康普顿拉力测试仪上测量5“磨耗”是指载体的抗磨耗性,按照ASTM D-4058-92测量,磨耗数据是载体失去的重量百分比6“提取物”是利用硝酸溶解技术进行测量的(5)将630克的高纯度草酸二水合物分次加入,每次大约100克。缓慢地添加最后一份草酸二水合物,并监视PH值,以确保PH值不降低到7.8以下。
(6)利用清洁的滤纸棒尽可能多地从高度浓缩的含银淤浆中除去水分。将草酸银淤浆冷却到30℃。
(7)添加699克92wt%的乙二胺(8wt%去离子水)。在添加期间不允许温度超过30℃。
上述方法得到一种溶液,它含有大约27wt%至33wt%的银。用这种方法提供“贮存溶液”,在制备催化剂A、C、E和制备对照催化剂B、D、F时使用。
第二部分制备浸泡液用于催化剂A的浸泡液将0.033克氟化铵溶于2毫升水中,将此溶液添加到153克比重为1.526的含银贮备液中。将1.017克氢氧化锂的一水合物悬浮在5克水中,然后将此悬浮液添加到所述含银溶液中。不断地搅拌该溶液,直至氢氧化锂全部溶解为止。将50%的氢氧化铯水溶液0.1121克添加到50克上述含银溶液中,由此得到的混合溶液用于载体浸泡。
用于对照催化剂B的浸泡液将0.032克氟化铵溶于2毫升水中,将此溶液添加到150克比重为1.526的含银贮备液中。将1.007克氢氧化锂的一水合物悬浮在7克水中,然后将此悬浮液添加到所述含银溶液中。不断地搅拌该溶液,直至氢氧化锂全部溶解为止。将50%的氢氧化铯水溶液0.1132克添加添加到50克上述含银溶液中,由此得到的混合溶液用于载体浸泡。
用于催化剂C的浸泡液用1.3克水稀释181克比重为1.565的含银贮备液。将0.035克氟化铵溶于2毫升水中,将此溶液添加到所述含银溶液中。将0.5497克氢氧化锂的一水合物溶解在20克水中,然后将它添加到所述含银溶液中。将50%的氢氧化铯水溶液0.1200克添加到60克上述含银溶液中,由此得到的混合溶液用于载体浸泡。
用于对照催化剂D的浸泡液用6.5克水稀释181克比重为1.565的含银贮备液。将0.0034克氟化铵溶于2毫升水中,将此溶液添加到所述含银溶液中。将0.5316克氢氧化锂的一水合物溶解在20克水中,然后将它添加到上述含银溶液中。将50%的氢氧化铯水溶液0.1555克添加到60克上述含银溶液中,由此得到的混合溶液用于载体浸泡。
用于催化剂E的浸泡液用19.6克水和12.6克一乙醇胺稀释181克比重为1.565的含银贮备液。将0.033克氟化铵溶于2毫升水中,将此溶液添加到所述含银溶液中。将50%的氢氧化铯水溶液0.1117克添加到60克上述稀释的含银溶液中,由此得到的混合溶液用于载体浸泡。
用于对照催化剂F的浸泡液用12.5克水和13.2克一乙醇胺稀释183克比重为1.555的含银贮备液。将0.034克氟化铵溶于2毫升水中,将此溶液添加到所述含银溶液中。将50%的氢氧化铯水溶液0.1137克添加到60克上述稀释的含银溶液中,由此得到的混合溶液用于载体浸泡。
第三部分催化剂的浸泡与烘焙催化剂A将近似30克的载体A(参见表1)在室温下、在25mmHg的真空中放置3分钟。然后将大约50至60克的掺混的浸泡液(如第二部分“用于催化剂A的浸泡液”一节所述)引入,浸没载体,并继续保持25mmHg真空3分钟。在达到3分钟时释放真空,然后用每分钟500转的离心机离心处理2分钟将多余的浸泡液从载体中除去。如果制备浸泡液时没加一乙醇胺,那么浸泡过的载体需要烘焙。让浸泡过的载体在温度为240℃至270℃、横截面积大约为3至5平方英寸、流量为每小时300立方英尺的空气流中连续地抖动3至6分钟。如果在浸泡液中有足够的一乙醇胺,那么浸泡过的载体也需要烘焙,让浸泡过的载体在温度为250℃至270℃、流量为每小时300立方英尺的空气流中连续地抖动4至8分钟。烘焙后的催化剂准备用于试验。
催化剂A的性质在表2中列出。
对照催化剂B除了用催化剂载体B代替催化剂载体A和使用第二部分“用于对照催化剂B的浸泡液”一节中所述的浸泡液之外,对照催化剂B所用的制备方法与催化剂A相同。对照催化剂B的性质在表2中列出。
催化剂C除了用催化剂载体C代替催化剂载体A和使用第二部分“用于催化剂C的浸泡液”一节中所述的浸泡液之外,催化剂C所用的制备方法与催化剂A相同。催化剂C的性质在表2中列出。
对照催化剂D除了用催化剂载体D代替催化剂载体A和使用第二部分“用于对照催化剂D的浸泡液”一节中所述的浸泡液之外,对照催化剂D所用的制备方法与催化剂A相同。对照催化剂D的性质在表2中列出。
催化剂E除了用催化剂载体E代替催化剂载体A和使用第二部分“用于催化剂E的浸泡液”一节中所述的浸泡液之外,催化剂E所用的制备方法与催化剂A相同。对照催化剂E的性质在表2中列出。
对照催化剂F除了用催化剂载体F代替催化剂载体A和使用第二部分“用于催化剂F的浸泡液”一节中所述的浸泡液之外,对照催化剂F所用的制备方法与催化剂A相同。对照催化剂F的性质在表2中列出。表2催化剂性质Ag(wt%) Cs(ppm) Li(μmol/g) 磨耗(%) 破碎强度(克)催化剂A15.154 0 80 8.87576对照催化剂B14.5527 80 9.76486催化剂C14.5497 40 16.7 5261对照催化剂D14.5666 40 17.4 4944催化剂E14.5500 0 8.98890对照催化剂F14.5497 0 16.6 8255正如在表2中所看到的,按照本发明制备的催化剂(催化剂A、C、E)具有改进的性质,表现在与不按照本发明制备的对照催化剂(对照催化剂B、D、F)相比在耐磨耗性和破碎强度方面有改进。
催化剂中的实际的银含量可以用已发表的许多标准方法中的任何一种方法测量。催化剂中的实际的铯含量可以借助氢氧化铯贮备溶液确定,该贮备溶液已用铯的放射性同位素作了标记。所以催化剂上的铯含量可以通过测量催化剂的放射性予以确定。另一方面,催化剂中的铯含量还可以用沸腾的去离子水淋洗催化剂的方法确定。在这种萃取工艺中,让10克完整的催化剂在20毫升水中沸腾5分钟,将铯以及其他的碱金属从催化剂中萃取出来,萃取操作重复两次以上,将萃取物合并,然后利用原子吸收光谱仪(型号为Varian Techtron Model 1200或者与其相当的仪器)、用与碱金属标准溶液进行比较的方法确定催化剂中存在的碱金属含量。
第四部分标准的微型反应器中的催化剂试验条件及方法(A)适合催化剂A、C和对照催化剂B、D的条件与方法将1至3克粉碎的催化剂(20至30目,即0.841至0.595mm)装入直径为6mm的不锈钢U型管中。该U型管被放置在熔融金属浴槽中(热介质)并且将两端与气流系统连接。调整使用的催化剂重量和气流的入口流速,使气体时空速度达到6800。出口气体压力是1550kPa。
在整个试验运行期间(包括启动期间)通过催化剂床(一次性通过)的气体混合物含有25%的乙烯、7%的氧气、5%的二氧化碳和1.25至5ppmv的氯乙烷,起调整平衡作用的是氮气/氩气。
启动过程涉及温度以下述方式从180℃直线上升至230℃升到180℃,1小时;升到190℃,1小时;升到200℃,1小时;升到210℃,1小时;升到220℃,1小时;升到220℃,2小时;升到225℃,2小时;在230℃,2小时,然后调整温度使反应器出口处环氧乙烷的得率为1.5%。在那些条件下测量选择性(S1.5)和催化剂的活性(T1.5)。
为了使在不同时间试验的催化剂性能能够进行有意义的比较,催化剂A和C以及对照催化剂B和D与参考标准催化剂同时试验,参考标准催化剂的性能数据是S1.5=81.7%和T1.5=235℃。
用上述方法制备的催化剂A、C和对照催化剂B、D都利用上述的程序试验,试验结果在表3中列出。表3催化剂性能S1.5,% T1.5,℃催化剂A 83.3 227对照催化剂B 83.1 228催化剂C 83.2 228对照催化剂D 83.3 232(B)适合催化剂E和对照催化剂F的条件与方法将3至5克粉碎后的催化剂(14至20目,即1.410至0.841mm)装入直径为6mm的不锈钢U型管中。该U型管被放置在熔融金属浴槽中(热介质)并且将两端与气流系统连接。调整使用的催化剂重量和气流的入口流速,使气体时空速度达到3300。出口气体压力是1550kPa。
在整个试验运行期间(包括启动期间)通过催化剂床(一次性通过)的气体混合物包含30%的乙烯、8.5%的氧气、5%的二氧化碳和1.5ppmv至5ppmv的氯乙烷,起调整平衡作用的是氮气/氩气。
催化剂启动方式与催化剂A、C和对照催化剂B、D的启动方式相似。由于输入的气体组成略有不同,气流速度、用于测量输入气体和产物气体的组成的仪器的标定值、以及给定的催化剂的选择性和活性测量值在这一次试验运行和下一次试验运行之间可能略有变化。
为了使在不同时间试验的催化剂性能能够进行有意义的比较,在这组说明性的实施例中的所有的催化剂都与参考标准催化剂同时试验,参考标准催化剂的性能数据是S40=81.0%和T40=230℃。
用上述方法制备的催化剂E和对照催化剂F都利用上述的程序试验,试验结果在表4中列出。表4催化剂性能S40,% T40,℃催化剂E 81.4 227对照催化剂F 81.3 228
权利要求
1.一种用于无烯丙基氢烯烃环氧化、特别适用于乙烯和分子氧的环氧化反应的催化剂,该催化剂包括沉积在载体上的催化剂量的银、助催化剂量的碱金属以及助催化剂量的任选的助催化剂铼和铼的共催化剂,其中载体的制造工艺包括将100份(按重量计)颗粒状的陶瓷成分和0.5-50份(按重量计)的有机合成聚合物混合,然后在足以使有机合成聚合物充分烧尽的温度下煅烧,使陶瓷成分烧结成颗粒状的载体,其中所述有机合成聚合物呈粉末状、平均粒度低于400微米且灰分少于0.1wt%。
2.根据权利要求1的催化剂,其中载体中的烧尽的有机合成聚合物是烃聚合物。
3.根据权利要求2的一种催化剂,其中载体中的烃聚合物是聚丙烯。
4.根据权利要求1的一种催化剂,其中制备载体的有机合成聚合物的数量是陶瓷成分重量的1%至40%。
5.根据权利要求1的一种催化剂,其中制备载体的陶瓷成分中至少含有90wt%的α型氧化铝(重量百分比,下同)。
6.根据权利要求1的一种催化剂,其中载体中的有机合成聚合物的灰分低于0.05wt%。
7.根据权利要求1的一种催化剂,其中载体中的陶瓷粘合材料添加在可挤出的混合物中,添加量为混合物中陶瓷成分重量的0.01%至5%。
8.根据权利要求1的催化剂,其中载体包括0.01%-5%(重量)(基于烧结载体总重)选自碱土金属氧化物、二氧化硅、二氧化锆以及它们的混合物的化合物。
9.根据权利要求1的催化剂,其中载体进一步的特征是含有二氧化钛,二氧化钛含量为烧结载体总重量的0.05%至5%。
10.根据权利要求1的催化剂,其中银的含量为催化剂总重量的1%至40%;碱金属含量在催化剂总重量的百万分之十至百万分之3000之间变化。
11.根据权利要求10的催化剂,其中所述碱金属助催化剂从钾、铷、铯、锂以及它们的混合物中选择。
12.根据权利要求11的催化剂,其中所述助催化剂是铯。
13.根据权利要求1的催化剂,其中所述碱金属助催化剂包括铯和至少一种附加的碱金属。
14.根据权利要求1的催化剂,其中铼的共催化剂从硫、钼、钨、铬、磷、硼以及它们的混合物中筛选。
15.一种生产环氧乙烷的工艺,其中乙烯与含氧气体在形成环氧烷的条件下接触,反应温度范围在180℃至330℃之间,并且有依据权利要求1至14中阐述的任何方法制备的催化剂存在。
16.一种适合无烯丙基氢的烯烃环氧化作用的工艺,其中无烯丙基氢的烯烃在形成环氧化物的条件下以蒸汽态与含氧的气体接触,接触时温度在75℃至325℃之间并且有根据权利要求1至14中任何之一制备的催化剂和有机卤化物存在。
全文摘要
本发明涉及烯化氧催化剂,该催化剂由沉积在载体上的银和助催化剂组成,载体的制备工艺是在100份(按重量计)颗粒状的陶瓷成分中添加0.5至50份(按重量计)粉末状的有机合成聚合物(粒度小于400微米,灰分低于0.1wt%),混合后在适当的温度下煅烧,该煅浇温度足以使有机合成聚合物燃尽并且使陶瓷成分烧结成颗粒状的载体。
文档编号C08G59/68GK1172441SQ96191744
公开日1998年2月4日 申请日期1996年1月31日 优先权日1995年2月1日
发明者J·E·巴法姆, R·M·科瓦尔斯基, J·R·洛克迈耶, M·马图茨 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1