一种用于建立珊瑚游离和内寄生共生藻丰度以及珊瑚白化警示系数h的技术指标的方法

文档序号:10715931阅读:499来源:国知局
一种用于建立珊瑚游离和内寄生共生藻丰度以及珊瑚白化警示系数h的技术指标的方法
【专利摘要】本发明公开了一种用于建立珊瑚游离和内寄生共生藻丰度以及珊瑚白化警示系数H的技术指标的方法。方法为:珊瑚生长的海域海洋环境游离状态共生藻丰度指标建立、珊瑚体内寄生状态的共生藻丰度指标的建立、珊瑚白化警示系数H的建立。本发明所述方法可对各类海水野外样品和水族馆的实验样品采集的海水都可以准确测定,在时间和空间动态都能进行长期和短期的监测,具有广阔的应用前景。
【专利说明】
一种用于建立珊瑚游离和内寄生共生藻丰度以及珊瑚白化警 示系数H的技术指标的方法
技术领域
[0001] 本发明涉及海洋珊瑚生态环境的评价技术及运用领域,一种用于建立珊瑚游离和 内寄生共生藻丰度以及珊瑚白化警示系数H的技术指标的方法。
【背景技术】
[0002] 共生藻可以寄生于珊瑚的体内,由于它可以进行光合作用、合成必需氨基酸和为 珊瑚的钙化提供能量支持和必要的营养物质,作为最初级的生产者,是珊瑚生长和珊瑚造 礁中不可或缺的一个角色。由于海洋环境的污染,极端气候的变化,厄尔尼诺的频繁发生以 及人类活动的破坏,造成珊瑚礁的退化和珊瑚"白化",因为共生藻对海洋环境及其敏感,珊 瑚"白化"的发生引发共生藻的"逃逸"出宿主,释放到海水环境中,成为游离的共生藻,造成 珊瑚丧失营养物质的供应,引发珊瑚的死亡。关于引发共生藻"逃逸"的机制目前尚不清楚, 但是珊瑚体内共生藻细胞丰度的降低与珊瑚的死亡率呈现紧密的相关性以得到实验证实, 还有研究指出珊瑚的白化现在使得共生藻的种群发生动态和转变,可以让珊瑚在面临新的 环境变化中重新选择适合的共生藻,从而克服逆境。而且,研究也证实如果能让珊瑚重新构 建与共生藻类群落的共生系统,有可能使白化的珊瑚得到恢复。
[0003] 但是目前缺乏一种有效的方法跟踪共生藻的群落动态变化、共生藻的多样性和生 物地理分布。目前公认的共生藻的物种划分,依据分子鉴定的方法,分为A-H八种类型,其中 五种类型的共生藻与珊瑚存在共生关系(即Clade A,B,C,D和F)。正是共生藻种类多样性与 群落变化的复杂性,是评价和研究珊瑚共生藻之间关系的一个技术屏障。传统上在观察计 算共生藻细胞数量方法上以显微镜计数为主,但是由于共生藻在形态学上缺乏明显的分类 特征,而且容易受到其他海藻的干扰。以外,显微镜技术只能计算Iul海水样本,在统计上缺 少代表性。
[0004] 由于定量PCR技术具有统显微视觉观察所不可替代的优越性,不仅能从分子水平 上检测共生藻的分类鉴定,还可以定量计算共生藻的DNA摄入,以及检测敏感性高等优势。 总之,定量PCR法具有直观、准确的优点,克服了传统显微镜计数方法通量低、准确率低等缺 点,可以更加全面、准确、快速地反映环境共生藻群落结构,从而可以更加客观地认识环境 中共生藻原位的生态状况。是研究共生藻珊瑚体内寄生和体外游离状态动态变化的有效手 段。
[0005] 另外本发明创先采用相对定量的方法,评估珊瑚共生藻的群体结构。引入珊瑚白 化警示系数H评估珊瑚优势共生藻是否出现替换现象,直接联系珊瑚所处的海洋环境变化, 对预测珊瑚的生长趋势具有简便、灵敏、预警的特点。因此,为了更好地促进珊瑚礁的保护 管理和珊瑚健康状态的评价,今后我国应采用共生藻内寄生状态和游离状态的丰度分析及 群体结构评价指标。

【发明内容】

[0006] 本发明的目的在于提供一种用于建立珊瑚游离和内寄生共生藻丰度以及珊瑚白 化警示系数H的技术指标的方法
[0007] 为实现上述目的,本发明提供一种用于建立珊瑚游离和内寄生共生藻丰度以及珊 瑚白化警示系数H的技术指标的方法,其特征在于,方法为:
[0008] 珊瑚生长的海域海洋环境游离状态共生藻丰度指标建立、
[0009] 珊瑚体内寄生状态的共生藻丰度指标的建立、
[0010] 珊瑚白化警示系数H的建立。
[0011] 进一步,所述珊瑚生长的海域海洋环境游离状态共生藻丰度指标建立为:
[0012] 1)海水样品的采集,即珊瑚生长海域水深3-5米,通过水柱取IOOmL海水,不同海水 位点重复三次;
[0013] 2)海水样品的过滤膜处理;
[0014] 3)海水游离共生藻总DNA样品的快速提取;
[0015] 4)海水游离共生藻通过荧光定量PCR进行种类鉴定及丰度的测定。
[0016] 进一步,所述珊瑚体内寄生状态的共生藻丰度指标的建立为:
[0017] 1)珊瑚样品的采集及前处理;
[0018] 2)珊瑚及内寄生共生藻总DNA的快速提取;
[0019] 3)珊瑚体内寄生共生藻通过荧光定量PCR进行种类鉴定及丰度的测定。
[0020] 进一步,所述海水游离共生藻丰度的测定或珊瑚体内寄生共生藻定量PCR的种类 鉴定及丰度的测定步骤为:
[0021] 假设任意一种共生藻类型clade A,B,C,D或F的标准品从最高浓度Sng/ul,经系列 10倍的稀释,对应共生藻的探针与引物组合进行定量PCR,标准品定量PCR结果的Ct即X值与 标准品DNA稀释倍数为10的底数值Ig之间为线性函数关系:
[0022] Y(clade A,B,C,D或F)=aX+b;
[0023] 根据所述各类型共生藻的Ct值计算出各类型共生藻的DNA总量的公式为:
[0024] [DNA含量(pg)] = δ X 1000 XlOa Gt+b,其中δ为经紫外分光光度计测定所得的标准 品的最尚浓度;不超过20ng/ul;
[0025] [细胞总数(个)] = [DNA含量(pg)]/§;其中§为不同种类共生藻单细胞基因组DNA 的质量,大小通常介于3.0~5. Opg/细胞;
[0026] 最后得到细胞丰度:
[0027]
[0028]其中Vl为实验样品提取所得DNA总量的体积ul,V2为定量PCR所用的DNA的体积ul, M代表用于提取DNA的海水体积ml。
[0029] 进一步,所述珊瑚白化警示系数H的建立为:
[0030] 1)通过所述得到的珊瑚体内寄生状态的共生藻丰度确定珊瑚体内寄生状态的共 生藻丰度最大的类型为clade,,检测结果为clade A,B,C,D或F中丰度最大的一个类型。
[0031] 2)通过所述得到的珊瑚生长的海域海洋环境游离状态共生藻丰度,鉴定海水中存 在的游离共生藻中,除0外的其他类型cladeco,检测结果为除cladeP外,可为clade A,B, C,D或F中的一个或者多个类型。
[0032] 3)待诊断评估的珊瑚样品,提取总DNA,分别运用针对PAX(珊瑚内参)Xladef及 Clade ω探针与引物组合进行焚光定量PCR实验,结果记录为Ct pax,Ctf及Ct ω。计算珊瑚 白化警示系数Η:
<5);
[0033] 完整描述珊瑚游离状态共生藻及内寄生状态共生藻的丰度指标,结合珊瑚白化警 示系数H的值,预测当珊瑚白化警示系数H>1时,表明珊瑚共生藻clack#为优势种群,珊瑚趋 于正常状态;当HS 1时,警示珊瑚共生藻优势种群由clack#替换为clade ω现象,表明珊瑚 所处的海洋环境出现变化,在一定的程度上警示珊瑚已经白化或者有白化的可能性。
[0034] 进一步,所述探针与引物组合的序列如SEQ ID N0:1-3,SEQ ID N0:4-6,SEQ ID N0:7-9,SEQIDN0:10-12,SEQIDN0:13-15和SEQIDN0:16-18所示;其中SEQIDN0:2, 5,8,11,14,17为探针序列,其5'端和3'端分别带有不同的荧光标记。
[0035]进一步,所述标准品是为clade A,B,C,D或F型珊瑚共生藻的纯DNA样品。
[0036]计算游离共生藻的细胞丰度:
[0037] 假设共生藻N(N代表Clade A,B,C,D和F中的任意一种),标准品从最高浓度Sng/ ul,经系列10倍的稀释,对应共生藻的探针与引物组合进行定量PCR,依据标准品定量PCR结 果的Ct值(X)与标准品DNA稀释倍数为10的底数值(Ig)之间为线性函数关系:
[0038] Y clade N=aX+b (1)
[0039] 计算当实验样品的定量PCR结果为Ct时的DNA模板浓度:
[0040] [DNA含量(pg)] =δΧ1〇〇〇Χ1(Τ ct+b (2)
[0041 ]其中δ为经紫外分光光度计测定所得的标准品的最高浓度,Ct为荧光定量PCR实验 得到的阈值,即为公式(1)中的X。
[0042]根据LaJeunesse et al · (J.Phycol .41,880-886,2005),流式细胞仪分析的结果, 珊瑚的共生藻的基因组大小介于1.5-4.5pg/细胞,一定误差允许的范围内,经查的对应实 验共生藻的基因组大小为§pg/细胞(1·5〈§〈4·5)(详见LaJeunesse T C,Lambert G, Andersen R A,et al.SYMBI0DINIUM(PYRRH0PHYTA)GEN0ME SIZES(DNA C0NTENT)ARE SMALLEST AMONG DIN0FLAGELLATES1[J]·Journal of Phycology,2005,41(4):880-886.)〇 计算对应的细胞总数为:
[0043] [细胞总数(个)]=[DNA 含量(pg) ]/§ (3)
[0044] 综合考虎这合海7k烊品的体葙TJDNA樽板的稀経倍教闵素,得出,
[0045]
[0046]公式中,其中Vl为实验样品提取所得DNA总量的体积(ul),V2为定量PCR所用的DNA 的体积(ul),M代表用于提取DNA的海水体积(ml)。
[0047] 计算珊瑚宿主内寄生共生藻的细胞相对丰度:ACt = Ctm-Ctciade-specific its (5)
[0048] 其中C t P ax为针对珊瑚P A X内参基因的探针经定量P C R实验检测的C t值, Ctci^pWfi。ITS为珊瑚共生藻各种探针定量PCR实验的响应Ct值,ACt为两者之间的差值。 [0049] ITS Clade-specif ic的拷贝数与珊瑚PAX拷贝数的关系为2的指数关系,即
[0050]
(6)
[0051] 大量研究表明,珊瑚健康状态与共生藻群体的机构有紧密的联系。一般正常情况 下C型共生藻为占优势类群。最近,有大量的报道,发现当海洋环境或者气候变化引起的珊 瑚白化,会使原本C占优势变为D占优势,又称有共生藻的替换,如果珊瑚没有适应共生藻 优势群体结构的变化,最终会导致珊瑚的死亡,另有研究表明,只有大约不到50%的珊瑚具 有这样的适应能力。所以通过相对定量PCR的方法检测珊瑚的优势共生藻类群是否发生替 换现象,评价珊瑚所处的海洋环境的变化及珊瑚的健康状态,具有一定的指导和警示意义。
[0052]本发明采用相对定量法计算珊瑚共生藻细胞数密度的计算及珊瑚白化警示系数 H,计算步骤如下:
[0053] 1)通过定量PCR方法检测调查海域中正常珊瑚体内寄生状态的共生藻细胞丰度指 标,测定珊瑚体内寄生状态的共生藻丰度最大的类型为cladeP,检测结果为clade A,B,C,D 或F中丰度最大的一个类型。
[0054] 2)通过定量PCR方法检测该海域中海洋环境游离状态共生藻细胞丰度指标,鉴定 海水中存在的游离共生藻中,除炉外的其他类型clade ω,检测结果为除cIadef外,可为 clade A,B,C,D或F中的一个或者多个类型。
[0055] 3)待诊断评估的珊瑚样品,提取总DNA,分别运用针对PAX(珊瑚内参)、Clade识及 Clade ω探针引物组合进行焚光定量PCR实验,结果记录为Ctpax,C1#_及Ct ω。计算珊瑚白化 警示系数:
(7)
[0056] 当珊瑚白化警示系数H>1时,表明珊瑚共生藻clack#为优势种群,珊瑚趋于正常状 态;当HSl时,警示珊瑚共生藻优势种群由clade#替换为cladeco现象,表明珊瑚所处的海 洋环境出现变化,在一定的程度上警示珊瑚已经白化或者有白化的可能性。
[0057] 本发明拟解决的主要问题是如何体现海水中游离状态的共生藻以及珊瑚组织内 寄生状态的共生藻的丰度及多样性,旨在判断共生藻在以上两者状态下之间的动态平衡对 珊瑚健康状态的影响。从而开发一种易于标准化的实验方法或者体系,创造了几个相应的 评价指标,为未来的海洋生物及环境研究提供数据支持。本发明的
【申请人】在实验中发现'白 化'珊瑚中出现优势共生种群替换的现象,这对为来珊瑚礁的'白化'诊断具有指导意义。而 且从技术本身来讲,本发明涉及建立的指标对未来的珊瑚生态研究或者给同行、相关领域 学者在在这一方面的研究将具有启发和帮助。
[0058]本发明建立检测这五种共生藻的目的主要是为了更加全面的建立评价海洋珊瑚 和藻类生态研究的指标。
[0059]本发明有如下优点:
[0060] 1.本发明运用珊瑚共生藻的游离状态与内寄生状态的群落结构相关指标能综合 评价反应珊瑚生活环境的状况,具有很强的敏感性,能更全面地反映珊瑚的健康状况。
[0061] 2.本发明应用Taqman PCR技术既有高度的特异性及敏感性,能获得客观全面的共 生藻群落结构与多样性,更直接全面地反映共生藻的生物地理分布及物种多样性程度。 [0062] 3.对各类海水野外样品和水族馆的实验样品采集的海水都可以准确测定,在时间 和空间动态都能进行长期和短期的监测,具有广阔的应用前景。
[0063] 4.本发明采用相对定量PCR的方法检测珊瑚的优势共生藻类群是否发生替换现 象,引入珊瑚白化警示系数H,对评价珊瑚所处的海洋环境的变化及珊瑚的健康状态,一定 程度上具有的指导和警示意义。
【附图说明】
[0064] 图1是野外珊瑚基于GPS定位的采集位点图。
[0065] 图2是DNA标准提取方法图。
[0066] 图3是海水游离共生藻的检测(A,B)及细胞数量丰度计算结果(C)图。
[0067] 图4是健康珊瑚和白化珊瑚的珊瑚白化警示系数H的比较图。
【具体实施方式】
[0068] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终 相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。实施例 中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明 书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
[0069] 实施例1:珊瑚样品的采集与共生藻的准备培养试验
[0070] 野外珊瑚样品的采集:于海南岛的东、西海域,采集健康的盔型珊瑚样品(采集样 品的GPS位置,见图1 ),将部分样品敲碎或者切成小块,保存于液氮中。
[0071] 水族馆样品的采集:已经在水族馆环境中培养大约半年的盔型珊瑚样品,采集健 康和白化的珊瑚样品,切成小快,于液氮中低温保存。
[0072] 另外收集水族馆的海水样品100ml,设置6次重复,作为检测游离共生藻的检测实 验材料。
[0073] 共生藻纯培养:珊瑚共生藻的藻株ITO 10(Clade A),WZD 17(Clade C) ,SGAl (Clade D)和Symka(Clade F)光照培养于f/2培养基,27°C,光周期为12h光照:12h黑暗,培 养一个月,通过离心收集藻类细胞(以上藻种菌均保藏于中国海洋微生物菌种保藏管理中 心(MCCC),MCCC属于国家级公益性微生物资源共享平台)。
[0074] 实施例2. DNA样品的标准提取
[0075]图2为珊瑚,海水样品及共生藻培养物的DNA标准提取方法示图。按照图2所示步骤 来进行DNA样品的标准提取即可。
[0076]以海洋生物DNA提取试剂盒(北京天根生物科技有限公司)作为DNA提取方法的实 施。提取步骤如此下:以例1中采集的珊瑚样品,切成~5mm2,0.1-0.2g的珊瑚组织,取数块 置入2. Oml的EP管中,随后加入500μ1裂解液GA得到珊瑚样品。
[0077]通过离心收集后的藻类细胞,转入2.Oml EP管中,加入500μ1裂解液GA得到共生藻 样品。
[0078]取500ml海水样品过滤,采用直径0.45μπι的尼龙膜,过滤完后将过滤膜卸下,剪碎 置入2. Oml EP离心管,同样加入500μ1裂解液GA,得到水样过滤样品。
[0079]将上述的珊瑚样品,共生藻样品及水样过滤样品分别加入50μ1的蛋白酶K(20mg/ ml ),震荡15s,将EP管置于56°C加热器裂解Ih。再加入500μ1 GB buffer于上述混合液中,再 于70 °C加热IOmin,使细胞彻底,释放出DNA。继续离心10,000转/minlmin,吸取Iml上清液转 移至新的EP管中,加入无水乙醇500μ1,震荡混匀。将全部的液体转移入CB3柱并离心过柱, DNA吸附于CB3中,分别以600μ1⑶Buffer清洗过柱一次,500μ1 PW Buffer清洗两次。最后 用100μΙ TE洗脱DNA JNA的浓度经紫外分光光度计260mm测定,用双蒸水调节DNA浓度至 20ng/yl〇
[0080] 实施例3:定量PCR的标准曲线
[0081 ]表1.实验所设及针对珊瑚宿主和共生藻的引物探针组合表
[0084] 注:其中Y和W为碱兼并碱基,Y代表C或T,W代表AST。
[0085] 上述Taqman探针的5 '端、3 '端分别用FAM报导荧光染料和TAMRA淬灭基团标记。扩 增反应总体积为20yL,其中上下游引物(Forward,Reverse) 200nM,探针(probe) IOOnM,10μ1 AceQ?qPCR Probe Master Mix(Vazyme,南京),模板ΙμΙΙΤΟ 10(Clade A),WZD 17(Clade C),SGAl(Clade D)和Symka(Clade F)经10倍系列稀释的DNA,(以上藻种菌均保藏于中国海 洋微生物菌种保藏管理中心(MCCC),MCCC属于国家级公益性微生物资源共享平台),余下用 双蒸水补足20yL,置RG 6000(QIAGEN)荧光定量PCR系统运行分析,在每个循环的延伸结束 时进行荧光信号检测,荧光模式设为Green。反应程序为 :95°C5min;95°C10s,60°C30s,45个 循环。
[0086] 根据珊瑚共生藻株ITO 10(Clade A),WZD 17(Clade C),SGAl(Clade DMPSymka (Clade F)的DNA样品在6个稀释度(HT1~HT5)稀释。各种藻株以相应的探针引物组合(所 设及引物探针组合见表1)进行定量PCR,结果所得的Ct值与对应的稀释倍数呈线性关系,绘 制对应共生藻类型的标准曲线,各个标准品的DNA稀释倍数的IoglO值应与Ct值线性函数关 系良好,R 2X). 99,实验结果较为理想。
[0087]实施例4:海水样品的游离共生藻的检测与丰度计算
[0088]水族馆收集的海水样品100ml,设置6次重复,过0.45μπι滤膜提取的DNA,经表1的引 物探针组合检测,结果见表2及图3。图3可以看出,除了Clade B的Ct为0(阴性)以外,clade A,C,D和F的检测结果均大于0,表明水族馆的海水中经检测含有A,C,D和F四种共生藻的类 型。定量PCR检测结果得到的Ct值经标准曲线的公式换算所对应藻类细胞的个数。以Clade C藻类细胞的计算为例,其检测结果为Ct = 24.45,由图3的标准曲线得出DNA的稀释倍数Y与 Ct值(X)的关系为:Y = -0.2701X+4.3801。计算出所含的Clade C含有的DNA总量:
[0089] [DNA总量(pg) ] = 2 X IO4X 10(4·38Q1-Q·27Q1Gt); δ可以通过紫外分光光度计直接测定 得到,便于后续实验数据的计算,各种藻类标准品的最高浓度尽量调整一致,可都稀释至终 浓度为20ng/ul。
[0090]依据LaJeunesse et al · (J.Phycol .41,880-886,2005),流式细胞仪分析的结果, 珊瑚的共生藻Clade C的基因组大小介于3.Opg/细胞,计算对应的细胞总数为:
[0091] [Clade C细胞数]= [DNA总量(pg)]/3.0(pg);
[0092] 综合考虑所用测试海水为500ml的体积,DNA提取的总体积为100μΙ及定量PCR所用 的体积为ΙμL,计算clade C的共生藻丰度为:
[0093] Clade C(个数)/(mL海水)= (2Χ104Χ 10(4.3801-0.2701χ24. 45))/3·0Χ100/1·0 + 500 =8(个细胞)/m海水=8,000(个细胞)/海水。
[0094]以同样的方法计算出Clade A,C,D和F的细胞个数,计算结果详见表2。有实验结果 显示水族馆的海水样品中共生藻C和D型丰度最高,每升海水分别可达11789.17±5270.82 和8052.01 ±1700.56细胞数,A和F型丰都较低,每升海水分别为71.93 ±52.08和2.62 土 1.30个细胞。而在我们这次采集的海水样品中没有检测出B型共生藻。综上,说明本发明所 用的方法可以准确检测和计算出各种珊瑚游离共生藻的丰度。
[0095]表2.海水游离共生藻的检测结果及细胞个数计算结果表
[0097] 实施例5:珊瑚组织内共生藻的检测与相对丰度计算
[0098] 海南岛的东、西海域,采集健康的盔型珊瑚样品及水族馆采集健康和白化珊瑚样 品DNA,以表1中的珊瑚PAX的探针引物组合及针对所有的共生藻的探针引物组合进行定量 PCR,每个样品重复三次,记录每个样品的Ct值,经检测所有的珊瑚样品PAX基因的Ct都介于 25~40,说明所提取的珊瑚DNA含量符合定量PCR的检测要求。除海南东海域的部分样品未 能检测出Clade D以外,其余的珊瑚样品能检测出Clade C和D两种类型共生藻,实验结果见 表3,各个样品之间进行显著型分析(3?55,41^¥4分析,?〈0.05),检测得到(:1 &(16(:和0两种 类型的共生藻的Ct值,在健康和白化珊瑚中均存在显著性差异(见表3)。
[0099]表3:海南东海域和水族馆采集的珊瑚样品的结果表
[0101] 表格中考虑到定量PCR实验不同批次的机械误差和实验的误差的影响,做相对定 量分析建议共生藻的特异性ITS检测和珊瑚内参PAX检测为同一次实验的数据,ACt(PAX-Clade C),表示为同一批次定量PCR实验,PAX内参的Ct值与共生藻Clade C探针的Ct值之 差。同样ACt(PAX-Clade D)表示为同一批次定量PCR实验,PAX内参的Ct值与共生藻Clade D探针的Ct值之差。在本次实验中,只检测到C与D两种共生藻,其他类型的藻为检测到。
[0102] 由于考虑到珊瑚样品的差异及提取DNA效率等差异,故采用相对定量的方法计算 各种共生藻的相对含量更加准确。
[0103] 即珊瑚样品的共生藻的相对丰度为:ACt = CtPAX-Ct Clade-specific ITS
[0104] 经计算得到的结果见表三,健康珊瑚样品(包括海南东,西海域的样品及水族馆的 样品)中,共生藻Clade C的相对丰度大于Clade D。然而,在白化的珊瑚样品中结果却是D大 于C,即白化珊瑚中Clade D的相对丰度远高于Clade C,这一结果与国外大量的研究结果一 致,说明珊瑚在'白化'的过程中优势的内寄生共生藻出现了替换的现象,即优势共生藻由C 变成了D,也说明了珊瑚的健康状况与内寄生共生藻的群落有直接的关系。珊瑚共生藻出现 了替换的现象,与珊瑚的白化有直接相关性。
[0105] 进一步计算各样品的珊瑚白化警示系数H,见图4。以珊瑚样品Hl为例,计算珊瑚白 化警示系数H,H=(Ct pax-Ct C)/(Ct pax-Ct D) = 11.21/6.14=1.83,H>1,表明珊瑚为正 常或者健康状态。而珊瑚样品Bl,计算H=(Ct pax-Ct C)/(Ct pax-Ct D)=5.79/19.77 = 0.29,H〈1,表明珊瑚已经白化或者有白化的可能。结果与珊瑚形态学表现的观察一致。
[0106] 本发明使用的定量PCR检测及相对丰度的计算方法可以成功准确的测定珊瑚内寄 生的共生藻的丰度。由此采用相对定量PCR的方法检测珊瑚的优势共生藻类群是否发生替 换现象,引入珊瑚白化警示系数H,对评价珊瑚所处的海洋环境的变化及珊瑚的健康状态, 一定程度上具有的指导和警示意义。
[0107] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例 性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨 的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
【主权项】
1. 一种用于建立珊瑚游离和内寄生共生藻丰度W及珊瑚白化警示系数Η的技术指标的 方法,其特征在于,方法为: 珊瑚生长的海域海洋环境游离状态共生藻丰度指标建立、 珊瑚体内寄生状态的共生藻丰度指标的建立、 珊瑚白化警示系数Η的建立。2. 权利要求1所述用于建立评价海洋环境游离共生藻、珊瑚体内寄生共生藻丰度和珊 瑚白化警示系数Η的技术指标的方法,其特征在于,所述珊瑚生长的海域海洋环境游离状态 共生藻丰度指标建立为: 1) 海水样品的采集,即珊瑚生长海域水深3-5米,通过水柱取lOOmL海水,不同海水位点 重复二次; 2) 海水样品的过滤膜处理; 3) 海水游离共生藻总DNA样品的快速提取; 4) 海水游离共生藻通过巧光定量PCR进行种类鉴定及丰度的测定。3. 权利要求1所述用于建立评价海洋环境游离共生藻、珊瑚体内寄生共生藻丰度和珊 瑚白化警示系数Η的技术指标的方法,其特征在于,所述珊瑚体内寄生状态的共生藻丰度指 标的建立为: 1) 珊瑚样品的采集及前处理; 2) 珊瑚及内寄生共生藻总DNA的快速提取; 3) 珊瑚体内寄生共生藻通过巧光定量PCR进行种类鉴定及丰度的测定。4. 权利要求2或3所述用于建立评价海洋环境游离共生藻、珊瑚体内寄生共生藻丰度和 珊瑚白化警示系数Η的技术指标的方法,其特征在于,所述海水游离共生藻丰度的测定或珊 瑚体内寄生共生藻定量PCR的种类鉴定及丰度的测定步骤为: 假设任意一种共生藻类型clade A,B,C,D或F的标准品从最高浓度Sng/ul,经系列10倍 的稀释,对应共生藻的探针与引物组合进行定量PCR,标准品定量PCR结果的Ct即X值与标准 品DNA稀释倍数为10的底数值Ig之间为线性函数关系: Yklade A,B,C,D或F)=aX+b; 根据所述各类型共生藻的Ct值计算出各类型共生藻的DNA总量的公式为: [dm含量(pg)] = δX1000X10aα+b,其中δ为经紫外分光光度计测定所得的标准品的最 高浓度;不超过20ng/ul; [细胞总数(个)] = [DNA含量(pg)]/§;其中§为不同种类共生藻单细胞基因组DM的质 量,大小通常介于3.0~5.化g/细胞; 最后得到细胞丰度: I鍊,毅聲泼' C:夺》IMl海來-[麵薇穗穀{夺> ]X養单M; 其中VI为实验样品提取所得DNA总量的体积ul,V2为定量PCR所用的DNA的体积ul,M代 表用于提取DM的海水体积ml。5. 权利要求1所述用于建立评价海洋环境游离共生藻、珊瑚体内寄生共生藻丰度和珊 瑚白化警示系数Η的技术指标的方法,其特征在于,所述珊瑚白化警示系数Η的建立为: 1)通过所述珊瑚体内寄生状态的共生藻丰度确定珊瑚体内寄生状态的共生藻丰度最 大的类型为clade沪检测结果为clade A,B,C,D或F中丰度最大的一个类型。 2) 通过所述珊瑚生长的海域海洋环境游离状态共生藻丰度,鉴定海水中存在的游离共 生藻中,除巧外的其他类型cladew,检测结果为除clade 9外,可为clade A,B,C,D或F中的 一个或者多个类型。 3) 待诊断评估的珊瑚样品,提取总DNA,分别运用针对PAX(珊瑚内参)、Cladep及Clade ω探针与引物组合进行巧光定量PCR实验,结果记录为Ctpax,ΓΥ沪及^ ω。计算珊瑚白化警 示系数Η:计算珊瑚白化警示系数Η的值,预测当珊瑚白化警示系数H〉1时,表明珊瑚共生藻 clade f为优势种群,珊瑚趋于正常状态;当1时,警示珊瑚共生藻优势种群由clade 口替换 为cladew现象,表明珊瑚所处的海洋环境出现变化,在一定的程度上警示珊瑚已经白化或 者有白化的可能性。6. 权利要求4或5所述用于建立评价海洋环境游离共生藻、珊瑚体内寄生共生藻丰度和 珊瑚白化警示系数Η的技术指标的方法,其特征在于,所述探针与引物组合的序列如SEQ ID 顯:1-3,沈〇10顯:4-6,56〇10顯:7-9,56〇10顯:1〇-12,56〇10^):13-15和56〇10 NO: 16-18所示;其中SEQ ID N0:2,5,8,11,14,17为探针序列,其5'端和3'端分别带有不同 的巧光标记。7. 权利要求6所述用于建立评价海洋环境游离共生藻、珊瑚体内寄生共生藻丰度和珊 瑚白化警示系数Η的技术指标的方法,其特征在于,所述标准品是为clade A,B,C,D或F型珊 瑚共生藻的纯DNA样品。
【文档编号】C12Q1/68GK106086200SQ201610531787
【公开日】2016年11月9日
【申请日】2016年7月4日
【发明人】林镇跃, 陈建明, 陈明谅
【申请人】国家海洋局第三海洋研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1