液晶和使用其的液晶显示装置的制作方法

文档序号:3806584阅读:173来源:国知局
专利名称:液晶和使用其的液晶显示装置的制作方法
技术领域
本发明涉及显示装置,更具体地,涉及液晶以及使用其的液晶显示装置。

背景技术
液晶显示(LCD)装置使用液晶来显示图像。LCD装置包括彼此相面对的第一和第二基板,其间具有液晶层。进一步地,第一和第二电极分别布置在第一和第二基板上,并且液晶层布置在第一和第二电极之间。因此,当将电压施加到第一和第二电极上时,该电压产生穿过液晶层的电场。
液晶层包括液晶,并且在液晶层中的液晶通过电场沿特定方向排列。也就是说,液晶的排列方向由电场决定。在这种情况下,光穿透液晶层的透射率取决于液晶的排列。LCD装置利用液晶层的材料特性来控制液晶的排列,并显示相应于光的透射率的可视图像。
液晶层包括各种化合物材料,并且液晶层的性质可根据各化合物材料的特性而改变。此外,液晶层的性质影响LCD装置的全部工作。例如,第一和第二电极以及其间的液晶层构成电容器,并且该电容器的电容取决于液晶层的介电常数。在这种情况下,当该电容器的电容改变时,LCD装置的工作特性也会改变。


发明内容
本发明提供液晶和使用其的液晶显示装置。
本发明的另外的特征将在以下描述中阐明,并且将部分地从该描述中显现,或者可通过本发明的实践获知。
本发明公开一种液晶,其包括约60wt%至80wt%的第一化合物材料、约2wt%至15wt%的第二化合物材料、以及中性化合物材料。第一化合物材料具有第一极性的介电各向异性,以及第二化合物材料具有第二极性的介电各向异性。
本发明还公开一种液晶显示装置,其包括具有像素区域的第一基板和面向第一基板的第二基板。多个液晶布置在第一和第二基板之间。各液晶包括约60wt%至80wt%的第一化合物材料、约2wt%至15wt%的第二化合物材料、以及中性化合物材料。第一化合物材料具有第一极性的介电各向异性,以及第二化合物材料具有第二极性的介电各向异性。
应理解前述的概括描述和下面的详细描述都是示例性的和解释性的,并意在提供所要求保护的本发明的进一步的解释。



包括附图以提供对本发明的进一步理解,将附图并入本说明书,并使之构成本说明书的一部分,

了本发明的实施方式,并且与说明书一起用于解释本发明的原理。
图1是显示根据本发明的一个示例性实施方式的液晶显示装置的俯视图。
图2A和图2B是沿着图1的线I-I’的显示图1所示的液晶显示装置的工作的截面图。
图3是显示根据本发明的另一示例性实施方式的液晶显示装置的俯视图。
图4A和图4B是沿着图3的线II-II’的显示图3所示的液晶显示装置的工作的截面图。
图5是显示根据本发明的再一示例性实施方式的液晶显示装置的俯视图。
图6A和图6B是沿着图5的线III-III’的显示图5所示的液晶显示装置的工作的截面图。
图7是显示根据本发明的另一示例性实施方式的液晶显示装置的俯视图。
图8是显示用在根据本发明的又一示例性实施方式的液晶显示装置中的公共电极面板的俯视图。
图9是显示使用图7的薄膜晶体管面板和图8的公共电极面板的液晶显示装置的俯视图。
图10是沿着图9的线IV-IV’的截面图。
图11是沿着图9的线V-V’的截面图。

具体实施例方式 在下文中将参照附图对本发明进行更充分地描述,在附图中显示了本发明的实施方式。然而,本发明可以许多不同的形式体现,并且不应被解释为限于本文中所列举的具体实施方式
。更确切地,提供这些具体实施方式
,使得本公开是彻底的,并且将向本领域技术人员全面地传达本发明的范围。在附图中,为了清楚起见,扩大了层和区域的尺寸和相对大小。附图中相同的附图标记表示相同的元件。
应理解,当元件或层被称为“在”另外的元件或层“上”、或“连接到”另外的元件或层时,它可直接在所述另外的元件或层上、或直接连接到所述另外的元件或层上,或者可存在中间元件或层。相反,当元件被称为“直接在”另外的元件或层上、或“直接连接到”另外的元件或层时,则不存在中间元件或层。
图1是显示根据本发明的一个示例性实施方式的液晶显示(LCD)装置的俯视图。
参照图1,提供第一和第二基板100和200。栅极线110和数据线120布置在第一基板100上,并且像素区域PA分别限定在栅极线110和数据线120的交叉处。各栅极线110可具有与其它栅极线110相同的构造和功能,并且各数据线120可具有与其它数据线120相同的构造和功能。类似地,各像素区域PA可具有与其它像素区域PA相同的构造和功能。因此,下面描述单独的栅极线110、单独的数据线120和单独的像素区域PA。
各像素区域PA可包括存储电极112、薄膜晶体管T和像素电极130。存储电极112可布置在各像素区域PA的中心区域,并且在像素区域PA中的所有存储电极112可彼此相连接。薄膜晶体管T可包括栅电极111、半导体图案116、源电极121和漏电极122。栅电极111可从栅极线110分出,以及源电极121可从数据线120分出。漏电极122可布置为面向源电极121,并通过接触孔125h连接到像素电极130。公共电极230可布置在第二基板200上,并面向像素电极130。
图2A和图2B是沿着图1的线I-I’所取的显示图1所示的LCD装置的工作的截面图。
参照图1和图2A,栅电极111和存储电极112可在第一基板100上位于相同的水平上。源电极和漏电极121和122可布置在栅电极111上,以及像素电极130可布置在漏电极122上。栅极绝缘层115和保护层125可布置在栅电极111和像素电极130之间。栅极绝缘层115可覆盖彼此隔开的栅电极111和存储电极112上。进一步地,栅极绝缘层115可延伸以覆盖第一基板100。保护层125可布置在源电极121和漏电极122上。而且,保护层125可延伸以覆盖第一基板100。漏电极122可通过接触孔125h暴露出来,接触孔125h穿透保护层125。在保护层125上的像素电极130可通过接触孔125h连接到漏电极122。
半导体图案116可与栅电极111重叠。进一步地,半导体图案116可布置在源电极121和栅极绝缘层115之间、以及在漏电极122和栅极绝缘层115之间。半导体图案116可包括覆盖栅电极111的有源层117和一对彼此隔开的欧姆接触层118。一个欧姆接触层118可布置在源电极121和有源层117的一端之间,另一个欧姆接触层118可布置在漏电极122和有源层117的另一端之间。
光学阻挡层图案210和滤色片220可布置在第二基板200和公共电极230之间。光学阻挡层图案210可具有开口,该开口在像素区域PA中暴露出公共电极230,并防止光透射穿过像素区域PA的边缘。滤色片220可填充光学阻挡层图案210的开口,由此产生彩色图像。
包括液晶300的液晶层可布置在像素电极130和公共电极230之间。各液晶300可具有大于其宽度的长度。液晶300的排列方向可基于其长度方向进行限定。例如,应理解,当液晶300被称为“平行”于基板100和200时,液晶300的长度方向平行于基板100和200。另外,应理解,当液晶300被称为“垂直”于基板100和200时,液晶300的长度方向垂直于基板100和200。
各液晶300可具有介电各向异性。也就是说,沿着液晶300的长度方向的介电常数可不同于沿着液晶300的宽度方向的介电常数。当长度方向的介电常数大于宽度方向的介电常数时,液晶300具有正的介电各向异性。另一方面,当长度方向的介电常数小于宽度方向的介电常数时,液晶300具有负的介电各向异性。假如在公共电极230和像素电极130之间施加电压,则可产生穿越液晶300的电场。在此情况下,液晶300的排列可取决于其介电各向异性。例如,当液晶300具有正的介电各向异性时,液晶300可平行于电场排列。另一方面,当液晶300具有负的介电各向异性时,液晶300可垂直于电场排列。
当薄膜晶体管T在液晶显示装置的工作模式中被关闭时,电场未施加到液晶300上。在此情况下,假如液晶300具有正的介电各向异性,则液晶300可排列为平行于基板100和200(例如像素电极130和公共电极230)。然而,当从图1的俯视图观察时,邻近像素电极130的最下面的液晶300可排列为垂直于邻近公共电极230的最上面的液晶300,在所述最下面的液晶300和所述最上面的液晶300之间的中间液晶300可排列为具有扭曲的结构。
第一和第二偏振片(未示出)可分别布置在包括基板100和200以及液晶300的面板之下和之上,光可通过第一偏振片照射到第二基板200的底表面上。光可传播通过具有扭曲结构的液晶300,并且当光传播通过液晶300时,光的相位可延迟。相位延迟的光可通过第二偏振片输出,并可具有白颜色。
参照图1和图2B,可开启薄膜晶体管T,以及可对像素电极130和公共电极230分别施加数据电压和公共电压。数据电压可根据待显示的图像改变各帧,公共电压可具有恒定的值。数据电压和公共电压之间的差可产生穿越液晶300的电场。因此,如上所述,由于液晶300具有正的介电各向异性,液晶300可排列为平行于电场。也就是说,如图2B所示,液晶300可排列为垂直于像素电极130和公共电极230。在此情况下,假如光如参照图2A所描述的那样朝第二基板200照射,则当光传播通过垂直于像素电极130和公共电极230的液晶300时,光可保持其初始相位而没有任何延迟。因此,非相延迟的光可被第二偏振片吸收,从而显示黑色。
在上述工作中,可在各像素区域PA中提供存储电容器,以在设定的持续时间内维持施加到像素电极130上的数据电压。存储电容器可包括存储电极112、在存储电极112上的像素电极130、以及布置在存储电极112和像素电极130之间的介电层。存储电容器的介电层可包括栅极绝缘层115和保护层125。
在一些情况下,不同于存储电容器的一个或多个寄生电容器可存在于像素区域PA中。例如,栅电极111、漏电极122和它们之间的栅极绝缘层115可构成寄生电容器。寄生电容器可引起液晶显示装置的故障。当薄膜晶体管T关闭时,寄生电容器的电荷可通过向像素电极130施加的数据电压而降低。这种现象称为“反冲(kick back)”。由于反冲引起的电压变化(ΔVkb)可使用下列方程式1、2和3计算。
ΔVkb=V1-V2(方程式1) V1=(Cgs×ΔV12)÷(Cst+Clc1+Cgs)(方程式2) V2=(Cgs×ΔV12)÷(Cst+Clc2+Cgs)(方程式3) 其中,“Cgs”表示寄生电容器的电容,“ΔV12”表示在薄膜晶体管T的开启状态期间施加到像素电极130上的电压与在薄膜晶体管T的关闭状态期间在像素电极130处感应的电压之间的差。进一步地,“Cst”表示存储电容器的电容,“Clc1”和“Clc2”分别表示在薄膜晶体管T的关闭状态期间液晶电容器的电容以及薄膜晶体管T的开启状态期间液晶电容器的电容。液晶电容器可包括像素电极130、公共电极230和它们之间的液晶层。液晶电容器的电容可根据液晶层中液晶300的排列变化。
如可从方程式1、2和3中看到的,应减小电压V1和V2之间的电压差以降低由于反冲引起的电压变化ΔVkb,以及应减小液晶电容Clc1和Clc2之间的电容差以降低电压V1和V2之间的电压差。在本示例性实施方式中,各液晶300可包括以使由于反冲引起的电压变化(ΔVkb)最小化的重量比存在的多种化合物材料。结果,可产生高质量的图像。
在示例性实施方式中,液晶300可具有正的介电各向异性。进一步,各液晶300可包括正化合物材料、负化合物材料和中性化合物材料。正化合物材料可在介电性上具有正的极性,负化合物材料可在介电性上具有负的极性。中性化合物可在介电性上为中性。正化合物材料影响液晶材料300的长度方向的介电常数。也就是说,假如正化合物材料的量增加,液晶300的长度方向的介电常数可增大,并且液晶300可具有正的介电各向异性。因此,具有正的介电各向异性的液晶300可排列为平行于施加到液晶300上的电场。类似地,负化合物材料影响液晶300的宽度方向的介电常数。也就是说,假如负化合物材料的量增加,液晶300的宽度方向的介电常数可增大,并且液晶300可具有负的介电各向异性。因此,具有负的介电各向异性的液晶300可排列为垂直于施加到液晶300上的电场。
在本示例性实施方式中,各液晶300可包括大量的正化合物材料和少量的负化合物材料。也就是,正化合物材料的量可大于负化合物材料的量。因此,液晶300可表现出正介电各向异性。然而,液晶300还可具有与负化合物材料相关的特性。
如上所述,液晶电容Clc1和Clc2分别是指在薄膜晶体管T的关闭状态期间和开启状态期间液晶的电容。也就是说,当如图2A所示液晶300排列为平行于电极130和230时,液晶电容Clc1和Clc2之一可相应于液晶电容器的电容,而当如图2B所示液晶300排列为垂直于电极130和230时,所述另一电容可相应于液晶电容器的电容。假如液晶300不含负化合物材料,液晶电容Clc1和Clc2之间的电容差可增加,并且由于反冲引起的电压变化ΔVkb也可增加。然而,根据本示例性实施方式,各液晶300可包括负化合物材料,以降低由于反冲引起的电压变化ΔVkb。因此,液晶显示装置的图像质量可提高。
各液晶300可包括适当重量比的负化合物材料,例如2至7wt%。假如负化合物材料的重量比太低,则负化合物材料的有益影响可表现不出来。相反,假如负化合物材料的重量比太高,则液晶300可表现出负的各向异性,而不是正的介电各向异性。
中性化合物材料影响液晶300的旋转粘度。一般而言,假如正化合物材料和/或负化合物材料的量增加,液晶300的旋转粘度也可增加。因此,中性化合物材料可降低液晶300的旋转粘度,从而提高液晶300响应电场的排列速度。结果,中性化合物材料可改善液晶显示装置的工作速度。
正化合物材料可包括至少一种由以下化学式1、2、3、4、5、6、7和8之一表示的化合物。进一步,负化合物材料可包括至少一种由下列化学式9、10、11、12和13之一表示的化合物。而且,中性化合物材料可包括至少一种由下列化学式14、15、16、17和18之一表示的化合物。

化学式1
化学式2
化学式3
化学式4
化学式5
化学式6
化学式7
化学式8
其中,“Y”表示烷氧基 化学式9
其中,“Y”表示烷氧基 化学式10
其中,“Y”表示烷基 化学式11
其中,“Y”表示烷氧基 化学式12
其中,“Y”表示烷基 化学式13
其中,“Y”表示烷基 化学式14
其中,“Y”表示烷氧基 化学式15
其中,“Y”表示烷基 化学式16
其中,“Y”表示烷氧基 化学式17
其中,“Y”表示链烯基 化学式18 在化学式1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17和18中,“X”表示具有2个、3个、4个或5个碳分子的烃(碳原子的烃基)。
中性化合物材料不包括具有高的电负性而表现出极性的元素,例如氟原子。相反,正化合物材料和负化合物材料可包括一个或多个氟原子,并且正化合物材料的氟原子的键合位置可不同于负化合物材料的键合位置。例如,正化合物材料的氟原子可键合到正化合物材料的右侧。然而,位于正化合物材料右端的正化合物材料的氟原子可被烷氧基或烷基代替而提供负化合物材料。
图3是显示根据本发明另一示例性实施方式的液晶显示装置的俯视图。使用相同的附图标记表示在前述示例性实施方式中所描述的相同元件,而将省略或简略提及对在先前的示例性实施方式中所描述的元件的描述。
参照图3,将第一和第二基板100和200提供成彼此面对。栅极线110和数据线120布置在第一基板100上,以及像素区域PA分别限定在栅极线110和数据线120的交叉处。各像素区域PA可包括薄膜晶体管T和像素电极130。薄膜晶体管T可包括栅电极111、半导体图案116、源电极121和漏电极122。公共电极230布置在第二基板200上以面向像素电极130。像素电极130和公共电极230可分别包括第一和第二畴分割器(domain divider)140和240。
图4A和图4B是沿着图3的线II-II’所取的显示图3所示的液晶显示装置的工作的截面图。
参照图3和图4A,包括多个液晶300的液晶层可布置在像素电极130和公共电极230之间。液晶300可具有负的介电各向异性,并且当薄膜晶体管T关闭时,液晶300可排列为垂直于像素电极130和公共电极230。
光可从在第一基板100下的区域向第一基板100的底表面照射。光可通过附着到第一基板100上的第一偏振片(未示出)照射到第一基板100的底表面。当薄膜晶体管T关闭时,光可穿过垂直排列的液晶300,而穿过液晶300的光可被吸收到附着到第二基板200上的第二偏振片(未示出)中。在此情况下,液晶显示装置可表现出黑色。
参照图3和图4B,可在公共电极230和像素电极130之间提供电场。电场的大小和/或方向可根据第一和第二畴分割器140和240的形状和/或位置而变化。如图4A和图4B中所示,第一畴分割器140包括穿过像素电极130的一些部分而形成的开口,第二畴分割器240包括附着在公共电极230的底表面上的凸起(protrusion)。在另一示例性实施方式中,第一畴分割器140可包括附着到像素电极130的顶表面上的凸起,以及第二畴分割器240可包括穿过公共电极230的一些部分而形成的开口。在再一示例性实施方式中,第一和第二畴分割器140和240均可包括开口或凸起。
所有凸起和开口可以是绝缘区域。因此,当在公共电极230和像素电极130之间提供电场时,邻近畴分割器140和240的电场可变弱。在此情况下,畴分割器140和240可作为图3的俯视图上的边界区域,并且在公共电极230和像素电极130之间的全部电场可被畴分割器140和240划分为多个畴。因此,位于畴分割器140和240中特定畴分割器的一侧的液晶300的排列方向可不同于位于该特定畴分割器的另一侧的液晶300的排列方向。例如,如图4B中所示,位于第一畴分割器140右侧的液晶300可排列为向右倾斜,位于第一畴分割器140左侧的液晶300可排列为向左倾斜。因此,如上所述,各像素区域PA可由畴分割器140和240分割为数个畴。在此情况下,在各畴中的液晶300可排列为相同的方向。
如参照图4A所描述的,当电场施加到液晶300上时,光可通过第一偏振片照向第一基板100。在此情况下,光可穿过倾斜的液晶300,并且当光传播穿过液晶300时,光的相位可被延迟。相位延迟的光可通过第二偏振片输出,并且可具有白颜色。根据前述示例性实施方式,液晶300可在畴中沿着两个或多个不同方向排列。因此光通过液晶300在若干不同方向传播,从而增大了液晶显示装置的视角。
在上述示例性实施方式中,液晶300可具有负的介电各向异性。进一步地,如上所述,各液晶300可包括负化合物材料、正化合物材料和中性化合物材料。负化合物材料可包括至少一种由化学式9、10、11、12和13之一表示的化合物,以及正化合物材料可包括至少一种由化学式1、2、3、4、5、6、7和8之一表示的化合物。液晶300可包括重量比为约2wt%至7wt%的正化合物材料。正化合物材料可减小液晶电容Clc1和Clc2之间的电容差,从而防止反冲。结果,液晶显示装置可产生高质量的图像。中性化合物材料可包括至少一种由化学式14、15、16、17和18之一表示的化合物。中性化合物材料可降低液晶300的旋转粘度,从而改善液晶显示装置的工作速度。
在另一示例性实施方式中,存储电极112可从图1、图2A和图2B的液晶显示装置省略。在示于图1、图2A和图2B的示例性实施方式中,存储电极112可包括与栅电极111相同的材料。例如,示于图1、图2A和图2B的示例性实施方式的存储电极112可包括含有金属层的不透明导电材料层。因此,假如存储电极112布置在像素区域PA中,液晶显示装置的开口率可降低。然而,根据本示例性实施方式的液晶显示装置可不使用可防止LCD装置的开口率降低的任何存储电极。在此情况下,存储电容器可省略。存储电容器可用于将施加到像素电极130上的数据电压维持设定的时间,但它是可省略的部件。
液晶显示装置可以高帧频的图像屏幕工作,以防止产生由于缺少存储电容器而引起的缺陷。例如,假如包括存储电容器的LCD装置的帧频为60赫兹(Hz),则在没有存储电容器的情况下,根据本示例性实施方式的LCD装置的帧频可为120Hz。当LCD装置在60Hz的帧频下工作时,单帧图像的数据电压保持时间可为约0.0167(1/60)秒。相反,当LCD装置在120Hz的帧频下工作时,单帧图像的数据电压保持时间可为约0.0083(1/120)秒。也就是说,当在120Hz的帧频下工作时,LCD装置即使没有存储电容器也可正常工作。这是因为在120Hz的帧频下的数据电压保持时间仅为在60Hz的帧频下的数据电压保持时间的一半。
图5是显示根据本发明的又一示例性实施方式的LCD装置的顶部俯视图。在该示例性实施方式中,使用相同的附图标记表示在前述实施方式中所描述的相同部件,并且将省略或简略提及在先前的示例性实施方式中对所述部件的描述。
参照图5,将第一和第二基板100和200提供成彼此面对。栅极线110和数据线120布置在第一基板100上,像素区域PA分别限定在栅极线110和数据线120的交叉处。各像素区域PA可包括第一薄膜晶体管Ta、第二薄膜晶体管Tb和像素电极130。各数据线120可包括第一和第二数据线120a和120b,并且像素区域PA可布置在第一和第二数据线120a和120b之间。像素电极130可包括第一像素电极130a和第二像素电极130b。
第一薄膜晶体管Ta可包括栅电极111、第一源电极121a和第一漏电极122a。第一漏电极122a可通过第一接触孔126h连接到第一像素电极130a上。第二薄膜晶体管Tb可包括栅电极111、第二源电极121b和第二漏电极122b。第二漏电极122b可通过第二接触孔127h连接到第二像素电极130b上。
第一像素电极130a可包括第一子像素电极131、第二子像素电极132和第三子像素电极133。第一和第二子像素电极131和132可彼此面对,并且第三子像素电极133将第一子像素电极131与第二子像素电极132连接起来。第二像素电极130b可布置在第一和第二子像素电极131和132之间。
第三子像素电极133可与栅极线110隔开并平行于栅极线110。第一子像素电极131可与第一数据线120a重叠,第二子像素电极132可与第二数据线120b重叠。在此情况下,由于像素电极130与数据线120重叠,因此像素电极130可占据几乎全部的像素区域PA。这可增加LCD装置的开口率。在另一示例性实施方式中,栅极线110还可重叠在第一像素电极130a的边缘。
第一像素电极130a可具有大于第二像素电极130b的平面区域的平面区域。例如,第一像素电极130a的平面区域可为第二像素电极130b的平面区域的两倍。第一数据电压和第二数据电压可分别施加到第一和第二像素电极130a和130b。第一和第二数据电压可彼此不同。
当数据信号传输通过数据线120时,与第二数据电压不同的电压可施加到第二像素电极130b上。这可能是由于数据线120和具有比第一像素电极130a更小面积的第二像素电极130b之间的耦合电容引起的。因此,为了防止所述不同于第二数据电压的电压施加到第二像素电极130b上,第一像素电极130a可布置为重叠在数据线120上。在此情况下,第一像素电极130a可起到屏蔽电极的作用。
像素电极130和公共电极230可分别包括第一畴分割器140和第二畴分割器240。第一畴分割器140可与通过像素电极130的一部分形成的开口相对应。开口可将像素电极130分割为彼此隔开的第一和第二像素电极130a和130b。第二畴分割器240可包括一个或多个附着在公共电极230的底表面上的凸起或穿透公共电极230的开口。LCD装置的视角可由于第一和第二畴分割器140和240的存在而增大。
图6A和6B是沿图5的线III-III’的显示示于图5的LCD装置的工作的截面图。
参照图5和图6A,栅极绝缘层115和保护层125可依次堆叠在第一基板100的面向第二基板200的表面上。第一像素电极130a和第二像素电极130b可布置在保护层125上,并且第一和第二像素电极130a和130b可以彼此隔开。包括液晶300的液晶层可布置在像素电极130和公共电极230之间,并且液晶300可具有负的介电各向异性。因此,当第一和第二薄膜晶体管Ta和Tb关闭时,液晶300可排列为垂直于像素电极130和公共电极230。结果,LCD装置的相应像素区域PA可产生黑色。
参照图5和图6B,当第一和第二薄膜晶体管Ta和Tb开启时,第一和第二数据电压可分别施加到第一和第二像素电极130a和130b上。进一步地,当第一和第二薄膜晶体管Ta和Tb开启时,公共电压可施加到公共电极230上。在此情况下,可产生穿越液晶层的电场,液晶300可排列为相对于像素电极130和公共电极230倾斜。在第一像素电极130a和公共电极230之间的电场可不同于第二像素电极130b和公共电极230之间的电场。这可能是由于在第一和第二像素电极130a和130b之间的第一畴分割器140的存在引起的。因此,在第一像素电极130a上的倾斜的液晶300的排列方向可不同于在第二像素电极130b上的倾斜的液晶300的排列方向。在此情况下,传输通过在第一像素电极130a上的倾斜的液晶300的光可补偿传输通过在第二像素电极130b上的倾斜的液晶300的光,从而改善LCD装置的工作特性。
液晶300可具有负的介电各向异性,并且液晶300可包括负化合物材料、中性化合物材料和正化合物材料。负化合物材料可包括至少一种由化学式9、10、11、12和13之一表示的化合物,并且正化合物材料可包括至少一种由化学式1、2、3、4、5、6、7和8之一表示的化合物。进一步地,中性化合物材料可包括至少一种由化学式14、15、16、17和18之一表示的化合物。
在本示例性实施方式中,存储电极(图1的112)可省略,并且LCD装置可构造为在120Hz的帧频下工作。
薄膜晶体管Ta和Tb在120Hz的帧频下开启的持续时间可为所述薄膜晶体管在60Hz的帧频下开启的持续时间的一半。因此,与数据电压在60Hz的帧频下的充电速率相比,数据电压在120Hz的帧频下的充电速率可降低。这是因为LCD装置在120Hz的帧频下工作的数据电压保持时间是LCD装置在60Hz的帧频下工作的数据电压保持时间的一半。充电速率的降低可降低LCD装置的透射率。然而,根据本示例性实施方式,存储电极可省略。因此,即使LCD装置在120Hz的高帧频下工作,LCD装置的透射率也不会因为没有存储电极而降低。
在LCD装置不使用存储电极的情况下,存储电容(指方程式2和3中的“Cst”)可降低,以增加由于反冲引起的电压变化ΔVkb。该缺陷可通过增加液晶电容(指方程式2和3中的“Clc1”和“Clc2”)解决。液晶电容可通过适当调节液晶300的组成而增加。
如果液晶电容Clc1和Clc2增加,栅极线110和数据线120的负载电容也可增加。这可导致传输通过栅极线110和数据线120的电信号的RC延迟时间的增加。然而,信号延迟时间可通过使用示于图5中的LCD装置的设计方案而最小化。在下文中,将进一步描述包括一些具有其最佳组成(例如重量比)的组分的液晶300。
在下表1中描述了三种不同的液晶样品S1、S2和S3的组分和相应重量比。
表1
参照表1,第一样品S1包括中性化合物材料和负化合物材料,所述中性化合物材料包括由化学式14、15和16表示的化合物,所述负化合物材料包括由化学式9、10和11表示的化合物。第二样品S2包括中性化合物材料和负化合物材料,所述中性化合物材料包括由化学式14、16和17表示的化合物,所述负化合物材料包括由化学式9、10、11和12表示的化合物。第三样品S3包括中性化合物材料,所述中性化合物材料包括由化学式14、15、16、17和18表示的化合物,并且由化学式18表示的化合物作为所述中性化合物材料的主要组分。同样,第三样品S3进一步包括负化合物材料,所述负化合物材料包括由化学式9、10、11、12和13表示的化合物,并且由化学式9、10和12表示的化合物作为所述负化合物材料的主要组分。另外,第三样品S3进一步包括正化合物材料,所述正化合物材料包括至少一种由化学式1、2、3、4、5、6、7和8之一表示的化合物。
如上所述,第三样品S3包括正化合物材料,而第一和第二样品S1和S2均不包括任何正化合物材料。第一样品S1在负化合物材料的种类和组成(例如重量比)方面不同于第二样品S2。具体地,在第一样品S1中的负化合物材料的含量大于在第二样品S2中的负化合物材料的含量。
第一、第二和第三样品S1、S2和S3的性质描述于下表2中。
表2
参照表2,液晶的性质包括相变温度Tni、衍射率n1和n2、对具有589nm波长的光的折射各向异性Δn、介电常数ε1和ε2、介电各向异性Δε、平均介电常数Ave.ε和元件间隙。在所述液晶性质中,“n1”和“ε1”分别是指沿液晶的长度方向的折射率和介电常数。类似地,“n2”和“ε2”分别是指沿液晶的宽度方向的折射率和介电常数。平均介电常数“Ave.ε”可使用方程式(2×ε2+ε1)/3计算。另外,元件间隙是指对应于图6A和图6B的第一和第二基板100和200的两个基板之间的距离。
如可从表2看出的,与第二样品S2相比,第一和第三样品S1和S3表现出相对较高的介电常数ε1和ε2。同时,与第一样品S1相比,第三样品S3表现出相对较低的介电各向异性Δε。
使用前述液晶样品S1、S2和S3的LCD装置的各种电容描述于下表3中。在表3中,“Cg”是指在栅极线110和液晶层之间的栅电容。进一步地,“Cd1”和“Cd2”分别是指第一数据线120a和液晶层之间的第一数据电容、以及第二数据线120b和液晶层之间的第二数据电容。使用采用样品S1、S2和S3的LCD装置测量电容Cg、Cd1和Cd2,并将LCD装置制造成具有示于图5中的结构。在此情况下,LCD装置在120Hz的帧频下进行工作。
表3 在表3中,括号中的数字是指当样品S1的电容被用作参考值时的归一化电容。
参照表3,第一样品S1的电容Cg、Cd1和Cd2分别与第二样品S2的相应电容Cg、Cd1和Cd2几乎相同而没有显著差别。进一步地,第一样品S1的电容Cg、Cd1和Cd2分别与第三样品S3的相应电容Cg、Cd1和Cd2也几乎相同而没有显著差别。如果栅电容Cg以及第一和第二数据电容Cd1和Cd2增加,则栅极线和数据线的负载电容增加,从而延迟施加到栅极线和数据线上的电信号的传输速度。然而,第一、第二和第三样品S1、S2和S3的归一化电容之间的最大差值仅为约0.005。因此,可理解,即使从LCD装置省略了存储电极,传输通过栅极线和数据线的电信号也不会显著延迟。
使用液晶样品S1、S2和S3的各LCD装置的各种工作特性描述于下表4中。将显示描述于表4中的测量结果的各LCD装置制造成具有示于图5中的相同结构,并且表4的工作特性是用在120Hz的帧频下工作的各LCD装置测量的。在表4中,“Cst”是指存储电容,“Clc”是指液晶电容。进一步地,“Cgs”是指薄膜晶体管的栅电极和源电极之间的寄生电容。在电压差ΔV12(参照方程式2和3)为30伏时测量反冲电压“Vkb”。反冲电压变化ΔVkb相应于在黑色状态下的反冲电压Vkb与在白色状态下的反冲电压Vkb之间的差。在示于图5中的示例性实施方式中,省略存储电极。因此,示于表4中的存储电容为0。
表4
参照表4,第一、第二和第三样品S1、S2和S3在白色状态下的液晶电容Clc彼此相等,而第三样品S3在黑色状态下的液晶电容Clc大于第一和第二样品S1和S2在黑色状态下的液晶电容Clc。更详细地,假定在白色状态下的液晶电容Clc以及在黑色状态下的液晶电容Clc分别相应于第一液晶电容和第二液晶电容,并且第一和第二液晶电容之间的差相应于液晶电容差。在此情况下,第三样品S3的液晶电容差小于第一和第二样品S1和S2的任何其它的液晶电容差。因此,在三个不同样品S1、S2和S3中,仅第三样品S3具有约0.55伏特的最小电压变化ΔVkb,如图4中所示。结果,当在LCD装置中使用第三样品S3的液晶时,可显著抑制反冲现象以改善LCD装置的图像质量。具体地,如可从表1、2、3和4看出的那样,第三样品S3的液晶可适用于LCD装置,所述LCD装置制造成具有如图5所示的结构并在120Hz的帧频下工作。
图7是显示根据本发明的另一示例性实施方式的液晶显示装置的俯视图,以及图8是显示用于根据本发明的再一示例性实施方式的液晶显示装置的公共电极面板的俯视图。进一步地,图9是显示使用图7的薄膜晶体管面板和图8的公共电极面板的液晶显示装置的俯视图。此外,图10是沿图9的线IV-IV’所取的截面图,以及图11是沿图9的线V-V’所取的截面图。
参照图7、图8、图9、图10和图11,根据本发明的示例性实施方式的LCD装置可包括薄膜晶体管面板600和公共电极面板700、以及布置于它们之间的液晶层503。
液晶层503可包括多个液晶810,并且各液晶810可包括具有不同物理性质的各种化合物。液晶810可具有作为中心轴的核心基团、以及连接到核心基团上的端基和侧基的至少之一。
核心基团可包括苯基、环己基和杂环化合物的至少一种环状化合物。各端基和侧基可包括非极性基团和极性基团的至少一种。非极性基团可相应于烷基、烷氧基或链烯基,极性基团可相应于氟原子。液晶810的物理性质可由端基和/或侧基决定。
液晶810可包括不具有介电各向异性的中性化合物材料和具有介电各向异性的极性化合物材料。
中性化合物材料不具有介电各向异性,但具有折射各向异性。中性化合物材料可用于适当地保持液晶810的粘度。中性化合物材料可包括至少一种由下列化学式I、II和III之一表示的化合物。

化学式I
化学式II
化学式III 其中,“R1”、“R2”、“R3”、“R4”、“R5”和“R6”可各自包括具有一个、二个、三个、四个、五个、六个、七个、八个、九个或十个碳分子(碳原子)的烷基和烷氧基之一。
液晶810可包括约10wt%至约25wt%的中性化合物材料。液晶810的剩余部分可包括将接着描述的极性化合物材料。当中性化合物材料的含量为约10wt%至约25wt%时,液晶810可具有适当的粘度。
极性化合物材料可具有介电各向异性Δε和折射各向异性Δn,并且极性化合物材料可包括具有至少一个氟原子的侧基。
介电各向异性Δε可相应于沿着平行于液晶810长度方向的方向的水平介电常数ε||(表2的ε1)与沿着垂直于液晶810长度方向的方向的垂直介电常数ε⊥(表2的ε2)之间的差。当水平介电常数ε||大于垂直介电常数ε⊥时,液晶810可具有正的介电各向异性。或者,当水平介电常数ε||小于垂直介电常数ε⊥时,液晶810可具有负的介电各向异性。
当电场施加到具有正的介电各向异性的液晶810上时,液晶810可排列为平行于电场。另一方面,当电场施加到具有负的介电各向异性的液晶810上时,液晶810可排列为垂直于电场。因此,具有正的介电各向异性的液晶810可用于水平排列型LCD装置中,具有负的介电各向异性的液晶810可用于垂直排列型LCD装置中。
根据本示例性实施方式的液晶810可应用于垂直排列型LCD装置,并且可同时包括具有正的介电各向异性的化合物材料(例如正化合物材料)和具有负的介电各向异性的化合物材料(例如负化合物材料)。
正化合物材料可包括至少一种由下列化学式IV、(V)、VI、VII和VIII之一表示的化合物。

化学式IV
化学式V
化学式VI
化学式VII
化学式VIII 其中,“R7”、“R8”、“R9”、“R10”和“R11”可各自包括具有一个、二个、三个、四个、五个、六个、七个、八个、九个或十个碳分子(碳原子)的烷基和烷氧基之一。
液晶810可包括含量为约2wt%至约15wt%的正化合物材料。
负化合物材料可包括至少一种由下列化学式IX、X、XI和XII之一表示的化合物。

化学式IX
化学式X
化学式XI
化学式XII 其中,“R12”、“R13”、“R14”、“R15”、“R16”、“R17”、“R18”和“R19”可包括具有一个、二个、三个、四个、五个、六个、七个、八个、九个或十个碳分子(碳原子)的烷基和烷氧基之一。
液晶810可包括约60wt%至约80wt%的负化合物材料。
由于液晶810可应用于垂直排列型LCD装置中,因此前述液晶810的介电各向异性Δε可具有负值。
如上所述,液晶810可包括约60wt%至约80wt%的负化合物材料。因此,由于负化合物材料含量超过约60wt%,因此液晶810的垂直介电常数ε⊥可增大。在示例性实施方式中,液晶810可具有约6.7或更高的垂直介电常数ε⊥。相反,当负化合物材料的含量超过80wt%时,液晶810的可靠性可变差,并且液晶810的粘度可增加。因此,当负化合物材料的含量增加时,中性化合物材料的含量应相对降低。
尽管液晶810用于垂直排列型LCD装置中,液晶810可包括约2wt%至约15wt%的低含量的正化合物材料。假如正化合物材料的含量超过2wt%,则液晶810的水平介电常数ε||可同样增大。进一步地,假如正化合物材料的含量超过15wt%,液晶810的运动可变得更迟钝。在此情况下,可能需要增加LCD装置的工作电压。
液晶810可具有水平介电常数ε||和垂直介电常数ε⊥两者。因此,包括大量液晶810的液晶层503的总介电常数可增大,并且液晶电容(例如方程式2和3的Clc1和Clc2)也可增大。这导致数据电压保持时间的增加。因此,可能不需要形成辅助电容器以增加像素区域PA中的液晶电容。结果,LCD装置的开口率可增加,而集成密度没有变差。另外,如果液晶电容增加,反冲电压可降低,这可防止显示缺陷如闪烁。
假如液晶810包括正化合物材料,则液晶810的介电各向异性Δε可降低,以具有在约-2.6至-3.4范围内的负值。换言之,介电各向异性Δε与垂直介电常数ε⊥的比(Δε/ε⊥)可显著降低,以具有在约0.31至0.46范围内的值。液晶810可具有约70℃至95℃的相转变温度Tni以及约0.103或更小的折射各向异性Δn。
现在将参照与使用上述液晶810的LCD装置有关的图7、图8、图9、图10和图11进一步描述薄膜晶体管面板600。
参照图7、图8、图9、图10和图11,多条栅极线621和多条存储线631可布置在绝缘体基板610上,绝缘体基板610可包括透明玻璃或透明塑料材料。栅极线621可如图7和图9所示平行地(例如平行于x-轴)布置在行方向上。各栅极线621可包括位于栅极线621的一些部分中的多个栅电极624以及位于栅极线621末端的栅极焊盘(pad)629。栅电极624可具有大于栅极线621的宽度的宽度。类似地,栅极焊盘629也可具有大于栅极线621的宽度的宽度。栅极焊盘629可作为将栅极线621与另一导电线或外电路连接起来的接触焊盘。
各存储线631可包括布置为平行于与其相邻的栅极线621的主存储线、从主存储线分离的多个存储电极组、以及连接相邻的存储电极组的多条接线633e。各存储电极组可包括多个存储电极,例如直接或间接连接到主存储线上的第一、第二、第三和第四存储电极633a、633b、633c和633d。
如图7和图9所示,第一存储电极633a可从主存储线开始在列方向上平行地(例如平行于y-轴)延伸。第二存储电极633b可布置为平行于第一存储电极633a。各第一存储电极633a可包括直接连接到主存储线的固定部分和连续地连接到该固定部分的自由部分。第三和第四存储电极633c和633d可布置在第一和第二存储电极633a和633b之间。第三存储电极633c可将第一存储电极633a的中心部分(例如固定部分和自由部分之间的部分)连接到第二存储电极633b的一端,第四存储电极633d可将第一存储电极633a的中心部分连接到第二存储电极633b的另一端。存储电极组可分别布置在多个像素区域中。在特定像素区域中的第二存储电极633b可通过接线633e之一连接到在沿着行方向邻近所述特定像素区域的另一像素区域中的第一存储电极633a。各存储线631(包括存储电极633a、633b、633c和633d)的构造和位置可以许多不同的形式实施,并且不应解释为限于本文中所列举的示例性实施方式。假如液晶层503不用存储电极633a、633b、633c和633d而产生了足以防止反冲现象的液晶电容,则可省略包括存储电极633a、633b、633c和633d的存储线631。
栅极线621和存储线631可包括具有低电阻的金属层。例如,栅极线621和存储线631可包括含有铝(Al)的金属层、含有银(Ag)的金属层、含有铜(Cu)的金属层、含有钼(Mo)的金属层、铬层、钽层或钛层。在另一示例性实施方式中,栅极线621和存储线631可包括多层导电层,该导电层包括至少两层彼此具有不同物理性质的导电层。
栅极线621和存储线631(包括存储电极633a、633b、633c和633d)可包括相对于基板610的主表面具有约30度至80度的倾角的正倾斜侧壁。当线的侧壁被称为正倾斜时,应理解该线的顶部宽度小于其底部宽度。
栅极绝缘层640可布置为覆盖栅极线621、存储线631和基板610。栅极绝缘层640可包括例如氮化硅层或氧化硅层的绝缘层。多个线状半导体图案651可布置在栅极绝缘层640上,并且线状半导体图案651可包括氢化非晶硅(a-Si:H)层或多晶硅层。各线状半导体图案651可布置为横跨栅极线621,并且可具有与栅电极624重叠的延伸部分(extension)654。
多个线状欧姆接触部件(未示出)可分别布置为与半导体图案651交叉,并且多个岛状欧姆接触部件665可分别布置在半导体图案651上。各线状欧姆接触部件可包括与半导体延伸部分654的一部分重叠的凸起663。线状欧姆接触部件的凸起663和岛状欧姆接触部件665可分别布置在延伸部分654的两端。凸起663和岛状欧姆接触部件665可分别担当源极侧欧姆接触部件和漏极侧欧姆接触部件。欧姆接触部件663和665可包括用n型杂质例如磷离子重度掺杂的无定形硅层、或金属硅化物层。
半导体图案651以及欧姆接触部件663和665也可包括相对于基板610的主表面具有约30度至约80度的倾角的正倾斜侧壁。多条数据线671、多个漏电极675和多个孤立的导电图案678可分别布置在欧姆接触部件663、欧姆接触部件665和栅极绝缘层640之上。
数据线671可用作数据信号的传输线并可延伸跨越栅极线621、存储线631的主存储线和接线633e。各数据线671可包括分别与沿着列方向排列的欧姆接触部件663重叠的多个源电极673。另外,各数据线671可进一步包括连接到其一端的数据线焊盘679。数据线焊盘679可担当将数据线671与另一导电线或外电路连接起来的接触焊盘。
漏电极675可与源电极673隔开,漏电极675和源电极673可彼此面对地布置在半导体图案651的单个半导体延伸部分654上。如图7、图8和图9所示,各漏电极675可包括从其一端延伸的漏极焊盘,漏电极675的另一端可被源电极673围绕。单个半导体延伸部分654、与单个半导体延伸部分654重叠的栅电极624、以及与单个半导体延伸部分654重叠的单个源电极673和漏电极675可构成薄膜晶体管。在源电极673和漏电极675之间的半导体延伸部分654可担当薄膜晶体管的沟道区域。
孤立的导电图案678可分别布置为邻近第一存储电极633a的末端。数据线671、漏电极675和孤立的金属图案678可包括具有低电阻的导电层,例如金属硅化物层。
数据线671(包括源电极673)、漏电极675和孤立的导电图案678也可包括相对于基板610的主表面具有约30度至80度的倾角的正倾斜侧壁。包括源极侧欧姆接触部件663的线状欧姆接触部件可布置在线状半导体图案651和堆叠在线状半导体图案651上的数据线671之间,从而降低其间的接触电阻。类似地,岛状欧姆接触部件665可布置在线状半导体图案651和堆叠在线状半导体图案651上的漏电极675之间,从而降低其间的接触电阻。
数据线671、漏电极675、孤立的导电图案678和半导体图案651可用钝化层680覆盖。多个像素电极691、多条跨线(overpass)583和多个接触辅助物(contact assistant)581和582可布置在钝化层680上。像素电极691、跨线583以及接触辅助物581和582可包括透明导电层或反射金属层。透明导电层可包括氧化铟锡(ITO)层或氧化铟锌(IZO)层,反射金属层可包括铝层、银层、铬层、或者铝、银或铬的合金层。
各单独的像素电极691可通过穿透钝化层680的接触孔685之一直接连接到相应的漏电极675上。因此,当数据电压施加到选自数据线671的任一数据线671上,并且连接到所选数据线671的薄膜晶体管之一选择性地开启时,所述数据电压可施加到像素电极691上,像素电极691通过所选的薄膜晶体管的漏电极675连接到所选的薄膜晶体管上。在此情况下,假如公共电压施加到布置在面向绝缘基板610的公共电极面板700上的公共电极770,则可在公共电极770和其上施加有数据电压的像素电极691之间产生电场。公共电极770和像素电极691之间的电场可影响液晶810在公共电极770和像素电极691之间的排列,并且穿透液晶810的光的偏振可取决于液晶810的排列方向。
像素电极691和公共电极770可构成液晶电容器。因此,即使在薄膜晶体管关闭之后,施加到像素电极691上的数据电压可保持片刻。此外,像素电极691可与包括存储电极633a、633、633c和633d的存储线631重叠。因此,像素电极691和存储线631可构成存储电容器。存储电容器和液晶电容器可并联连接。因此,存储电容器可增加液晶电容器的数据电压保持时间。换言之,存储电容器可改善像素的数据保持特性。
当从俯视图观察时,各像素电极691可具有包括四个主侧面和四个倒角(chamfered corner)的矩形形状的构造。像素电极691的第一和第二主侧面可彼此面对并且平行于数据线671,像素电极691的第三和第四主侧面可彼此面对并且平行于栅极线621。像素电极691的各倒角可包括相对于栅极线621具有约45度倾斜角的倾斜侧面。进一步,像素电极691可通过穿透像素电极691的第一切割区域592a、第二切割区域592b和中心切割区域591分割为多个部分。另外,经过像素电极691中心点并平行于栅极线621的水平直线,可将像素电极691分割为第一半区域和第二半区域。像素电极691的第一半区域与其第二半区域相对于所述水平直线是对称的。
第一切割区域592a可从像素电极691的右下角向其左侧的中心点延伸,第二切割区域592b可从像素电极691的右上角向其左侧的中心点延伸。即,第一和第二切割区域592a和592b可具有线状构造。在示例性实施方式中,第一和第二切割区域592a和592b可分别与第四存储电极633d和第三存储电极633c重叠。因此,第一和第二切割区域592a和592b可分别布置在像素电极691的第一和第二半区域中。第一和第二切割区域592a和592b之间的角度可为约90度,第一和第二切割区域592a和592b的延伸线以约45度的角度与栅极线相接。
中心切割区域591可从右侧的中心区域沿着水平直线向左侧的中心区域延伸。中心切割区域591的进口部分可具有一对分别平行于第一和第二切割区域592a和592b的倾斜侧面。结果,第一切割区域592a可将像素电极691的第一半区域分割为两个单独的区域,并且第二切割区域592b可将像素电极691的第二半区域分割为两个单独的区域。像素电极691可以许多不同的形式体现,并且不应解释为限制于本文中所列举的示例性实施方式。例如,切割区域591、592a和592b的数目以及像素电极691的尺寸可根据液晶层503的性质和LCD装置的设计方案而改变。
跨线583可跨越栅极线621。各跨线583的一端可通过穿透钝化层680和栅极绝缘层640的接触孔683a连接到存储线631之一上,各跨线583的另一端可通过穿透钝化层680和栅极绝缘层640的接触孔683b连接到第一存储电极633a之一上。包括存储电极633a和633b的存储线631可用于修复具有缺陷的栅极线621、数据线671或薄膜晶体管。
各接触辅助物581可通过穿透钝化层680的接触孔681之一连接到栅极焊盘629之一上。类似地,各接触辅助物582可通过穿透钝化层680和栅极绝缘层640的接触孔682之一连接到数据线焊盘679之一上。接触辅助物581可改善栅极焊盘629和其它待连接到其上的导电线之间的附着力,接触辅助物582可改善数据线焊盘679和其它待连接到其上的导电线之间的附着力。此外,接触辅助物581和582可保护栅极焊盘629和数据线焊盘679。
现在参照图8、图9和图10更详细地描述公共电极面板700。
再次参照图8、图9和图10,光学阻挡层720可布置在可包括透明玻璃或透明塑料材料的绝缘基板710上。光学阻挡层720可称为黑色矩阵。光学阻挡层720可阻挡穿过像素电极691之间的间隙区域的光。也就是说,光学阻挡层720可具有分别面向像素电极691的多个开口725。结果,各开口725可具有与相应的像素电极691几乎相同的构造。另外,光学阻挡层可包括面向栅极线621和数据线671的第一部分、以及面向薄膜晶体管的第二部分。
多个滤色片730可分别布置在开口725上。在另一示例性实施方式中,位于像素区域的各列中的滤色片730可沿着y-轴延伸(参照图9)。在此情况下,各列中的滤色片730可彼此连接,由此提供单一的滤色片线。各滤色片730可为红色滤色片、绿色滤色片和蓝色滤色片中的一个。
滤色片730和光学阻挡层720可用外覆层(overcoat layer)750覆盖。外覆层750可包括有机绝缘层。外覆层750可防止滤色片730暴露并具有平坦的表面。在其它示例性实施方式中,外覆层750可省略。
公共电极770可布置在外覆层750上。当没有提供外覆层750时,公共电极770可直接布置在光学阻挡层720和滤色片730上。公共电极770可包括透明导电层,例如氧化铟锡(ITO)层或氧化铟锌(IZO)层。可提供多个切割区域组以穿透公共电极770。各切割区域组可包括多个切割区域。例如,各切割区域组可包括第一切割区域572a、第二切割区域572b和中心切割区域571。
切割区域571、572a和572b可布置为不与像素电极691的切割区域591、592a和592b重叠。例如,如图9所示,第一切割区域572a可布置在像素电极691的第一切割区域592a和像素电极691的左下角的倒角倾斜侧之间。类似地,如图9所示,第二切割区域572b可布置在像素电极691的第二切割区域592b和像素电极691的左上角的倒角倾斜侧之间。此外,如图9所示,中心切割区域571可布置在像素电极691的第一和第二切割区域592a和592b以及中心切割区域591之间。各切割区域571、572a和572b可包括至少一个平行于像素电极691的第一切割区域592a或第二切割区域592b的对角线部分(diagonal portion)。各切割区域组(包括第一切割区域572a、第二切割区域572b和中心切割区域571)可具有线对称构造。在此情况下,像素电极691的水平直线可担当对称轴。
如图8和图9中所示,各第一和第二切割区域572a和572b可包括对角线部分572d、平行于y-轴的垂直部分572v和平行于x-轴的水平部分572h。水平部分572h可从对角线部分572d的一端延伸,并且垂直部分572v可从对角线部分572d的另一端延伸。
中心切割区域571可包括中心水平部分571h、第一和第二对角线部分571d’和571d”、以及第一和第二垂直部分571v’和571v”。当从图8和图9的俯视图观察时,中心水平部分571h可布置为由像素电极691的左侧中心点向像素电极691的右侧延伸。第一对角线部分571d’可从中心水平部分571h的右端平行于第一切割区域572a的对角线部分572d延伸,第二对角线部分571d”可从中心水平部分571h的右端平行于第二切割区域572b的对角线部分572d延伸。另外,中心切割区域571的第一垂直部分571v’可从第一对角线部分571d’的右端平行于y-轴延伸,中心切割区域571的第二垂直部分571v”可从第二对角线部分571d”的右端平行于y-轴延伸。
穿透公共电极770的切割区域571、572a和572b可以许多不同的形式体现,并且不应理解为限于本文中所列举的示例性实施方式。例如,切割区域571、572a和572b的数目和构造可根据液晶层503的性质和LCD装置的设计方案而变化。光学阻挡层720可进一步包括多个布置为与切割区域571、572a和572b重叠的光学阻挡图案。光学阻挡图案可阻挡穿过切割区域571、572a和572b的光。
当将公共电压施加到公共电极770并将数据电压施加到像素电极691上时,可在公共电极770和像素电极691之间产生电场。电场的方向可基本上垂直于电极691和770。假如液晶810具有负的介电各向异性,则在电极691和770之间的液晶810可排列为垂直于电场。电场可分布为使其不垂直于电极691和770。这是由于如参照图4B所描述的那样,存在彼此不重叠的公共电极切割区域571、572a和572b、以及像素电极切割区域591、592a和592b引起的。结果,当公共电压和数据电压分别施加到公共电极770和像素电极691上时,电极691和770之间的液晶810可倾斜排列。
再次参照图9,切割区域571、572a和572b以及591、592a和592b可将单个像素区域中的液晶层503分割为多个子像素区域。各子像素区域可包括一对以约45度角与x-轴相交的初级侧(primary side)。各子像素区域的初级侧可与偏振片(参见图10的附图标记“512”和“522”)的偏振轴以约45度角相交。因此,LCD装置的光效率可最大化。
各子像素区域中的大多数液晶810可在基本上垂直于各子像素区域的初级侧的方向上倾斜。因此,在各像素区域中的液晶810可包括分别沿着四个不同方向排列的四组液晶810。假如液晶810的排列方向的数目增加,则LCD装置的视角可改善。
切割区域571、572a和572b以及591、592a和592b可以许多不同的形式体现,并且不应理解为限于本文中所列举的示例性实施方式。例如,切割区域571、572a和572b以及591、592a和592b中至少之一可被凸起(参见图4A和图4B中的附图标记“240”)或凹处代替。凸起可包括有机材料层或无机材料层,且可布置在电极691和770之上或之下。
第一定向层511可布置为覆盖钝化层680、像素电极691和跨线583,第二定向层521可布置为覆盖公共电极770。第一和第二定向层511和521可相应于垂直定向层。液晶层503可布置在第一和第二定向层511和521之间。
在又一个示例性实施方式中,LCD装置可进一步包括相位延迟层以补偿液晶层503的相位延迟。
液晶层503可具有如上所述的负的介电各向异性,并且液晶层503中的液晶810可不用任何电场而垂直于电极691和770排列。在此情况下,偏振层512和522可阻挡入射光照射到基板610的底表面上。换言之,入射光无法穿过偏振层512和522。
如上所述,液晶层503可包括大量液晶810,并且各液晶810可含有正化合物材料、负化合物材料和中性化合物层。液晶810的中性化合物含量可在约10wt%至25wt%的范围内,液晶810的正化合物含量可在约2wt%至15wt%的范围内,以及液晶810的负化合物含量可在约60wt%至80wt%的范围内。
如上所述,液晶810可具有约-2.6至-3.4的介电各向异性Δε,并且介电各向异性Δε与垂直介电常数ε⊥的比(Δε/ε⊥)可在约0.31至0.46的范围内。此外,液晶810可具有约70℃至95℃的相转变温度Tni以及约0.103或更小的衍射各向异性Δn。
根据上述示例性实施方式,液晶810可同时包括正化合物材料和负化合物材料,从而增加了包括多个液晶810的液晶层503的总介电常数。因此,液晶电容也可增加。这可导致LCD装置的数据电压保持时间的增加。因此,可无需形成辅助电容器来增加像素区域PA中的液晶电容。结果,LCD装置的开口率可增加,而集成密度没有任何退化。
本领域技术人员应理解,在不脱离本发明的精神或范围的情形下,可对本发明进行各种改进和变化。因此,本发明意在覆盖本发明的改进和变化,只要它们落在所附权利要求及其等同物的范围内。
权利要求
1.一种液晶,其包括
约60wt%至约80wt%的具有第一极性的介电各向异性的第一化合物材料;
约2wt%至约15wt%的具有第二极性的介电各向异性的第二化合物材料;和
中性化合物材料。
2.权利要求1的液晶,其中所述第二化合物材料的含量为约2wt%至约7wt%。
3.权利要求2的液晶,其中所述中性化合物材料包括由下列化学式1表示的化合物,并且其中所述第一化合物材料包括至少一种由下列化学式2、3和4之一表示的化合物,
化学式1
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示链烯基;
化学式2
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式3
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式4
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基。
4.权利要求3的液晶,其中由化学式1表示的化合物的含量为约25wt%至约35wt%,其中由化学式2表示的化合物的含量为约15wt%至约20wt%,其中由化学式3表示的化合物的含量为约20wt%至约30wt%,以及其中由化学式4表示的化合物的含量为约15wt%至约25wt%。
5.权利要求3的液晶,其中所述中性化合物材料进一步包括至少一种由下列化学式5、6、7和8之一表示的化合物,并且其中所述第一化合物材料进一步包括至少一种由下列化学式9和10之一表示的化合物,
化学式5
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式6
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式7
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式8
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式9
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式10
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基。
6.权利要求5的液晶,其中所述第二化合物材料包括至少一种由下列化学式11、12、13、14、15、16、17和18之一表示的化合物,
化学式11
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式12
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式13
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式14
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式15
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式16
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式17
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式18
其中,“X”表示具有2个、3个、4个或5个碳分子的烃。
7.权利要求1的液晶,其中所述第一化合物材料包括至少一种由下列化学式1、2、3、4、5、6、7和8之一表示的化合物,
化学式1
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式2
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式3
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式4
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式5
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式6
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式7
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式8
其中,“X”表示具有2个、3个、4个或5个碳分子的烃。
8.权利要求7的液晶,其中所述第二化合物材料包括至少一种由下列化学式9、10、11、12和13之一表示的化合物,
化学式9
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式10
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式11
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式12
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式13
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基。
9.权利要求8的液晶,其中所述中性化合物材料包括至少一种由下列化学式14、15、16、17和18表示的化合物
化学式14
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式15
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式16
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式17
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式18
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示链烯基。
10.一种液晶显示装置,包括
具有像素区域的第一基板;
面向所述第一基板的第二基板;和
布置在所述第一基板和第二基板之间的多个液晶,其中各液晶包括
约60wt%至约80wt%的具有第一极性的介电各向异性的第一化合物材料;
约2wt%至约15wt%的具有第二极性的介电各向异性的第二化合物材料;和
中性化合物材料。
11.权利要求10的装置,其中所述第二化合物材料的含量为约2wt%至约7wt%。
12.权利要求11的装置,其中所述中性化合物材料包括由下列化学式1表示的化合物,并且其中所述第一化合物材料包括至少一种由下列化学式2、3和4之一表示的化合物,
化学式1
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示链烯基;
化学式2
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式3
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式4
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基。
13.权利要求12的装置,其中由化学式1表示的化合物的含量为约25wt%至约35wt%,其中由化学式2表示的化合物的含量为约15wt%至约20wt%,其中由化学式3表示的化合物的含量为约20wt%至约30wt%,以及其中由化学式4表示的化合物的含量为约15wt%至约25wt%。
14.权利要求12的装置,其中所述中性化合物材料进一步包括至少一种由下列化学式5、6、7和8之一表示的化合物,并且其中所述第一化合物材料进一步包括至少一种由下列化学式9和10表示的化合物,
化学式5
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式6
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式7
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式8
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式9
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式10
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基。
15.权利要求14的装置,其中所述第二化合物材料包括至少一种由下列化学式11、12、13、14、15、16、17和18表示的化合物,
化学式11
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式12
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式13
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式14
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式15
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式16
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式17
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式18
其中,“X”表示具有2个、3个、4个或5个碳分子的烃。
16.权利要求15的装置,其中所述液晶的介电各向异性在约-2.6至约-3.4的范围内。
17.权利要求16的装置,其中所述液晶的介电各向异性与垂直介电常数的比为约0.31至约0.46。
18.权利要求17的装置,其中所述液晶具有约70℃至约95℃的相转变温度以及约0.103或更小的衍射各向异性。
19.权利要求10的装置,其中所述第一化合物材料包括至少一种由下列化学式1、2、3、4、5、6、7和8之一表示的化合物,
化学式1
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式2
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式3
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式4
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式5
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式6
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式7
其中,“X”表示具有2个、3个、4个或5个碳分子的烃;
化学式8
其中,“X”表示具有2个、3个、4个或5个碳分子的烃。
20.如权利要求19所述的装置,其中所述第二化合物材料包括至少一种由下列化学式9、10、11、12和13之一表示的化合物,
化学式9
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式10
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式11
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式12
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式13
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基。
21.权利要求20的装置,其中所述中性化合物材料包括至少一种由下列化学式14、15、16、17和18之一表示的化合物
化学式14
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式15
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式16
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷基;
化学式17
其中,“X”表示具有2个、3个、4个或5个碳分子的烃,以及“Y”表示烷氧基;
化学式18
其中,“X”表示具有2个、3个、4个或5个碳分子的烃基,以及“Y”表示链烯基。
22.权利要求10的装置,进一步包括
布置在第一基板上的栅极线;
与所述栅极线交叉布置的数据线,以在所述栅极线和所述数据线的交叉处限定所述像素区域;
接收相应于所述像素区域的图像的数据电压的像素电极,所述像素电极布置在所述像素区域中;以及
接收公共电压的公共电极,所述公共电极布置在所述第二基板上,
其中所述像素电极与所述栅极线和所述数据线中的至少一种重叠,以及
其中所述图像的帧频约为120Hz。
23.权利要求22的装置,进一步包括
布置在所述像素电极处的第一畴分割器;和
布置在所述公共电极处并且与所述第一畴分割器隔开的第二畴分割器,所述第一畴分割器和所述第二畴分割器将所述像素区域划分为多个畴,
其中所述像素电极包括第一像素电极和具有比所述第一像素电极更小面积的第二像素电极,其中所述第一像素电极与所述栅电极线和所述数据线中的至少一种重叠,以及其中彼此不同的第一数据电压和第二数据电压分别施加到所述第一像素电极和第二像素电极上。
24.权利要求22的装置,其中所述像素区域不具有任何存储电容器。
全文摘要
本发明提供液晶和使用其的液晶显示装置。提供一种液晶,其包括约60wt%至约80wt%的第一化合物材料、约2wt%至约15wt%的第二化合物材料和中性化合物材料。所述第一化合物材料具有第一极性的介电各向异性,并且所述第二化合物材料具有第二极性的介电各向异性。
文档编号C09K19/10GK101270287SQ20081010923
公开日2008年9月24日 申请日期2008年2月20日 优先权日2007年2月20日
发明者金贤昱, 柳在镇, 尹容国 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1