高熔体强度聚乙烯组合物的制作方法

文档序号:3654936阅读:509来源:国知局
专利名称:高熔体强度聚乙烯组合物的制作方法
技术领域
本发明涉及含有用以改进物理性能而掺入的支化乙烯共聚物的聚乙烯共混组合物。
背景技术
乙烯共聚物是公知的一类烯烃共聚物,由它可以制得各种塑料制品。这些制品包括膜,纤维,涂料和热模塑的(thermomolded)制品,如容器和消费品。用于制备这些制品的聚合物是由乙烯,以及任选地一种或多种其它的可共聚单体制备的。由自由基聚合制得的低密度聚乙烯(LDPE)由高度支化的聚合物组成,其中支链无规地出现在整个聚合物中,也就是说以任何数量的形成的链段或支链的形式出现在整个聚合物中。这种结构容易加工,也就是说具有这种结构的聚合物可在低能量输入下进行高容量的熔融加工。在制品最终成型时,基于LDPE的加工特性,以最佳的设计特征设计了进行熔体加工的机械,如挤出机和各种形状的薄膜模头。
然而,对于现在传统的Ziegler-Natta乙烯共聚物和更新的金属茂催化的乙烯共聚物,随着乙烯共聚物的有效的配位催化的出现,支化度显著地降低了。上述二者,特别是金属茂共聚物,基本上是线性聚合物,当分子量分布(PDI=Mw/Mn,其中Mw为重均分子量,Mn为数均分子量)小于约3.5时,这些聚合物更难于进行熔融加工。因此,PDI宽的共聚物更易于加工,但是却缺乏金属茂共聚物所具有的所需的固态特性。因此现在需要开发一种有效的方法,以改善烯烃共聚物的熔融加工性能,同时保持所需的熔体性能和最终使用特性。
已经尝试在基本上为线性的烯烃共聚物中引入长支链以改善聚合物的加工特性。已经使用金属茂催化的聚合物进行了这种尝试,其中在聚合反应过程中生成了大量的烯属不饱和链端。例如参见U.S.P.5324800。烯属不饱和聚合物链可成为“大单体”,且显然可被其它可共聚合的单体再次插入,形成支化的共聚物。国际公开WO 94/07930指出了由在聚乙烯链中掺入端乙烯基大单体而在聚乙烯中含有长支链的有利之处,其中大单体的临界分子量大于3800,换句话说含有250或更多个碳原子。该文献公开了一大类适宜的单环戊二烯基或双环戊二烯基金属茂,按照此发明当其用铝氧烷或离子化化合物活化时,可提供稳定化非配位的阴离子。
U.S.P.5272236和5278272描述了“基本上线性的”乙烯聚合物,它们每1000个碳原子含有至多约3个长支链。这些聚合物是用单环戊二烯基过渡金属烯烃聚合催化剂,如U.S.P.5026798中公开的那些制备的。这些共聚物据称可用于许多制品领域,并可作为一种组分用于与其它聚合物的共混物中。EP-A-659773 A1公开了一种使用金属茂催化的气相法,该方法据称适用于制备在主链的每1000个碳原子中具有至多3个长支链,支链具有大于18个碳原子的聚乙烯。
U.S.P.5206303和5294678中提出了熔体粘度降低的聚合物。其中描述了“树枝形(brush)”聚合物结构,其中支化共聚物侧链的分子量抑制了主链的缠结。这些支链的重均分子量为0.02~2.0MeB,其中MeB为侧支链的缠结分子量。尽管所述的聚合物为异丁烯-苯乙烯共聚物,但对于乙烯聚合物和乙烯-丙烯共聚物,提供了计算的缠结分子量为1250和1660。U.S.P.5475075公开了乙烯和具有10~100个碳原子的长链α-烯烃的梳状聚合物。这些聚合物是由乙烯和形成侧支链的长链α-烯烃的共聚合制备的。其中公开了这些聚合物在最终使用性能上的改进,例如对于薄膜和粘合剂组合物。
现有技术的聚乙烯组合物的局限在于,尽管可以通过在聚合物中引入支链改善其加工性,使其易于熔融加工,或提高其剪力变稀性能,但是随着支化的增加,通过多分散指数(PDI)测定的分子量分布倾向于变大,虽然熔体强度保持低于传统LDPE所具有的。典型地,通过共混不同分子量的聚乙烯共聚物组分,或在聚乙烯共聚物中引入不同程度的支化,获得改善的加工性能。因此通常认为,若要寻求提高聚乙烯共聚物组合物的熔体强度,那么需要至少部分地牺牲可由金属茂催化制得的窄PDI的有利之处。
发明概述本发明涉及一种聚乙烯组合物,其多分散指数小于或等于3,由GPC/Vis测定的平均支化指数(g’)≥0.9,并且熔体强度(MS)(厘泊,190℃)满足下述关系

在一优选的实施方案中,这些聚乙烯组合物含有A)由乙烯、含乙烯的大单体,以及任选地其它可共聚合的单体的插入聚合制得的支化聚乙烯共聚物,和B)密度为0.900~0.935g/cm3,CDBI为50~95%,PDI为1.8~3.5,熔体指数(2.16kg/190℃)为0.3~7.5的基本上线性的乙烯共聚物。本发明的组合物具有提高的熔体强度,而不丧失窄多分散指数所具有的有益性能。本发明的一种优选的聚乙烯组合物含有30~0.9重量%的A)支化聚乙烯共聚物,和70~99.1重量%的B)基本上线性的乙烯共聚物。
附图的简要说明

图1是本发明的共混组合物,线性金属茂共聚物和高压自由基聚合制得的常规低密度聚乙烯(LDPE)的熔体强度值(cN)与熔体指数(g/10m;190/2.1)的关系图。
发明详述本发明的聚乙烯组合物含有支化的聚乙烯共聚物,其中共聚物主链和聚合物侧链均是用活化的过渡金属有机金属催化剂化合物在配位或插入条件下,由单烯烃的聚合得到的。
聚合物侧链含有乙烯,或者其单独地,或者与其它可插入聚合的单体一起。公知的符合这一条件的单体为C3~C20α-烯烃,C5~C25环烯烃,C5~C25苯乙烯系烯烃,环烯烃或苯乙烯系烯烃的低碳数(C3~C8)烷基取代的类似物,以及C3~C15偕二取代的烯烃,如异丁烯。乙烯均聚物或共聚物侧链均是适宜的。因此典型地,侧链含有85~100摩尔%的乙烯,和0~15摩尔%的共聚单体,优选含有90~99摩尔%的乙烯和1~10摩尔%的共聚单体,最优选含有94~98摩尔%的乙烯和2~6摩尔%的共聚单体。共聚单体的选择标准可以变化,例如为改善聚乙烯的薄膜撕裂性,长链烯烃共聚单体如1-辛烯较短链烯烃如1-丁烯是优选的。
侧链的分子量分布(MWD=PDI=Mw/Mn)可宽可窄,例如由1.1至30,典型地由2至8。此外,侧链可具有不同的共聚单体组成,例如包括U.S.P.5382630所公开的正交组成分布(CDBI>50%),根据美国专利实践这里将其引为参考。任选地,可以使用具有不同分子量和/或组成的侧链的混合物。
侧链的Mn范围为大于或等于1500,小于或等于45000。优选侧链的Mn为1500~30000,更优选Mn为1500~25000。侧链的数目与侧链的Mn有关,使得侧链的重量与介于掺入的侧链之间和在掺入的侧链之外的聚合物主链链段的总重量的总重量比为小于30%,优选4~20%。这里的重量是由凝胶渗透色谱(GPC)和差示折光指数(DRI)测量仪测定的。
主链或主链聚合物链段,典型地为含有乙烯的聚合物结构,或者为均聚物或者为共聚物。其它的可共聚合单体可选自上述那些适于支链的单体,并包括α-烯烃,偕二取代的烯烃如异丁烯,环烯烃如环戊烯,降冰片烯和烷基取代的降冰片烯,以及苯乙烯系单体如苯乙烯和烷基取代的苯乙烯。大单体和主链可以为相同的组成,或者选择不同的单体构成。支链和主链可独立地具有乙烯的结晶性,或基本上是无定形的。由于含有含乙烯支链和主链的支化共聚物由乙烯、端不饱和的大单体、以及任选地其它可共聚合单体的共聚合制得,因此术语“共聚物”这里是指由乙烯和一种或多种如上所述的乙烯属不饱和单体的插入聚合得到的。
如上所指出的,典型地,主链重量至少为聚合物总重量,即主链和侧链的总重量的40重量%。典型地,主链的公称重均分子量(Mw)至少等于或大于约50000。术语“公称”是指直接测定主链的Mw是基本不可能的,但共聚物产物的表征将显示与聚合物主链的非常近似的重量相关联的Mw测定值,该聚合物主链仅包括单烯烃单体单元衍生物和侧链的插入部分。
典型地,由实施例说明的通过GPC/DRI测得含有上述侧链和主链的支化乙烯共聚物的Mw大于50000。典型地,Mw可超过200000,优选300000,上至500000或更大。
本发明的支化乙烯共聚物可通过下述方法制备,该方法包括A)在一聚合反应器中优选地使乙烯与一种或多种可共聚合的单体进行共聚合,条件是足以形成链端基不饱和度大于40%,优选大于60%,最优选不饱和部分为乙烯基的共聚物;B)使A)的产物与乙烯和一种或多种可共聚合的单体进行共聚合,以制备支化的乙烯共聚物。有利地,方法中的步骤A)可以溶液法进行,其中所述的乙烯和任选地一种或多种可共聚合的单体,与被烷基铝氧烷助催化剂活化的过渡金属烯烃聚合催化剂相接触,铝与过渡金属的摩尔比小于约220∶1。如此形成的整个端不饱和共聚物,在从仅具有饱和端基的共聚物产物中分离或不分离的情况下,然后可与乙烯和可共聚合的单体在另一相分开的反应中进行共聚合,该反应用活化的过渡金属插入聚合催化剂,特别是可以在所述支化烯烃共聚物中掺入含不饱和部分的乙烯共聚物的催化剂,通过溶液、淤浆或气相乙烯聚合法进行。
足以形成侧链共聚物的条件包括使用适宜的乙烯和共聚单体反应物比,以保证所述的侧链的衍生自烯烃的单元组成,以及有助于形成不饱和的链端的催化剂和方法条件。97年7月2日提交的共同待审的临时申请U.S.系列号60/037323的教导内容是针对合适催化剂的选择,以及用于以高乙烯基不饱和度产率制备大单体共聚物链。在步骤A)中用于制备含不饱和部分的大单体的金属茂催化剂实质上可以是任何可以进行乙烯的插入聚合的催化剂,它可以是具有高共聚单体掺入能力的催化剂(见下述),或者是低共聚单体掺入能力的催化剂。典型地,低掺入能力的催化剂为那些在金属配位位置上更具位阻的催化剂,因此特别适宜的为非桥连的和取代的非桥连的金属茂催化剂。还可参见U.S.P.5498809、国际申请WO 94/19436和WO 94/13715,其公开了以高产率制备端亚乙烯基乙烯-1-丁烯共聚物的方式。还可参见1996年5月21日提交的共同待审申请U.S.系列号08/651030,其教导内容涉及制备具有高含量的亚乙烯基链端不饱和度的乙烯-异丁烯共聚物。在上述和下述部分中的短语“链端”或“端基”,当涉及不饱和度时,是指适于插入聚合的烯烃不饱和度,而不论其是否精确地位于链端。这一段中的所有文献根据美国专利实践并入本申请以作参考。
在一优选的实施方案中,可以在溶液聚合条件下,以优选的在烷基铝氧烷活化剂如甲基铝氧烷(MAO)中的铝与过渡金属的摩尔比,制备适用作随后共聚合反应支链的含乙烯基大单体聚合产物。优选所述比例为≥20并≤175;更优选≥20并≤140;最优选≥20并≤100。温度、压力和反应时间取决于所选的方法,但通常它们在溶液法的正常范围内。因此温度的范围为20~200℃,优选30~150℃,更优选50~140℃,最优选55~135℃。反应压力通常为大气压至345MPa,优选至182MPa。对于典型溶液反应来说,温度范围一般为室温至250℃,压力为大气压至3.45MPa。反应可以间歇进行。适宜的淤浆型反应条件类似于溶液反应条件,不同的是反应温度限于低于聚合物的熔融温度。此外在其它的反应方式中可以使用超临界流体介质,其温度至多250℃,压力至多345MPa。
对于支化聚合物制备的大单体掺入反应来说,可以在能够掺入庞大单体的催化剂化合物存在下,通过将大单体产物加入到插入聚合反应环境中实现。适宜的催化剂化合物为在所用的温度和压力条件下可以很好地进行共聚单体掺入,而不明显降低聚合物主链Mn的催化剂。上述的共同待审的临时申请U.S.系列号60/037323,和1997年5月2日提交的申请U.S.系列号60/046812的教导内容是针对合适催化剂的选择,以及用以制备支化烯烃共聚物,并指出了适于高共聚单体和大单体掺入的催化剂化合物。如U.S.P.5198401、5270393、5324801、5444145、5475075、5635573和国际申请WO 92/00333及WO 96/00244所指出的,由含乙烯基或亚乙烯基的大单体、乙烯及可共聚合的共聚单体制备支化烯烃共聚物的优选催化剂化合物包括桥连的双环戊二烯基和单环戊二烯基第4族金属化合物。还有,WO 94/07930公开了端不饱和大单体的制备,以及这些大单体在支化聚烯烃中的掺入。按照这些公开内容的教导,典型地,过渡金属催化剂化合物与所述的活化助催化剂组分一起使用,助催化剂组分例如为可以提供稳定化非配位阴离子的烷基铝氧烷和离子化化合物。这一段中各文献的教导也根据美国专利实践并入到本申请中作为参考。所得的共聚物产物将含有本发明的支化共聚物,不带有明显支化的、基本上为线性主链的共聚物,以及剩余的未反应的大单体。线性共聚物和剩余的大单体通常为少量的,它们可导致少量的交联。但这仅有很小的影响,以致于实质上不会改变最终共混组合物的整体性能。可以进行聚合物的分级,以从其它级分中分离出主要的支化共聚物级分,但通常对于多数应用来说这没有必要。工业应用性按照本发明的聚乙烯组合物将用于公知使用聚乙烯均聚物和共聚物组合物的许多应用领域中。这些包括许多应用,如薄膜组合物,模塑或挤出制品。适用的共混物优选含有至少0.5重量%的支化共聚物,优选2.0重量%或更大,并且优选不超过约20重量%,更优选10重量%或更少,以及主要组分基本上为线性链。
实施例为进一步说明本发明,给出了下述实施例。这些实施例不应理解为以任何形式限制本发明,它们仅仅是起到进一步说明的目的。
以乙烯/己烯/大单体(E/H/M)三元共聚合的形式合成支化的共聚物,其中有计划地改变大单体含量。如上述的US系列号60/37323合成用于这些反应中的端乙烯基大单体。以3.5和7重量%的加入量将这些三元共聚合产物与商品的、由金属茂得到的线性聚乙烯(线性PE)进行共混。
概述所有的聚合反应在配有控温水夹套的密闭釜(Zipperclave)反应器中进行。首先用甲苯加热至150℃清洗反应器,以除去任何聚合物残留物,然后冷却并将其排掉。然后用120℃的夹套水对反应器进行加热,并用氮气流冲洗约30分钟。反应前,进一步将反应器用10次氮气加压/排出循环(至100psi)和2次乙烯加压/排出循环(至300psi)进行冲洗。该循环有三个目的(1)彻底疏通所有的死端,如压力表,以冲洗掉不坚牢的污染物,(2)用乙烯置换体系中的氮气,(3)对反应器进行压力测试。
用校正的观察孔将液体计量注入到反应器中。首先经过在高温下于氮气中活化的碱性氧化铝,然后再经过在高温下于氮气中活化的5A分子筛,对高纯度(>99.5%)己烷、甲苯和丁烯进料进行纯化。在氮气夹套管线中直接供应聚合级的乙烯,并且不用经进一步纯化使用。从Albemarle Inc.直接获得在不锈钢筒中的甲基铝氧烷(MAO)的透明10%甲苯溶液,将其分开并装入1升的玻璃容器中,室温下储存在实验室手套箱中。以所需量向反应器中加入乙烯,以维持总系统压力在所报道的水平上(半间歇操作)。用Matheson质量流量计(型号8272-0424)检测乙烯的流速。为确保反应介质混合良好,使用转速>1000rpm的平浆搅拌器。
所有的催化剂均是在水含量小于1.5ppm的惰性气氛下进行制备。为精确地计量少量的催化剂,在催化剂制备中使用新鲜制备的催化剂储液/稀释法。为使金属茂的溶解度最大化,使用甲苯作为溶剂。用MAO洗涤不锈钢转移管,以除去杂质,排掉,并用移液吸管加入活化剂和催化剂。
大单体制备如上所述制备不锈钢催化剂加入管。加入一等分2.0毫升10%的甲基铝氧烷(MAO)在甲苯中的溶液,然后加入32毫升每毫升含1毫克Cp2ZrCl2(双环戊二烯基二氯化锆)的甲苯溶液。然后将密封管从手套箱中取出,并在连续的氮气流下连接到2升密闭釜反应器的入口上。在连续的氮气流下,将从反应器的供料管线引出的柔性不锈钢管线连接到加入管的另一端。如上所述冲洗反应器并对其进行压力测试。然后向反应器中加入1200毫升甲苯,并加热至120℃。使温度达到平衡,并记录基本体系压力。除基本体系压力之外还要加上所需的乙烯分压(40psig/.276mPa)。使乙烯饱和体系(由0乙烯流率看出)后,用高压溶剂以脉冲形式注射入催化剂。通过从电子质量流量计上读取乙烯的摄入量来监视反应进程。通过迅速冷却(约1分钟)使反应终止,并加入过量的甲醇以沉淀聚合产物。用氮气流干燥聚合物/溶剂混合物,得到固体含聚乙烯均聚物大单体的产物。由GPC/DRI测定15个独立连串的批次产物的Mn和Mw。Mn的值为3700至4605,Mw的值为9064至11603。基于总的不饱和部分的量,乙烯基不饱和度为70.9%至76.3%。在用于下一步骤之前,将每一批次的大单体产物干混在一起。
支化乙烯共聚物的制备将所得的固体大单体产物加入到打开的密闭釜反应器中,然后将该反应器关闭,并在60℃下用干燥的氮气流冲洗30分钟。向干净的不锈钢加入管中加入一等分2毫升10%的甲基铝氧烷(MAO)在甲苯中的溶液,然后加入在10毫升甲苯中含32毫克(C5Me4SiMe2NC12H23)TiCl2(四甲基环戊二烯基-二甲基甲硅烷基-十二烷基酰胺基-二氯化锆)的溶液。然后将密封管从手套箱中取出,并连接到1升密闭釜反应器的入口上。在连续的氮气流下,将从反应器的供料管线引出的柔性不锈钢管线连接到加入管的另一端。冲洗后向反应器中加入500毫升甲苯,并在100psi(.689mPa)氮气保护下将体系加热至100℃。氮气下加热并搅拌15分钟后,向大单体溶液中加入5毫升己烯。然后向反应器中加入催化剂溶液,直接施加的乙烯的分压为60~65psi(.413~.448mPa)。在90℃下使聚合进行10分钟。使所有从反应器中收回的聚合物在室温氮气流下干燥。在这些聚合中测试了三个大单体产物含量不同的样品2.5克,5克,和10克。见下表1.表1.支化乙烯共聚物的制备

如此合成的支化乙烯聚合物具有如说明的三个规则变化的大单体或支链含量。以3.5和7重量%的掺入量,通过熔融加工将这些产物与商品的由金属茂得到的线性PE进行共混,所述线性PE的MI为0.9,密度为0.918。共混在充入氮气的密炼机中进行,共混温度为177~204℃。见表2。表2.聚乙烯共混组合物

ECD103(Exxon Chemical Co.),乙烯-己烯LLDPE共聚物,MI为0.9,密度为0.918,含有0.1重量%Irganox和0.1重量%Irgaphos(Ciba-Geigy Co.)稳定剂。
产物表征按照ASTM D 1238(190℃,2.1kg)测定熔体指数(MI),由(190℃,21.0kg)和(190℃,2.1kg)下测定的MI的比值确定熔体指数比(MIR)。用配有DRI检测器、Shodex AT-806MS柱的150℃高温系统Waters凝胶渗透色谱仪(GPC),在系统温度145℃下操作,分析共混产物样品的Mw、Mn和PDI(Mw/Mn)。使用的溶剂为1,2,4-三氯苯,由该溶剂制备注射用的浓度为0.1mg/ml的聚合物样品溶液。总的溶剂流速为1.0ml/min,注射量为300微升。用一系列窄分布的聚苯乙烯(由Tosoh Corporation,Tokyo,1989获得)对GPC柱进行校正。为控制质量,使用了基于线性PE样品NBS-1475的宽标准校准物。用每一带有16个管形瓶的转盘进行标准的操作。将其作为每一批次的第一个样品注射两次。聚合物样品洗脱后,用Waters Expert Fuse程序对所得谱图进行分析,计算分子量分布和Mn及Mw平均值。
本发明聚合物的另一特征是其组成分布(CD)。组成分布的量度是“组成分布宽度指数”(CDBI)。CDBI的定义是共聚单体含量为中值总摩尔共聚单体含量的50%之内(即两边各25%)的共聚物分子的重量百分数。使用公知的共聚物样品的分级技术可很容易地确定共聚物的CDBI。这种技术之一为升温洗脱分级法(TREF),如Wild等,聚合物科学杂志,物理辑(J.Poly.Sci.,Poly.Phys.Ed.),第20卷,p.441(1982)和U.S.P.5008204中所述的,这里将其引为参考。
用连接到Instron毛细管流变仪上的Goettfert Rheotens测定熔体强度(MS)。聚合物熔体经半径为0.007633cm、长径比(毛细管长度/毛细管半径)为33.531的毛细管以恒定的活塞速度挤出。因此聚合物熔体所受的表观壁剪切速率恒定。挤出的熔体随后在离毛细管出口一段距离(H)处被一对半径为1.91cm的齿形轮拉伸。轮的旋转速度随时间线性增加,同时检测记录牵伸力(F)。股断裂时的牵伸力(cN)记作熔体强度。在熔体强度测试中使用下述条件。
温度=190℃活塞速度=0.127cm/s
轮的加速度=2.4cm/s/s毛细管半径=0.076327cm毛细管长度=2.5593cm筒的半径=0.47625cm轮的半径=1.91cm在所附的图1中,对举例的共混组合物A~F,以MS对MI作图。比较起见,还类似地示出了一系列Exxon Chemical Co.出售的ESCORENE低密度聚乙烯(LDPE),以及同样由EXXON CHEMICAL CO.获得的EXCEEDECD-103的测试结果。下述表3给出了LDPE的说明。表3.LDPE组成

图中示意性地说明了本发明共混物的熔体强度明显高于典型的常规高支化LDPE的熔体强度值,同时保持了由单点催化剂如金属茂得到的线性乙烯均聚物或共聚物的窄PDI和MIR特性。
权利要求
1.一种聚乙烯组合物,其多分散指数小于或等于3,由GPC/Vis测定的平均支化指数(g’)≥0.9,并且熔体强度(MS)(厘泊,190℃)满足下述关系
2.权利要求1的聚乙烯组合物,该组合物含有70~99.1重量%的密度为0.900~0.935g/cm3,CDBI为50~95%,PDI为1.8~3.5,熔体指数(190℃,2.16kg)为0.3~7.5的、基本上线性的乙烯共聚物。
3.权利要求1的聚乙烯组合物,该组合物含有由乙烯、含不饱和端基的大单体、以及任选地少量的其它可插入聚合的共聚单体的插入聚合制得的支化乙烯共聚物。
4.权利要求3的聚乙烯组合物,其中所述含乙烯的大单体基本上由来自于乙烯的插入共聚合的单元组成。
5.权利要求3的聚乙烯组合物,其中所述含乙烯的大单体含有来自于乙烯和至少一种选自C3~C20α-烯烃、C5~C25环烯烃和取代的环烯烃、C5~C25苯乙烯系烯烃和取代的苯乙烯系烯烃的单体的插入共聚合的单元。
6.权利要求4的聚乙烯组合物,其中所述含乙烯的大单体含有来自于乙烯和至少一种选自丁烯、1-己烯和1-辛烯的单体的插入共聚合的单元。
7.权利要求2的聚乙烯组合物,其中所述基本上线性的乙烯共聚物含有来自于乙烯和一种或多种选自C3~C20α-烯烃、C5~C25环烯烃和取代的环烯烃、C5~C25苯乙烯系烯烃和取代的苯乙烯系烯烃的单体的插入聚合的单元。
8.权利要求6的聚乙烯组合物,其中所述基本上线性的乙烯共聚物含有来自于乙烯和至少一种选自丁烯、1-己烯和1-辛烯的单体的插入共聚合的单元。
全文摘要
本发明涉及一种聚乙烯组合物,其多分散指数小于或等于3,由GPC/Vis测定的平均支化指数(g')≥0.9,并且熔体强度(MS)(厘泊,190℃)满足下述关系:MS≥3.0/熔体指数(2.16kg/190℃)+4.5。在一优选的实施方案中,这些聚乙烯组合物含有A)由乙烯、含乙烯的大单体、以及任选地其它可共聚合的单体的插入聚合制得的支化聚乙烯共聚物,和B)基本上呈线性的乙烯共聚物。本发明组合物具有提高的熔体强度,同时并不损害窄多分散指数所具有的优点。
文档编号C08L51/06GK1243528SQ98801784
公开日2000年2月2日 申请日期1998年2月6日 优先权日1997年2月7日
发明者E·J·马凯尔, C·U·戴格拉希亚, A·戴克迈兹恩 申请人:埃克森化学专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1