用于汽车燃料箱的树脂复膜的薄钢板及其制备方法

文档序号:3801665阅读:197来源:国知局
专利名称:用于汽车燃料箱的树脂复膜的薄钢板及其制备方法
背景技术
(a)发明领域本发明涉及用于汽车燃料箱的未经铅表面处理的薄钢板,更具体地涉及树脂复膜的薄钢板及其制备方法,所述薄钢板在未经铅表面处理的涂敷了铬酸盐涂层的薄钢板表面涂敷树脂薄膜。
(b)相关技术描述对储存汽车燃料的燃料箱的一般要求是,其暴露于大气的外表面应具有抗腐蚀性(下文中称为“抗表面腐蚀性”),其与燃料如汽油接触的内表面也具有抗腐蚀性(下文中称为“抗燃料腐蚀性”)。
另外,由于燃料箱的两部分是通过缝焊或如铜焊等连接方法互相连接的,所以要求薄钢板具有良好的可焊性和良好的可加工性,以便适用于燃料箱的成型。
镀有铅锡(Pb-Sn)合金的冷轧薄钢板广泛地用作燃料箱的薄钢板。但是,镀有铅锡合金的薄钢板的用途受到了限制,因为它含有导致环境污染的铅。
对此已进行了广泛的研究,以开发一种经表面处理又不含铅的用于燃料箱的薄钢板。
日本专利公开第63-69631号和日本专利公告第2-18982号描述了一种电镀锌的无铅薄钢板。上述专利中所描述的无铅薄钢板是这样制备的在薄钢板的表面以1-200g/m2的量涂敷锌或如Zn-Ni、Zn-Co、Zn-Fe、Zn-Al的锌基合金,并在锌镀层一侧的上面涂敷厚度为2-50μm包含苯氧基树脂和橡胶改性的环氧树脂的有机树脂薄膜。
但是,上面的表面处理薄钢板具有加工时由于镀层厚而导致镀层脱落的问题。另外,由于涂敷在最上层的有机涂层也厚,因此难于焊接。而且,由于锌合金镀层与有机树脂涂层间的附着力变得较低,所以在这两层之间存在脱落的问题。
为了解决上述问题,本发明人提出了申请号为WO 00/32843的国际专利申请。上述专利提供无铅电镀的涂敷了树脂涂层的薄钢板,所述树脂涂层包含位于铬酸盐涂层之上的金属粉,而铬酸盐涂层又涂敷在镀锌或锌基合金的薄钢板上。
然而,上述发明存在这样的问题,即由于树脂涂层所包含的金属粉末导致加工时经处理的一侧不能抵抗模具的压力,所以树脂层会部分脱落。
在涂敷的树脂涂层中,上述问题是由于树脂层的较低的滑动特性造成的。树脂层的滑动特性与向树脂溶液中添加的蜡以及金属粉末的类型、组成和粒度有密切的关系。
因此,要求无铅薄钢板能够通过提高滑动特性来防止涂层脱落,同时又保持其抗表面腐蚀性和抗燃料腐蚀性。
发明概述因此,本发明的目的是解决上述问题。本发明提供一种用于制备树脂复膜薄钢板的改进的树脂溶液,同时又不损害树脂的化学特性。
本发明的另一目的是提供一种通过涂敷树脂溶液制造用于汽车燃料箱的树脂复膜的薄钢板的方法,该薄钢板具有改进的抗表面腐蚀性和抗燃料腐蚀性,以及可加工性。
为实现上述目的,通过混合主溶液与三聚氰胺树脂,胶体二氧化硅,聚四氟乙烯基蜡和至少一种选自Al、Zn、Mn、Co、Ni、Sn和SnO的金属粉末来制备本发明的树脂溶液,所述主溶液选自环氧树脂、聚氨酯树脂和苯氧基树脂。
用于本发明的树脂溶液的主溶液是数均分子量为25000-50000的水溶性苯氧基树脂。三聚氰胺树脂作为硬化剂加入,其加入量为每百份主溶液2-15份。同时,胶体二氧化硅的加入量为每百份主溶液1-20份,聚四氟乙烯基蜡的加入量为每百份主溶液2-10份,而金属粉末的加入量为每百份主溶液5-70份。
加到本发明树脂溶液中的聚四氟乙烯基蜡,优选粉末状且粒度为0.l-3μm聚四氟乙烯基蜡。另外,金属粉末的粒度为0.5-5μm。
本发明提供一种用树脂溶液制造表面处理的薄钢板的方法。
本发明的表面处理过的薄钢板包括在镀锌或锌合金的冷轧薄钢板上涂敷铬酸盐薄膜,然后涂敷本发明的树脂溶液。涂敷树脂溶液之后,根据金属的温度,将其在140-250℃下烘干。这种情况下,树脂溶液的涂敷厚度按干燥后的涂层厚度计优选为1-10μm。
本发明的经表面处理的薄钢板能够保持树脂涂层的滑动特性,还能防止金属粉末导致的涂层脱落。
因此,如果用本发明的经表面处理的薄钢板制造燃料箱,则可以极大地提高薄钢板的冲压可加工性。
附图简述

图1是一侧涂敷了树脂的汽车燃料箱的树脂复膜薄钢板的截面图。
图2是两侧涂敷了树脂的汽车燃料箱的树脂复膜薄钢板的截面图。
优选实施方案详述本发明的优选实施方案将参照附图进行说明。
如图1所示,本发明的树脂复膜薄钢板具有这样的结构,即在冷轧的薄钢板上镀有锌或锌-镍合金,将铬酸盐涂敷在镀过的薄钢板上,按1-10μm的厚度涂敷本发明的树脂溶液。
优选用含碳量小于或等于0.03%的低碳薄钢板作为本发明的冷轧薄钢板。
可用锌(Zn)、锌-镍(Zn-Ni)合金、锌-钴(Zn-Co)合金、锌-锰(Zn-Mn)合金或锌-铬(Zn-Cr)合金作为镀材。在本发明中,优选使用锌-镍(Zn-Ni)合金薄钢板,因为它具有比镀锌薄钢板更好的抗表面腐蚀性。
施用于镀了锌-镍的薄钢板上的铬酸盐溶液包括反应型、电解质型和涂敷型的溶液,其中依据抗表面腐蚀性,优选涂敷型的溶液。当铬酸盐溶液用于薄钢板时,其可以镀敷于钢板的一侧或两侧。优选镀敷于钢板的两侧。
但是,作为选择,可以根据次级加工者的要求将树脂溶液涂敷在一侧(图1)或两侧(图2)。
这种交替的选择取决于用树脂复膜薄钢板制备燃料箱时的焊接条件。也就是说,在易于焊接的高电流和频繁更换电解质的情况下,优选使用双侧涂敷的薄钢板,反之,在低电流和不经常更换电解质的情况下,优选使用一侧涂敷的薄钢板。
当使用一侧树脂复膜的薄钢板制备燃料箱时,优选使树脂复膜的一侧朝向燃料而未用树脂复膜的涂敷了铬酸盐的一侧朝外来焊接燃料箱。这样做使焊接容易,因为焊接电解质不接触树脂部分。另外,如果需要,可在未涂敷树脂的一侧施用厚度约100微米的漆,以便增强燃料箱的抗腐蚀性,这对抗腐蚀性几乎没有影响。
下文中,将详细说明本发明的树脂复膜薄钢板中所使用的树脂溶液。
本发明的树脂溶液包含主树脂溶液、硬化剂、胶体二氧化硅、金属粉末和润滑剂。
所述树脂溶液的主溶液为丙烯酸树脂、环氧树脂或聚氨酯树脂,优选苯氧基树脂。
苯氧基树脂具有优异的抗表面腐蚀性和抗燃料腐蚀性,因为苯氧基树脂具有比其他树脂高的玻璃化转变温度(100℃,Tg)。
这样,即使燃料箱的环境温度超过100℃,苯氧基树脂的链也不表现出微观的布朗运动,而且也不变性。由于苯氧基树脂的这些特性,其可防止水或汽油渗透,从而加强薄钢板的抗表面腐蚀性。
优选使用具有25000-50000的数均分子量的苯氧基树脂。当数均分子量低于25000时,难于具有所需的抗表面腐蚀性。当数均分子量高于50000时,不能合成该树脂。
然而,当环氧树脂为主溶液时,优选其数均分子量为4000-6000;当聚氨酯树脂为主溶液时,优选其具有约15000的数均分子量。
作为硬化剂,可将三聚氰胺树脂加到本发明的苯氧基树脂溶液中。三聚氰胺树脂的作用是与苯氧基树脂的羟基发生反应并形成涂层,以便制备更紧密的树脂涂层。也就是说,通过添加三聚氰胺树脂,苯氧基树脂的线性结构转化为网状的结构。这样,该树脂结构能够防止外部侵蚀元素的渗入,从而可提高抗表面腐蚀性。
三聚氰胺树脂的含量优选为每百份苯氧基树脂2-15份(每百份树脂的份数每100重量份主溶液的份数)。如果三聚氰胺树脂的含量低于每百份树脂2份,则固化反应不充分。相反,如果其含量超过每百份树脂15份,则固化剂本身之间发生反应,致使其在涂层中形成裂纹。
加入胶体二氧化硅是为了提高树脂涂层的抗表面腐蚀性。由于可溶性的苯氧基树脂是碱性的,所以选择同为碱性的胶体二氧化硅,而不是其他的二氧化硅。
胶体二氧化硅的含量优选为每百份苯氧基树脂10-20份。如果胶体二氧化硅的含量低于每百份树脂10份,则该含量太小以致于不具有抗表面腐蚀性的作用。相反,当其含量大于每百份树脂20份时,不再具有提高抗表面腐蚀性的作用。
加到本发明树脂溶液中的金属粉末的作用是强化树脂涂层的导电性。
由于进行片与片之间的接触焊接时树脂涂层本身为非导体,所以在焊接期间会产生火花,或者焊接部分的树脂涂层易于脱落。因此,需要将金属粉末渗入树脂涂层的内侧,以便能够利用树脂的屏蔽作用和金属粉末的导电性。这样,树脂涂层既保持屏蔽作用又保存导电性。因此,该树脂溶液同时满足可焊性和薄钢板的抗表面腐蚀性的要求。优选具有导电性以及抗表面腐蚀性和抗燃料腐蚀性的金属粉末。
金属粉末的实例有Al、Zn、Mn、Co、Ni、Sn和SnO。这些金属可以单独使用,也可以以至少一种组合使用。
加入树脂溶液中的金属粉末的粒度和类型具有重要的作用。
金属粉末的粒度优选为0.5-5μm。如果粒度低于0.5μm,则其在树脂溶液中的分散性降低,发生二次凝聚并增加成本。相反,如果粒度大于5μm,则颗粒太重以致于在树脂溶液中下沉导致沉积。另外,沉积物突出于树脂涂层表面,从而破坏薄钢板的可加工性。
根据树脂涂层的导电性和溶液的稳定性,金属粉末的类型优选片状的而非球形的,因为球形的比片状的在树脂溶液中更容易沉淀。另外,依据导电性,由于片状的具有更多的重叠机会,所以其具有导电途径的作用。片状颗粒的厚度优选为0.1-0.5μm。
金属粉末的含量优选为每百份苯氧基树脂5-70份。如果金属粉末的含量低于每百份树脂5份,其无助于可焊性。相反,如果金属粉末的含量大于每百份树脂70份,树脂涂敷溶液的可贮存性降低,而且涂层与铬酸盐层的附着力降低。
加入树脂溶液中的蜡,用作金属粉末的润滑剂。所述的蜡优选使用聚四氟乙烯(下文中也称作“特氟隆”)。
与现有的乙烯基蜡相比,聚四氟乙烯基蜡具有优异的树脂涂层的滑动特性。另外,聚四氟乙烯基蜡能够覆盖突出于树脂涂层上的金属粉末,从而能够防止冲压加工中模具与树脂层之间的摩擦。
聚四氟乙烯基蜡的含量优选为每百份苯氧基树脂2-10份。如果聚四氟乙烯蜡的含量低于每百份树脂2份,则该含量太小以致于不能降低表面的摩擦系数。相反,如果聚四氟乙烯基蜡的含量大于每百份树脂10份,则涂层与可施用于树脂层上面的漆的附着力下降。
加入树脂溶液中的聚四氟乙烯基蜡的粒度具有重要的作用。聚四氟乙烯基蜡的粒度优选为0.1-3μm。当该蜡的粒度低于0.1μm时,在树脂溶液中以蜡理论为基础的球轴承作用降低。相反,当该蜡的粒度大于3μm时,树脂溶液的稳定性降低,并阻止金属粉末形成导电结构,从而使导电性降低。
下文中说明用本发明的树脂溶液制造树脂复膜的薄钢板的方法。
首先,阐述镀于冷轧薄钢板表面的锌-镍镀层。
对于锌-镍镀法,尽管存在多种镀法,但在本发明中使用电镀法,因为它容易控制镀层的量,并且镀后具有良好的表面性质。
当用锌-镍合金进行电镀时,镍含量为10-14%重量,因为具有上述组成的合金在可加工性和抗表面腐蚀性方面是优异的。
镀于冷轧薄钢板上的锌-镍合金镀层的量优选为10-40g/m2。当镀层的量低于10g/m2时,抗表面腐蚀性不充分。反之,当镀层的量大于40g/m2时,镀层的厚度太厚,以致于冲压加工时合金镀层脱落并发生粉化。另外,随着镀层量的增加,用于焊接的粉末增加。
镀了锌-镍合金之后,涂敷铬酸盐层。
涂敷铬酸盐层是为了增加树脂涂层与锌-镍镀层之间的附着力。
用于铬酸盐涂层的铬酸盐溶液包含a)主溶液,该溶液通过加入20-150%的磷酸、10-100%的氟酸、50-2000%的pH为2-5的胶体二氧化硅和5-30%的硫酸而制备的,上述量均按铬溶液中铬的重量计,且该溶液中三价铬的比例为0.4-0.8;b)硬化剂溶液,包含占总硬化剂溶液重量2-10%的环氧硅烷,控制所述硬化剂溶液的pH为2-3,将该硬化剂水溶液的5-50%重量加到所述主溶液中。
铬酸盐层的涂敷方法包括辊涂、喷涂、浸涂等。在本发明中,优选使用辊涂。
涂敷方法包括将上料辊(P.U.R)浸入滴料盘中铬酸盐溶液中,将其转移至传动辊(T.F.R)上,将其在涂布辊(A.p.R)上浸入薄钢板并干燥。通过每个辊的驱动方向、滚动速度和每个辊的支持压力,来调整附着在薄钢板上的铬酸盐溶液的量。上述辊涂法可以应用于薄钢板的一侧或两侧。
将涂敷了铬酸盐溶液的薄钢板在干燥炉中烘干。根据金属温度,涂敷了铬酸盐溶液的薄钢板的烘干温度为140-250℃。如果烘干温度低于140℃,则铬酸盐溶液的硬化反应不充分。相反,如果烘干温度大于250℃,则铬酸盐涂层上产生微小的裂纹,致使抗表面腐蚀性降低。
铬酸盐的量按干燥后铬的量计,优选为20-150mg/m2。如果含量低于20mg/m2,则抗表面腐蚀性不充分,以致于不适于用作燃料箱。相反,如果含量大于150mg/m2,则铬从铬酸盐涂层中脱出,而且成本增加,以致于不经济。
如上所述,涂敷完铬酸盐层之后,将本发明的树脂溶液涂敷在薄钢板上。
树脂溶液的组成与上述树脂溶液的组成相同,涂敷方法与涂敷铬酸盐溶液的方法相同。
涂敷之后,根据金属的温度,涂敷了树脂溶液的薄钢板的烘干温度优选为140-250℃。如果烘干温度低于140℃,则树脂溶液的硬化反应不充分,以致于抗表面腐蚀性和抗燃料腐蚀性降低。相反,如果烘干温度大于250℃,则不再发生硬化反应,且热损失增加。
涂敷于铬酸盐层一侧上面的树脂涂层厚度优选为1.0-10.0μm。当该厚度低于1.0μm时,则涂层的厚度太薄,以致于不具有充分的抗表面腐蚀性和抗燃料腐蚀性。相反,如果该厚度大于10.0μm,则随着厚度的增加,其不再对抗表面腐蚀性和抗燃料腐蚀性有影响,而且薄钢板互相焊接时的可焊性降低。
现在提出优选的实施方案,以清楚地理解本发明。下面提供的实施方案仅是为了清楚地理解本发明,而不是对本发明的限制。
实施例在以30g/m2的量将锌-镍合金镀在冷轧薄钢板上之后,将铬酸盐涂敷于其上。铬酸盐涂层以干燥后50mg/m2铬的量进行涂敷,并在160℃下烘干。
这种情况下,铬酸盐溶液具有0.5的三价铬比例(铬还原比例)和29g/l的铬浓度。其包含主溶液,所述主溶液按铬的重量计包含100%(重量)的胶体二氧化硅、30%(重量)的氟酸、50%(重量)的磷酸和10%(重量)的硫酸,以及30%(重量)的硬化剂溶液,该硬化剂溶液包含10%(重量)的环氧硅烷。
将分散于水中的以苯氧基树脂为主溶液的树脂溶液涂敷在薄钢板上。树脂溶液的组成包括100g的数均分子量为50000的苯氧基树脂(UnionCarbide,PKHW-35)、每百份树脂5份的用作硬化剂的三聚氰胺树脂(CytecCompany,Cymel 325)、每百份树脂15份的粒度为20纳米的胶体二氧化硅(llsan Chemical Company,Snowtex-N)和每百份树脂15份的粒度为2μm的金属粉末。另外,根据下表的组成,将蜡加到上述树脂溶液中。该蜡为韩国Okitusmo公司制造的聚四氟乙烯基蜡(NLF25W)。为了比较本发明的树脂复膜的薄钢板的材料性能,用乙烯基蜡(韩国,PS35)代替聚四氟乙烯基蜡。
将上述树脂溶液涂敷在薄钢板上并在190℃下烘干。从而制得于涂层厚度为3μm的树脂复膜的薄钢板。
测量薄钢板的摩擦系数、树脂涂层的脱落性、树脂溶液的稳定性和顶涂层的涂层附着力,结果见表1。
通过下列方法评价薄钢板的摩擦系数、树脂涂层的脱落性、树脂溶液的稳定性和顶涂层的涂层附着力1)摩擦系数将所制备的树脂复膜薄钢板切割成45×300mm,并去除四角的毛边。在单侧摩擦试验机中于0.27kg/cm2的压力下和1.000mm/min的牵引速度下测量摩擦系数。结果如下。
◎摩擦系数小于0.15○摩擦系数为0.15-0.2□摩擦系数为0.2-0.25△摩擦系数为0.25-0.3×摩擦系数大于0.32)涂层的脱落性测量了摩擦系数之后,通过刻划样品测量划痕和脱落的程度。结果如下。
◎脱落和划伤面积为0%○脱落和划伤面积为0-5%□脱落和划伤面积为5-10%△脱落和划伤面积为10-20%×脱落和划伤面积大于20%
3)树脂溶液的稳定性通过在常温和无任何振动的情况下树脂溶液形成沉淀所需的时间来测量树脂溶液的稳定性。结果如下。
◎形成沉淀所需的时间大于5天○形成沉淀所需的时间为1-5天□形成沉淀所需的时间为12-24小时△形成沉淀所需的时间为2-12小时×形成沉淀所需的时间为小于2小时4)顶涂层的涂层附着力树脂涂层与顶涂层之间的涂层附着力,是通过用刮涂机将三聚氰胺-醇酸树脂涂敷于树脂涂层的顶部并在常温下干燥5分钟而测量的。之后,将涂敷了三聚氰胺-醇酸树脂的薄钢板在150℃下烘干20分钟。干涂层的厚度为20μm。
涂敷顶涂层之后,用样品制成间隔1mm的十字条。待将玻璃纸带贴到涂层上并施加测定的压力之后,剥去该胶带。测量剥落的涂层面积。结果如下。
◎剥落的顶涂层面积为0%○剥落的顶涂层面积为0-5%□剥落的顶涂层面积为5-10%△剥落的顶涂层面积为10-20%×剥落的顶涂层面积大于20%表1
由表1可以看出,用聚四氟乙烯基蜡表面处理的薄钢板的质量比用乙烯基蜡表面处理的薄钢板的质量更优异。尤其是可以从涂层脱落结果看出,优选使用粒度为0.1-3μm、用量为每百份树脂2-15份的聚四氟乙烯基蜡,以制备冲压加工性改善了的燃料箱薄钢板。
权利要求
1.一种用来制备汽车燃料箱的树脂复膜的薄钢板的树脂溶液,该溶液包含选自环氧树脂、聚氨酯树脂和苯氧基树脂的主树脂溶液;三聚氰胺树脂;胶体二氧化硅;聚四氟乙烯基蜡和至少一种选自Al、Zn、Mn、Co、Ni、Sn和SnO的片状金属粉末。
2.权利要求1的树脂溶液,其中所述主树脂溶液为数均分子量25000-50000的水溶性苯氧基树脂;所述三聚氰胺树脂按每百份主溶液2-15份的量加入;所述胶体二氧化硅按每百份主溶液10-20份的量加入;所述聚四氟乙烯基蜡按每百份主溶液2-10份的量加入;和所述金属粉末按每百份主溶液5-70份的量加入。
3.权利要求2的树脂溶液,其中所述聚四氟乙烯基蜡的粒度为0.1-3μm。
4.权利要求3的树脂溶液,其中所述金属粉末的粒度为0.5-5μm。
5.一种制造用于汽车燃料箱的树脂复膜的薄钢板的方法,该方法包括如下步骤涂敷树脂溶液,该树脂溶液包含数均分子量为25000-50000的苯氧基树脂的主树脂溶液;每百份主溶液2-15份的三聚氰胺树脂;每百份主溶液10-20份的胶体二氧化硅;每百份主溶液2-10份的聚四氟乙烯基蜡和每百份主溶液5-70份的至少一种选自Al、Zn、Mn、Co、Ni、Sn和SnO的片状金属粉末;和在140-250℃下烘干该树脂复膜的薄钢板。
6.权利要求5的制造树脂复膜的薄钢板的方法,其中按干燥涂层厚度计所述树脂涂层的厚度为1-10μm。
7.权利要求6的制造树脂复膜的薄钢板的方法,其中所述树脂溶液的聚四氟乙烯基蜡的粒度为0.1-3μm。
8.权利要求7的制造树脂复膜的薄钢板的方法,其中所述树脂溶液的金属粉末的粒度为0.5-5μm。
9.一种用于汽车燃料箱的树脂复膜的薄钢板,该薄钢板包含数均分子量为25000-50000的苯氧基树脂的主树脂溶液;每百份主溶液2-15份的三聚氰胺树脂;每百份主溶液10-20份的胶体二氧化硅;每百份主溶液2-10份的聚四氟乙烯基蜡;和每百份主溶液5-70份的至少一种选自Al、Zn、Mn、Co、Ni、Sn和SnO的粒度为0.5-5μm的金属粉末;按干燥涂层的厚度计,该树脂溶液的涂敷厚度为1-10μm。
全文摘要
本发明涉及一种用于汽车燃料箱的树脂复膜的薄钢板和用于该薄钢板的树脂溶液。本发明的树脂溶液包含(a)数均分子量为25000-50000的水溶性苯氧基树脂主溶液;(b)每百份主溶液2-15份的三聚氰胺树脂;(c)每百份主溶液10-20份的胶体二氧化硅;(d)每百份主溶液2-10份的聚四氟乙烯树脂;以及(e)每百份主溶液5-70份金属粉末,所述金属粉末为至少一种选自Al、Zn、Mn、Co、Ni、Sn和SnO的材料。将该树脂溶液涂敷在镀了锌或锌合金且镀层之上为铬酸盐层的冷轧薄钢板上,然后在160-250℃的局部温度下烘烤,以制备用于汽车燃料箱的树脂复膜的钢板。
文档编号C09D171/10GK1345384SQ00805631
公开日2002年4月17日 申请日期2000年12月26日 优先权日1999年12月28日
发明者李在隆, 张三奎, 卢相杰, 曹秀铉 申请人:浦项综合制铁株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1