各向异性导电膜的制造方法和各向异性导电膜与流程

文档序号:11767190阅读:271来源:国知局
各向异性导电膜的制造方法和各向异性导电膜与流程

本申请是申请日2013年8月23日,申请号201380043932.8(pct/jp2013/072617),发明名称为“各向异性导电膜的制造方法和各向异性导电膜”的发明专利申请的分案申请。

本发明涉及各向异性导电膜的制造方法和各向导电膜。



背景技术:

各向异性导电膜在ic芯片等电子部件的安装中广泛应用,近年来,从适用于高密度安装的角度考虑,为了实现连接可靠性和绝缘性的提高、粒子捕获效率的提高、制造成本的降低等,人们提出了将各向异性导电连接用的导电粒子以单层排列在绝缘性粘接层上而成的各向异性导电膜(专利文献1)。

该各向异性导电膜如下制作。即,首先使导电粒子保持在具有开口的转印模的该开口处,自其上按压形成有转印用粘合层的粘合膜,使导电粒子一次转印到粘合层上。接着,将作为各向异性导电膜构成要素的高分子膜按压在附着于粘合层上的导电粒子上,通过加热加压将导电粒子二次转印于高分子膜表面。接着,在经导电粒子二次转印的高分子膜的导电粒子一侧表面以覆盖导电粒子的方式形成粘接层,由此制成各向异性导电膜。

现有技术文献

专利文献

专利文献1:日本特愿2010-33793号公报。



技术实现要素:

所要解决的课题

但是,使用具有开口的转印模制作的专利文献1的各向异性导电膜中,只要一次转印和二次转印顺利推进,则对于各向异性导电膜的连接可靠性、绝缘性、粒子捕获效率或许可以期待一定程度的提高,但通常为了容易进行二次转印,使用粘合力比较弱的膜作为一次转印用的粘合膜,并且要减小导电粒子与粘合膜的接触面积。因此,在进行一次转印操作-二次转印操作时,可能有产生未进行一次转印的导电粒子、一次转印后导电粒子从粘合膜上剥落、或者粘合膜上的导电粒子位置偏移等问题发生,整体操作效率降低。

另一方面,如果为了使一次转印操作更高速且顺畅地进行而使粘合膜的粘合力在一定程度上增强、使导电粒子稳定地保持在粘合膜上,则二次转印到高分子膜变难;如果为了避免该问题而增强高分子膜的膜性,则有各向异性导电膜的导通电阻增大,导通可靠性也降低的问题。这样,在使用具有开口的转印模制作各向异性导电膜时,实际情形是一次转印和二次转印并不一定顺利推进,因此对于各向异性导电膜,现状是依然强烈需求同时实现良好的连接可靠性、良好的绝缘性和良好的粒子的捕获效率。

本发明的目的是解决以上的现有技术问题,其中,在利用具有开口的转印模制造导电粒子单层排列的各向异性导电膜时,可以制造显示良好的连接可靠性、良好的绝缘性和良好的粒子捕获效率的各向异性导电膜。

解决问题的方法

本发明人发现:在使用具有开口的转印模制作各向异性导电膜时,使用透光性的材料作为转印模,另外,不是先将导电粒子暂时一次转印在粘合膜上,而是从转印模上直接以单层排列的方式转印在构成各向异性导电膜的绝缘性树脂层上,并且是使相邻的导电粒子之间的中央区域的绝缘性树脂层厚度比导电粒子附近的绝缘性树脂层厚度减薄地进行转印,进而经由透光性的转印模照射紫外线,由此可以使保持有导电粒子的绝缘性树脂光固化,并且将有导电粒子以单层排列的该绝缘性树脂层的两面用发挥粘接层功能的绝缘性树脂层夹持,由此可实现上述目的,从而完成了本发明。

即,本发明提供一种制造方法,其为第1连接层被主要由绝缘性树脂构成的第2连接层和第3连接层夹持的3层结构的各向异性导电膜的制造方法,所述制造方法具有以下工序(a)-(f)。

<工序(a)>

将导电粒子配置在形成有开口的透光性转印模的开口内,使形成于剥离膜上的光聚合性绝缘性树脂层与形成有开口的转印模的表面相对的工序。

<工序(b)>

自剥离膜一侧对光聚合性绝缘性树脂层施加压力,将光聚合性绝缘性树脂压入开口内,使导电粒子转粘于光聚合性绝缘性树脂层的表面,由此形成第1连接层的工序,所述第1连接层具有导电粒子以单层排列于光聚合性绝缘性树脂层的平面方向上的结构,且具有相邻的导电粒子之间的中央区域的光聚合性绝缘性树脂层厚度比导电粒子附近的光聚合性绝缘性树脂层厚度减薄的结构。

<工序(c)>

由透光性的转印模一侧对第1连接层照射紫外线的工序。

<工序(d)>

从第1连接层除去剥离膜的工序。

<工序(e)>

在第1连接层的与透光性转印模相反一侧的表面上形成主要由绝缘性树脂构成的第2连接层的工序。

<工序(f)>

在第1连接层的与第2连接层相反一侧的表面上形成主要由绝缘性树脂构成的第3连接层的工序。

本发明还提供一种连接方法,该连接方法是用以上述的制造方法得到的各向异性导电膜将第1电子部件与第2电子部件各向异性导电连接的连接方法,其中,将各向异性导电膜自其第3连接层一侧临时粘贴于第2电子部件上,将第1电子部件搭载于临时粘贴的各向异性导电膜上,由第1电子部件一侧进行热压接;本发明还提供由该连接方法得到的各向异性导电连接构造体。

本发明进一步提供一种各向异性导电膜,该各向异性导电膜是第1连接层被主要由绝缘性树脂构成的第2连接层和第3连接层夹持的3层结构的各向异性导电膜,其中,第1连接层与第3连接层的边界有起伏,第1连接层具有导电粒子以单层排列在绝缘性树脂层的第3连接层一侧的平面方向上的结构,相邻的导电粒子之间的中央区域的绝缘性树脂层厚度比导电粒子附近的绝缘性树脂层厚度减薄。

该各向异性导电膜优选以下方案:第1连接层为含有丙烯酸酯化合物和热或光自由基聚合引发剂的热或光自由基聚合型树脂层、或使该层热或光自由基聚合得到的层;或者为含有环氧化合物和热或光阳离子或阴离子聚合引发剂的热或光阳离子或阴离子聚合型树脂层、或使该层热或光阳离子聚合或阴离子聚合得到的层。还优选导电粒子挤入到第3连接层中的方案。进一步优选在第1连接层中,位于导电粒子和第1连接层的第2连接层一侧表面之间的区域的第1连接层的固化率比位于相互相邻的导电粒子之间的区域的第1连接层的固化率低的方案。且优选第1连接层的最低熔融粘度比第2连接层和第3连接层各自的最低熔融粘度高的方案。还优选第1连接层的最低熔融粘度与第2连接层和第3连接层各自的最低熔融粘度之比为1:4-400的方案。

发明效果

本发明是第1连接层被绝缘性的第2连接层和第3连接层夹持的3层结构的各向异性导电膜的制造方法。该制造方法中,在使用具有开口的转印模制作各向异性导电膜时,不是将导电粒子暂时一次转印在粘合膜上,而是从转印模上直接转印在构成各向异性导电膜、作为第1连接层的光聚合性绝缘性树脂层上,使导电粒子以单层排列。并且是使相邻的导电粒子之间的中央的光聚合性绝缘性树脂层厚度比导电粒子附近的光聚合性绝缘性树脂层厚度减薄(换言之,使导电粒子从第1连接层上突起)地进行转印。如果将该突起配置于第3连接层一侧,该第3连接层配置于搭载有ic芯片等电子部件的布线基板等一侧,则可以使粒子捕获效率提高。还经由透光性的转印模照射紫外线,由此可以使保持有导电粒子、作为第1连接层的光聚合性绝缘性树脂层在保持在转印模上的状态下进行光固化,可以使紫外线被导电粒子遮挡的光聚合性绝缘性树脂层部分的固化率相对减小。由此,可防止导电粒子向平面方向的过度移动,提高压入性,实现良好的连接可靠性、良好的绝缘性以及良好的粒子捕获效率。

附图说明

图1a是本发明的各向异性导电膜制造方法的工序(a)的说明图。

图1b是本发明的各向异性导电膜制造方法的工序(a)的说明图。

图2a是本发明的各向异性导电膜制造方法的工序(b)的说明图。

图2b是本发明的各向异性导电膜制造方法的工序(b)的说明图。

图3是本发明的各向异性导电膜制造方法的工序(c)的说明图。

图4是本发明的各向异性导电膜制造方法的工序(d)的说明图。

图5是本发明的各向异性导电膜制造方法的工序(e)的说明图。

图6是根据本发明的各向异性导电膜制造方法的工序(f)得到的本发明的各向异性导电膜的截面图。

图7是根据本发明的制造方法得到的各向异性导电膜的部分截面图。

图8是本发明的各向异性导电膜的截面图。

具体实施方式

《各向异性导电膜的制造方法》

以下按照每道工序详细说明本发明的各向异性导电膜的制造方法。

下面,对本发明的各向异性导电膜的制造方法的一个例子进行说明。该制造方法具有以下工序(a)-(f)。以下按照每道工序进行说明。

<工序(a)>

如图1a所示,在形成有开口21的透光性转印模20的开口21内配置导电粒子4。如图1b所示,使光聚合性绝缘性树脂层10与形成有开口21的转印模20的表面相对,所述光聚合性绝缘性树脂层10形成于进行了剥离处理的聚对苯二甲酸乙二醇酯膜等的剥离膜22上。

转印模20的透光性是指透过紫外线的性质。透过的水平没有特别限定,从迅速进行光聚合的角度考虑,优选通过分光光度计测定时的紫外线透过率(测定波长365nm,光路长1.0cm)为70%以上。

作为转印模20,例如是通过光刻法(photolithograph)等公知的开口形成方法,在紫外线透过性的玻璃等的透明无机材料或聚甲基丙烯酸酯等的有机材料上形成开口所得。这样的转印模20可以取板状、卷状等形状。

转印模20的开口21在其内部容纳有导电粒子。开口21的形状可例举:圆柱状、四棱柱状等多棱柱状,四棱锥等的棱锥状等。

开口21的排列优选格状、交错状等规则的排列。

从转印性提高与导电粒子保持性的平衡考虑,导电粒子4的平均粒径与开口21的深度之比(=导电粒子的平均粒径/开口的深度)优选0.4-3.0,更优选0.5-1.5。

从导电粒子的容纳容易、绝缘性树脂的压入容易等的平衡考虑,开口21的直径与导电粒子4的平均粒径之比(=开口直径/导电粒子的平均粒径)优选1.1-2.0,更优选1.3-1.8。

转印模20的开口21的直径与深度可通过激光显微镜测定。

在转印模20的开口21内容纳导电粒子4的方法没有特别限定,可采用公知的方法。例如可以将干燥的导电粒子粉末、或将其分散于溶剂中得到的分散液散布或涂布在转印模20的开口形成面上,然后使用刷子或刮板等擦抹开口形成面的表面。

<工序(b)>

接着如图2a所示,从剥离膜22一侧对光聚合性绝缘性树脂层10施加压力,将光聚合性绝缘性树脂压入开口21内,使导电粒子4以埋入的方式转粘在光聚合性绝缘性树脂层10的表面。由此如图2b所示形成第1连接层,该第1连接层是导电粒子4以单层排列在光聚合性绝缘性树脂层10的平面方向上的结构,其中,相邻的导电粒子4之间的中央区域的光聚合性绝缘性树脂层厚度t1比导电粒子4附近的光聚合性绝缘性树脂层厚度t2减薄。

这里,相邻的导电粒子4之间的中央区域的光聚合性绝缘性树脂层厚度t1相对于导电粒子4附近的光聚合性绝缘性树脂层厚度t2过薄,则在各向异性导电连接时,导电粒子4有过度移动的倾向,过厚,则压入性有降低的倾向,都可能使粒子捕获效率降低,因此优选0.2-0.8,更优选0.3-0.7。

另外,光聚合性绝缘性树脂层厚度t1的绝对厚度过薄,则可能难以形成第1连接层,因此优选0.5μm以上。过厚,则在进行各向异性导电连接时,绝缘性树脂层难以从连接区域被排除,可能发生导通不良,因此优选6μm以下。

相邻的导电粒子4之间的中央区域是指:包含相邻的导电粒子间距离的中间点、在光聚合性绝缘性树脂层10之中厚度较薄地形成的区域;导电粒子4的附近是指:在第1连接层1的层厚方向上与导电粒子4相切的线段附近的位置。

作为调节为这样的数值范围的方法,可通过调节开口直径、开口深度、导电粒子直径、开口间隔、压力值、光聚合性绝缘性树脂的组成等进行。

如图8所示,含有导电粒子的树脂层的厚度在平面方向上变动较大,结果,当该树脂层以被隔断的方式存在时,导电粒子4之间的绝缘性树脂层厚度可以实质上为0。实质上为0是指:含有导电粒子的绝缘性树脂层各自独立存在的状态。这种情况下,为了实现良好的连接可靠性、良好的绝缘性以及良好的粒子捕获效率,可通过控制通过导电粒子4中心的垂线与绝缘性树脂层厚度最薄的位置的最短距离l1、l2、l3、l4…来优选地进行。即,该最短距离l1、l2、l3、l4…变长,则第1连接层1的树脂量相对增多,生产能力提高,可以抑制导电粒子4的流动。而该最短距离l1、l2、l3、l4…变短,则第1连接层1的树脂量相对减小,可容易地控制粒子间距离。换言之,可以使导电粒子的位置对准精度提高。优选的最短距离l1、l2、l3、l4…是优选比导电粒子4粒径的0.5倍大但低于1.5倍的范围。

在不损害本发明的效果的范围内,使导电粒子4之间的绝缘性树脂层厚度实质上为0的方法可以采用各种方法。例如可采用:用刮浆板(squeegee)等将工序(b)中形成的光聚合性绝缘性树脂层10的表面刮取至转印模20的表面为止的方法。

如图8所示,导电粒子4可以埋没于第1连接层1中。浅埋或深埋这样的埋没程度根据第1连接层形成时材料的粘度、或排列有导电粒子的转印模开口的形状、大小等而变化,特别是可通过开口的基底直径与开口直径的关系来控制。例如优选基底直径为导电粒子直径的1.1倍以上且低于2倍、开口直径为导电粒子直径的1.3倍以上且低于3倍。

在不损害本发明的效果的范围内,如图8中虚线所示,导电粒子4’可存在于第3连接层3中。通常存在于第3连接层3中的导电粒子数相对于全部导电粒子数的比例优选1-50%,更优选5-40%。特别是如果第1连接层1中的导电粒子4的数目与第3连接层3中的导电粒子4’的数目大致相同,则相邻的粒子存在于互相不同的树脂层中,因此可以抑制多个导电粒子的连接,同时还有望获得可局部实现高的导电粒子密度的效果。因此本发明也包含以下方案:对于排列于平面的粒子,与任意的导电粒子相邻的导电粒子存在并排列于与所述任意的导电粒子不同的层。

使导电粒子4’存在于第3连接层3中,这种情况如下产生:除了容纳于转印模开口内部的导电粒子之外,还在导电粒子存在于转印模的表面的状态下进行了形成第1连接层的操作,以及继此之后进行了形成第3连接层3的操作。像这样导电粒子以一定数目以上存在于开口部以外的转印模表面等,这在实际应用上是难以避免的,因此,只要不产生损害产品性能这类的不良影响,结果是使不良品的发生降低,有助于成品率的提高。

<工序(c)>

接着如图3所示,由透光性的转印模20一侧对第1连接层1照射紫外线。由此,可使构成第1连接层1的光聚合性绝缘性树脂10聚合固化,使导电粒子4稳定地保持在第1连接层1中,并且可以使紫外线被导电粒子4遮挡了的导电粒子4下方区域1x的光聚合性绝缘性树脂的固化率与其周围的区域1y的固化率相比相对降低,可以提高各向异性导电连接时导电粒子4的压入性。通过这样,在进行各向异性导电连接时,可防止导电粒子的位置偏移(换言之,粒子捕获效率提高),使导电粒子的压入性提高,降低导通电阻值,实现良好的导通可靠性。

紫外线照射条件可以从公知的条件中适当选择。

这里,固化率是以对聚合有贡献的官能基团(例如乙烯基)的减少比例来定义的数值。具体来说,如果固化后乙烯基的存在量为固化前的20%,则固化率为80%。乙烯基存在量的测定可通过红外吸收光谱的乙烯基的特性吸收分析进行。

这样定义的区域1x的固化率优选为40-80%,而区域1y的固化率优选为70-100%。

还优选由流变仪测定的第1连接层1的最低熔融粘度比第2连接层2和第3连接层3各自的最低熔融粘度高。具体来说,[第1连接层1的最低熔融粘度(mpa•s)]/[第2连接层2或第3连接层3的最低熔融粘度(mpa•s)]的数值过低,则粒子捕获效率降低,有短路发生概率提高的倾向,过高则导通可靠性有降低倾向,因此优选1-1,000,更优选4-400。另外,关于各自优选的最低熔融粘度,对于前者来说如果过低,则粒子捕获效率有降低倾向,过高则导通电阻值有增大倾向,因此优选100-100000mpa•s,更优选500-50000mpa•s;对于后者来说,如果过低则在制成卷时有树脂渗出的倾向,过高则有导通电阻值升高的倾向,因此优选0.1-10000mpa•s,更优选1-1000mpa•s。

<工序(d)>

接着如图4所示,从第1连接层1上除去剥离膜22。除去的方法没有特别限定。

<工序(e)>

接着如图5所示,在第1连接层1的与透光性转印模20相反一侧的表面形成主要由绝缘性树脂构成的第2连接层2。

第2连接层2是位于第1连接层1中导电粒子4不突出的一侧的表面的层,通常是配置于ic芯片的凸点等的必须以高位置精度对准的端子一侧的层。第1连接层1中的导电粒子4与第2连接层2之间的固化率低的区域1x比除此之外的区域1y的固化率低,因此在各向异性导电连接时容易被排除,而导电粒子被固化率高的区域1y包围,因此难以发生计划外的移动。因此可防止导电粒子的位置偏移(换言之,可使粒子捕获效率提高),提高导电粒子的压入性,降低导通电阻值,实现良好的导通可靠性。

第2连接层2的层厚过薄,则可能由于树脂填充不足而发生导通不良,过厚则在压接时发生树脂的渗出,可能污染压接装置,因此优选5-20μm,更优选8-15μm。

<工序(f)>

接着如图6所示,在第1连接层1的与第2连接层2相反一侧的表面(导电粒子突出的面)上形成主要由绝缘性树脂构成的第3连接层3,由此得到各向异性导电膜100。由此,第1连接层和第3连接层的边界成为起伏的状态,换言之该形状为波浪形乃至凹凸形。这样,通过采用膜内存在的层中具有起伏的形状,接合时可以提高主要与凸点的接触面积增加的概率,结果有望提高粘合强度。另外,通过如此存在起伏,则容易获得上述第3连接层3中存在粒子的状态。这是由于:在设置第3连接层3的过程中,存在于第1连接层1中的起伏未隆起的部分的粒子会移动至第3连接层3中。

第3连接层3通常配置于布线基板上的固体(ベタ)电极等相对不要求高的对准精度的端子一侧。该第3连接层3配置于第1连接层1的导电粒子4突出的一侧。因此,在各向异性导电连接时,第1连接层1的导电粒子4直接撞到布线基板等的电极上,发生变形,因此各向异性导电连接时的绝缘性树脂即使发生流动也难以移动至计划外的位置。因此,可防止导电粒子的位置偏移(换言之,可使粒子捕获效率提高),提高导电粒子的压入性,降低导通电阻值,实现良好的导通可靠性。

第3连接层3的层厚过薄,则在临时粘贴到第2电子部件上时可能发生粘贴不良,过厚,则有导通电阻值增大的倾向,因此优选0.5-6μm,更优选1-5μm。

《第1、2和3连接层以及导电粒子的构成材料》

由本发明的制造方法得到的图6所示的各向异性导电膜100如已说明的,具有第1连接层1被主要由绝缘性树脂构成的第2连接层2和第3连接层3夹持的3层结构。该第1连接层1具有如下结构:根据各向异性导电膜100在制造时所使用的转印模的开口图案,导电粒子4以向光聚合性绝缘性树脂层10的第3连接层3一侧突出的方式以单层排列在平面方向上。这种情况下,优选导电粒子在平面方向上隔开一定的间隔,以规则排列的均等状态排列。还具有如下结构:相邻的导电粒子4之间的中央区域的光聚合性绝缘性树脂层厚度t1比导电粒子4附近的光聚合性绝缘性树脂层厚度t2减薄。因此,未存在于需连接的端子之间而未被利用的导电粒子4会显示图7所示的行为。即,通过各向异性导电连接时的加热加压,导电粒子4之间相对较薄的绝缘性树脂层熔断,覆盖导电粒子4,形成覆盖层1d。从而可以极大的抑制短路的发生。

<第1连接层>

构成所述的第1连接层1的光聚合性绝缘性树脂层10可适当采用公知的绝缘性树脂层。例如可以采用:含有丙烯酸酯化合物和热或光自由基聚合引发剂的热或光自由基聚合型树脂层、或使其热或光自由基聚合得到的层;或者是含有环氧化合物和热或光阳离子或阴离子聚合引发剂的热或光阳离子或阴离子聚合型树脂层、或使其热或光阳离子聚合或阴离子聚合得到的层。

其中,构成第1连接层1的光聚合性绝缘性树脂层10可以采用含有丙烯酸酯化合物和热自由基聚合引发剂的热自由基聚合型树脂层,优选采用含有丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层。由此,可以对光自由基聚合型树脂层照射紫外线,使其光自由基聚合,形成第1连接层1。

<丙烯酸酯化合物>

在构成第1连接层1的光聚合性绝缘性树脂层10中使用的丙烯酸酯化合物可以使用以往公知的自由基聚合性丙烯酸酯。例如可以使用单官能(甲基)丙烯酸酯(这里,(甲基)丙烯酸酯包含丙烯酸酯和甲基丙烯酸酯)、双官能以上的多官能(甲基)丙烯酸酯。本发明中,为了使粘合剂为热固化性,优选丙烯酸类单体的至少一部分使用多官能(甲基)丙烯酸酯。

单官能(甲基)丙烯酸酯可举出:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸2-甲基丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸正庚酯、(甲基)丙烯酸2-甲基己酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸2-丁基己酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸异戊酯、(甲基)丙烯酸异壬基酯、(甲基)丙烯酸异癸基酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸苄基酯、(甲基)丙烯酸苯氧基酯、(甲基)丙烯酸正壬基酯、(甲基)丙烯酸正癸基酯、(甲基)丙烯酸月桂基酯、(甲基)丙烯酸十六烷基酯、(甲基)丙烯酸硬脂基酯、(甲基)丙烯酸吗啉-4-基酯等。双官能(甲基)丙烯酸酯可举出:双酚f-eo改性二(甲基)丙烯酸酯、双酚a-eo改性二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、聚乙二醇(甲基)丙烯酸酯、三环癸烷二羟甲基二(甲基)丙烯酸酯、二环戊二烯(甲基)丙烯酸酯等。三官能(甲基)丙烯酸酯可举出:三羟甲基丙烷三(甲基)丙烯酸酯、三羟甲基丙烷po改性(甲基)丙烯酸酯、异氰尿酸eo改性三(甲基)丙烯酸酯等。四官能以上的(甲基)丙烯酸酯可举出:五(甲基)丙烯酸二季戊四醇酯、六(甲基)丙烯酸季戊四醇酯、四(甲基)丙烯酸季戊四醇酯、二(三羟甲基丙烷)四丙烯酸酯等。除此之外也可以使用多官能氨基甲酸酯(甲基)丙烯酸酯。具体可举出:m1100、m1200、m1210、m1600(以上由东亚合成(株)制造)、ah-600、at-600(以上由共荣社化学(株)制造)等。

构成第1连接层1的光聚合性绝缘性树脂层10中,丙烯酸酯化合物的含量过少,则有难以形成与第2连接层2的最低熔融粘度差的倾向,过多则固化收缩增大,有操作性降低的倾向,因此优选2-70质量%,更优选10-50质量%。

<光自由基聚合引发剂>

光自由基聚合引发剂可以从公知的光自由基聚合引发剂中适当选择使用。例如可举出:苯乙酮类光聚合引发剂、苄基缩酮类光聚合引发剂、磷类光聚合引发剂等。具体来说,苯乙酮类光聚合引发剂可举出:2-羟基-2-环己基苯乙酮(irgacure184,basf日本公司制造)、α-羟基-α,α’-二甲基苯乙酮(darocur1173,basf日本公司制造)、2,2-二甲氧基-2-苯基苯乙酮(irgacure651,basf日本公司制造)、4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮(darocur2959,basf日本制造)、2-羟基-1-{4-[2-羟基-2-甲基-丙酰基]-苄基}苯基}-2-甲基-丙烷-1-酮(irgacure127,basf日本公司制造)等。苄基缩酮类光聚合引发剂可举出:二苯甲酮、芴酮、二苯并环庚酮、4-氨基二苯甲酮、4,4’-二氨基二苯甲酮、4-羟基二苯甲酮、4-氯二苯甲酮、4,4’-二氯二苯甲酮等。也可使用2-苄基-2-二甲基氨基-1-(4-吗啉代苯基)-丁酮-1(irgacure369,basf日本公司制造)。磷类光聚合引发剂可举出:双(2,4,6-三甲基苯甲酰)-苯基氧化膦(irgacure819,basf日本公司制造)、(2,4,6-三甲基苯甲酰-二苯基氧化膦(darocuretpo,basf日本公司制造)等。

相对于100质量份的丙烯酸酯化合物,光自由基聚合引发剂的使用量如果过少,则光自由基聚合有不能充分进行的倾向,过多则可能成为刚性降低的原因,因此优选0.1-25质量份,更优选0.5-15质量份。

<热自由基聚合引发剂>

热自由基聚合引发剂例如可举出:有机过氧化物或偶氮类化合物等,可优选使用不产生导致气泡的氮的有机过氧化物。

有机过氧化物可举出:甲基乙基酮过氧化物、环己酮过氧化物、甲基环己酮过氧化物、乙酰丙酮过氧化物、1,1-双(叔丁基过氧)3,3,5-三甲基环己烷、1,1-双(叔丁基过氧)环己烷、1,1-双(叔己基过氧)3,3,5-三甲基环己烷、1,1-双(叔己基过氧)环己烷、1,1-双(叔丁基过氧)环十二烷、异丁基过氧化物、过氧化月桂酰、琥珀酸过氧化物、3,5,5-三甲基己酰过氧化物、过氧化苯甲酰、辛酰过氧化物、硬脂酰过氧化物、过氧二碳酸二异丙酯、过氧二碳酸二正丙酯、过氧二碳酸二-2-乙基己基酯、过氧二碳酸二-2-乙氧基乙酯、过氧二碳酸二-2-甲氧基丁基酯、过氧二碳酸双-(4-叔丁基环己基)酯、(α,α-双-新癸酰过氧)二异丙基苯、过氧新癸酸枯基酯、过氧新癸酸辛基酯、过氧新癸酸己基酯、过氧新癸酸叔丁基酯、过氧特戊酸叔己基酯、过氧特戊酸叔丁基酯、2,5-二甲基-2,5-双(2-乙基己酰过氧)己烷、过氧-2-乙基己酸1,1,3,3-四甲基丁基酯、过氧-2-乙基己酸叔己基酯、过氧-2-乙基己酸叔丁基酯、过氧-2-乙基己酸叔丁基酯、过氧-3-甲基丙酸叔丁基酯、过氧月桂酸叔丁基酯、过氧-3,5,5-三甲基己酸叔丁基酯、过氧异丙基单碳酸叔己基酯、过氧异丙基碳酸叔丁基酯、2,5-二甲基-2,5-双(苯甲酰基过氧)己烷、过乙酸叔丁基酯、过苯甲酸叔己基酯、过苯甲酸叔丁基酯等。可以在有机过氧化物中添加还原剂,作为氧化还原类聚合引发剂使用。

偶氮类化合物可举出:1,1-偶氮二(环己烷-1-腈)、2,2’-偶氮二(2-甲基-丁腈)、2,2’-偶氮二丁腈、2,2’-偶氮二(2,4-二甲基戊腈)、2,2’-偶氮二(2,4-二甲基-4-甲氧基戊腈)、2,2’-偶氮二(2-脒基-丙烷)盐酸盐、2,2’-偶氮二[2-(5-甲基-2-咪唑啉-2-基)丙烷]盐酸盐、2,2’-偶氮二[2-(2-咪唑啉-2-基)丙烷]盐酸盐、2,2’-偶氮二[2-(5-甲基-2-咪唑啉-2-基)丙烷]、2,2’-偶氮二[2-甲基-n-(1,1-双(2-羟基甲基)-2-羟基乙基)丙酰胺]、2,2’-偶氮二[2-甲基-n-(2-羟基乙基)丙酰胺]、2,2’-偶氮二(2-甲基-丙酰胺)二水合盐、4,4’-偶氮二(4-氰基-戊酸)、2,2’-偶氮二(2-羟基甲基丙腈)、2,2’-偶氮二(2-甲基丙酸)二甲酯(二甲基2,2’-偶氮二(2-甲基丙酸酯))、氰基-2-丙基偶氮甲酰胺等。

热自由基聚合引发剂使用量过少,则固化不良,过多则产品寿命降低,因此相对于100质量份的丙烯酸酯化合物,优选为2-60质量份,更优选5-40质量份。

<环氧化合物>

可以使构成第1连接层1的光聚合性绝缘性树脂层10由如下层构成:含有环氧化合物和热或光阳离子或阴离子聚合引发剂的热或光阳离子或阴离子聚合型树脂层、或使其热或光自由聚合得到的层。

构成第1连接层1的光聚合性绝缘性树脂层10中含有含环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂时,环氧化合物可优选举出分子内具有2个以上环氧基的化合物或树脂。它们可以是液状也可以是固体状。具体可举出:双酚a、双酚f、双酚s、六氢双酚a、四甲基双酚a、二烯丙基双酚a、氢醌、儿茶酚、间苯二酚、甲酚、四溴双酚a、三羟基联苯、二苯甲酮、双间苯二酚、双酚六氟丙酮、四甲基双酚a、四甲基双酚f、三(羟基苯基)甲烷、联二甲苯酚、苯酚酚醛清漆树脂(phenolnovolac)、甲酚酚醛清漆树脂(cresolnovolac)等的多元酚与表氯醇反应得到的缩水甘油基醚;或者是甘油、新戊二醇、乙二醇、丙二醇、丁二醇(チレングリコール)、己二醇、聚乙二醇、聚丙二醇等脂族多元醇与表氯醇反应得到的聚缩水甘油基醚;对羟基苯甲酸、β-羟基萘甲酸等的羟基羧酸与表氯醇反应得到的缩水甘油基醚酯;或者由邻苯二甲酸、邻苯二甲酸甲酯、间苯二甲酸、对苯二甲酸、四氢邻苯二甲酸、六氢邻苯二甲酸、桥亚甲基四氢邻苯二甲酸、桥亚甲基六氢邻苯二甲酸、偏苯三酸、聚合脂肪酸等的多元羧酸得到的聚缩水甘油基酯;由氨基苯酚、氨基烷基苯酚得到的缩水甘油基氨基缩水甘油基醚;由氨基苯甲酸得到的缩水甘油基氨基缩水甘油基酯;由苯胺、甲苯胺、三溴苯胺、苯二甲胺、二氨基环己烷、二氨基甲基环己烷、4,4’-二氨基二苯基甲烷、4,4’-二氨基二苯基砜等得到的缩水甘油基胺;环氧化聚烯烃等公知的环氧树脂类。还可以使用3,4-环氧基环己烯基甲基-3’,4’-环氧基环己烯甲酸酯等脂环式环氧化合物。

<热阳离子聚合引发剂>

热阳离子聚合引发剂可以采用作为环氧化合物的热阳离子聚合引发剂而公知的化合物,例如通过热产生可使阳离子聚合型化合物进行阳离子聚合的酸的引发剂,可使用公知的碘盐、锍盐、盐、二茂铁类等,可优选使用对温度显示良好的潜在性的芳族锍盐。热阳离子类聚合引发剂的优选例子可举出:二苯基碘六氟锑酸盐、二苯基碘六氟磷酸盐、二苯基碘六氟硼酸盐、三苯基锍六氟锑酸盐、三苯基锍六氟磷酸盐、三苯基锍六氟硼酸盐。具体可举出:(株)adeka制造的sp-150、sp-170、cp-66、cp-77;日本曹达(株)制造的ci-2855、ci-2639;三新化学工业(株)制造的サンエイドsi-60、si-80;unioncarbide(ユニオンカーバイド)公司制造的cyracure-uvi-6990、uvi-6974等。

热阳离子聚合引发剂的配合量过少,则有热阳离子聚合不能充分进行的倾向,过多则可能成为刚性降低的原因,因此相对于100质量份环氧化合物,优选0.1-25质量份,更优选0.5-15质量份。

<热阴离子聚合引发剂>

热阴离子聚合引发剂可以采用作为环氧化合物的热阴离子聚合引发剂而公知的化合物,例如通过热产生可使阴离子聚合性化合物进行阴离子聚合的碱的引发剂,可使用公知的脂族胺类化合物、芳族胺类化合物、仲或叔胺类化合物、咪唑类化合物、聚硫醇类化合物、三氟化硼-胺络合物、双氰胺、有机酸酰肼等,可优选使用对温度显示良好的潜在性的胶囊化咪唑类化合物。具体来说可举出asahikaseie-materials(旭化成イーマテリアルズ)(株)制造的novacure(ノバキュア)hx3941hp等。

热阴离子聚合引发剂的配合量过少,则有固化不良的倾向,过多则有产品寿命降低的倾向,因此相对于100质量份环氧化合物,优选2-60质量份,更优选5-40质量份。

<光阳离子聚合引发剂和光阴离子聚合引发剂>

环氧化合物用的光阳离子聚合引发剂或光阴离子聚合引发剂可以适当使用公知的化合物。

<导电粒子>

构成第1连接层1的导电粒子4可以从以往公知的各向异性导电膜中使用的粒子中适当选择使用。例如可举出:镍、钴、银、铜、金、钯等的金属粒子,被覆金属的树脂粒子等。可以将2种以上结合使用。

导电粒子4的平均粒径过小,则无法对应布线高度的偏差,导通电阻有升高的倾向,过大则有导致短路发生的倾向,因此优选1-10μm,更优选2-6μm。平均粒径可通过常规的粒度分布测定装置测定。

所述导电粒子4在第1连接层1中的存在量过少,则粒子捕获效率降低,难以进行各向异性导电连接,过多则可能发生短路,因此优选每1平方mm为50-40000个,更优选200-20000个。

<第1连接层中的其它成分>

第1连接层1中可以根据需要结合使用苯氧基树脂、环氧树脂、不饱和聚酯树脂、饱和聚酯树脂、聚氨酯树脂、丁二烯树脂、聚酰亚胺树脂、聚酰胺树脂、聚烯烃树脂等成膜树脂。

构成第1连接层1的光聚合性绝缘性树脂层10是使包含丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层进行光自由基聚合得到的层时,优选光聚合性绝缘性树脂层10中进一步含有环氧化合物和热阳离子聚合引发剂。这种情况下如后所述,优选第2连接层2和第3连接层3也设为含有环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂层。由此可以使层间剥离强度提高。

第1连接层1中,如图6所示,优选导电粒子4挤入第3连接层3中(换言之,导电粒子4露出于第1连接层1的表面)。这是因为,如果导电粒子完全埋没于第1连接层1中,则可能由于绝缘性树脂层的排除不足,使导通可靠性降低。挤入的程度过小,则粒子捕获效率有降低倾向,过大则导通电阻有升高倾向,因此优选为导电粒子的平均粒径的10-90%,更优选20-80%。

<第2连接层和第3连接层>

第2连接层2和第3连接层3均主要由绝缘性树脂形成。绝缘性树脂可以从公知的绝缘性树脂中适当选择使用。可以由与第1连接层1的光聚合性绝缘性树脂层10同样的材质形成。

第3连接层3位于第1连接层1的导电粒子4一侧,通常是配置在ic芯片的凸点等的必须以高位置精度对准的端子一侧的层。而第2连接层2通常是配置在玻璃基板的固体电极等相对不要求高对准精度的端子一侧的层。

第3连接层3的层厚度过薄,则可能由树脂填充不足导致发生导通不良,过厚则在压接时发生树脂渗出,可能污染压接装置,因此优选5-20μm,更优选8-15μm。另一方面,第2连接层2的层厚度过薄,则在临时粘贴到第2电子部件上时可能发生粘贴不良,过厚则有导通电阻值增大的倾向,因此优选0.5-6μm,更优选1-5μm。

《各向异性导电膜的用途》

这样得到的各向异性导电膜可在将ic芯片、ic模块等第1电子部件与柔性基板、玻璃基板等第2电子部件通过热或光进行各向异性导电连接时优选使用。这样得到的连接构造体也是本发明的一部分。这种情况下,将各向异性导电膜从其第2连接层一侧临时粘贴于布线基板等的第2电子部件,将ic芯片等的第1电子部件搭载于临时粘贴的各向异性导电膜,由第1电子部件一侧进行热压接,这从提高连接可靠性方面考虑是优选的。通过光连接时,也可以结合使用热压接。

实施例

以下通过实施例更具体地说明本发明。

实施例1-6

按照表1所示的配合组成,将丙烯酸酯和光自由基聚合引发剂等用乙酸乙酯或甲苯制备混合液,使固形成分为50质量%。将该混合液以使干燥厚度为5μm的方式涂布在厚度为50μm的剥离处理聚对苯二甲酸乙二醇酯膜(剥离pet膜)上,在80℃的烘箱中干燥5分钟,由此形成要作为第1连接层的光自由基聚合型的绝缘性树脂层。

接着,准备以纵横9μm的间距设有直径5.5μm、深度4.5μm的圆柱状开口的玻璃制的紫外线透过性转印模,各开口中分别容纳一个平均粒径4μm的导电粒子(ni/au镀树脂粒子,aul704,积水化学工业(株)制造)。使第1连接层用的绝缘性树脂层与该转印模的开口形成面相对,在60℃、0.5mpa的条件下自剥离膜一侧加压,由此将导电粒子压入绝缘性树脂层。由此形成了相邻的导电粒子之间的中央区域的光聚合性绝缘性树脂层厚度t1(参照图2b)比导电粒子附近的光聚合性绝缘性树脂层厚度t2(参照图2b)减薄的绝缘性树脂层。表1示出使用电子显微镜测定相邻的导电粒子之间的中央区域的光聚合性绝缘性树脂层厚度t1、以及导电粒子附近的光聚合性绝缘性树脂层厚度t2的结果。计算t1相对于t2的比例[t1/t2],结果也一并表示。

接着,自该紫外线透过性转印模一侧对光自由基聚合型的绝缘性树脂层照射波长365nm、累积光量4000ml/cm2的紫外线,由此形成表面固定有导电粒子的第1连接层。

接着,剥去粘贴在第1连接层上的剥离pet膜,使第1连接层露出。

接着,将热固化性树脂和潜在性固化剂等用乙酸乙酯或甲苯制备混合液,使固形成分为50质量%。将该混合液以使干燥厚度为12μm的方式涂布在厚度50μm的剥离pet膜上,在80℃的烘箱中干燥5分钟,由此形成第2连接层。通过同样的操作形成干燥厚度3μm的第3连接层。

在60℃、0.5mpa的条件下将在剥离pet膜上形成的第2连接层层合在上述得到的第1连接层的露出面,从转印模上取下层合体。将第3连接层同样地层合在所取下的层合体的第1连接层导电粒子突出面,由此得到各向异性导电膜。

比较例1

与实施例1同样地形成为第1连接层的前体层的光自由基聚合型的绝缘性树脂层。

接着,准备以纵横9μm的间距设有直径5.5μm、深度4.5μm的圆柱状开口的玻璃制的紫外线透过性转印模,各开口中分别容纳一个平均粒径4μm的导电粒子(ni/au镀树脂粒子,aul704,积水化学工业(株)制造)。使第1连接层用的绝缘性树脂层与该转印模的开口形成面相对,在40℃、0.1mpa的相对较弱的条件下自剥离膜一侧加压,由此将导电粒子转印至绝缘性树脂层表面。取下转印了导电粒子的该膜,将导电粒子完全压入到绝缘性树脂层中,使树脂层的表面平坦。

接着,由该紫外线透过性转印模一侧对埋入有导电粒子的光自由基聚合型的绝缘性树脂层照射波长365nm、累积光量4000ml/cm2的紫外线,由此形成平坦的第1连接层。

接着,剥去粘贴在第1连接层上的剥离pet膜,使第1连接层露出。

将与实施例1同样制作的3μm厚度的第3连接层和12μm厚度的第2连接层与该第1连接层层合,由此得到各向异性导电膜。

比较例2

表1的第1连接层用的树脂组合物使用与实施例1相同的成分,均匀分散有导电粒子,由所得混合物制作厚度6μm的含导电粒子的树脂膜。导电粒子在该含导电粒子的树脂膜中的存在量是每1平方mm为20000个,在60℃、0.5mpa的条件下粘贴与实施例1同样地制作的厚度12μm的第2连接层,由此制作双层结构的各向异性导电膜。

<评价>

对于所得各向异性导电膜中的导电粒子之间的平面方向均等排列,在形成平面均等排列时,记为有该应用(有),除此之外记为没有应用(无)。对于导电粒子附近的绝缘性树脂层厚度,在比导电粒子之间的中间区域的绝缘性树脂层厚度(也包含层厚0)大时,记为导电粒子附近的绝缘性树脂层厚有增大(有),除此之外的情况记为没有(无)。其结果表示在表1中。各向异性导电膜的构成层数也一并示出。

使用所得各向异性导电膜,在180℃、80mpa、5秒的条件下将0.5×1.8×20.0mm大小的ic芯片(凸点尺寸30×85μm,凸点高度15μm,凸点间距50μm)安装在0.5×50×30mm大小的コーニング公司制造的玻璃布线基板(1737f)上,得到连接构造试样体。通过电子显微镜观察该连接构造试样体连接部的截面,如图7所示,可确认在导电粒子的周围存在绝缘性树脂层。

如以下说明,对所得连接构造试样体试验评价“最低熔融粘度”、“粒子捕获效率”、“导通可靠性”和“绝缘性”。所得结果如表1所示。

“最低熔融粘度”

使用旋转式流变仪(tainstruments公司制造),在升温速度10℃/分钟、测定压力5g恒定、使用测定板直径8mm的条件下对构成连接构造试样体的第1连接层和第2连接层各自的最低熔融粘度进行测定。

“粒子捕获效率”

按照以下数学式求出“加热•加压后(实际安装后)的连接构造试样体凸点上实际捕获的粒子量”与“加热•加压前的连接构造试样体凸点上存在的理论粒子量”的比例。实际应用上希望为40%以上。

粒子捕获效率(%)=

{[加热加压后凸点上的粒子数]/[加热加压前凸点上的粒子数]}×100

“导通可靠性”

将连接构造试样体放置于85℃、85%rh的高温高湿环境下,测定初始和经过500小时后的导通电阻值。实际应用上,希望即使经过500小时后电阻值也为10ω以下。

“绝缘性”

求出7.5μm距离的梳齿teg图案的短路发生率。实际应用上希望为100ppm以下。

[表1]

由表1可知,对于实施例1-6的各向异性导电膜,粒子捕获效率、导通可靠性、绝缘性的各评价项目均显示了实际应用上优选的结果。由实施例1-4的结果可知,如果第1、第2、第3连接层均为相同的固化体系,则它们的层之间发生反应,从而导电粒子的压入性有些降低,导通电阻值有升高倾向。还可知,第1连接层为阳离子聚合体系,则耐热性比自由基聚合体系有所改善,因此,仍然是导电粒子的压入性有些降低,导通电阻值有升高倾向。

与此相对,对于比较例1的各向异性导电膜,在第1连接层中,相邻的导电粒子之间的中央区域的绝缘性树脂层厚度并未比导电粒子附近的绝缘性树脂层厚度减薄,因此导通电阻性能有较大降低。对于以往的双层结构的比较例2的各向异性导电膜,电子捕获效率有很大降低,绝缘性也出现问题。

实施例7-8

如表2所示,形成第1连接层时,通过调节自剥离膜一侧的加压的条件,使相邻的导电粒子之间的中央区域的光聚合性绝缘性树脂层厚度t1(参照图2b)相对于导电粒子附近的光聚合性绝缘性树脂层厚度t2(参照图2b)为表2的比例[t1/t2],除此之外与实施例1同样地制造各向异性导电膜。

<评价>

对于所得各向异性导电膜中导电粒子之间的平面方向均等排列,与实施例1同样地进行评价。所得结果如表2所示。各向异性导电膜的构成层数也一并示出。

使用所得各向异性导电膜,与实施例1同样地得到了连接构造试样体。通过电子显微镜观察该连接构造试样体的连接部的截面,如图7所示,可确认在导电粒子的周围存在绝缘性树脂层。

对于所得连接构造试样体,如以下的说明,与实施例1同样地试验评价“最低熔融粘度”、“粒子捕获效率”和“绝缘性”。对于“导通可靠性”,如以下的说明进行试验评价。所得结果如表2所示。

“导通可靠性”

将连接构造试样体放置于85℃、85%rh的高温高湿环境下,以100小时的间隔取出,确认导通电阻的升高。将导通电阻超过50ω的时间作为发生不良的时间。实际应用上希望为1000小时以上。

[表2]

由表2的结果可知,通过使相邻的导电粒子之间的中央区域的光聚合性绝缘性树脂层厚度t1相对于导电粒子附近的光聚合性绝缘性树脂层厚度t2(参照图2b)的比例[t1/t2]为0.2-0.8,在导通可靠性、绝缘性、粒子捕获效率的各项目中均得到了良好的结果。另外,随着[t1/t2]的数值变小,特别是绝缘性有提高倾向。

实施例9-20

如表3所示,在形成第1连接层时,通过调节自剥离膜一侧的加压的条件,使相邻的导电粒子间的中央区域的光聚合性绝缘性树脂层厚度t1(参照图2b)相对于导电粒子附近的光聚合性绝缘性树脂层厚度t2(参照图2b)为表2的比例[t1/t2],再根据需要,在形成第1连接层之后采用公知的擦抹方法,例如使用刮浆板等对第1连接层的表面进行擦抹,除此之外与实施例1同样地制造各向异性导电膜。

<评价>

对于所得各向异性导电膜中的导电粒子之间的平面方向均等排列,在形成平面均等排列时,记为有该应用(有),除此之外记为没有应用(无)。对于导电粒子附近的绝缘性树脂层厚度,在比导电粒子之间的中间区域的绝缘性树脂层厚度(也包含层厚0)大时,记为导电粒子附近的绝缘性树脂层厚度有增大(有),除此之外的情况记为没有(无)。其结果表示在表1或表2中。各向异性导电膜的构成层数也一并示出。

对于实施例9-20,全部导电粒子中存在于第3连接层中的导电粒子的比例,是使用光学显微镜计测200μm×200μm的面积,将所得结果表示在表3中。可以确认存在于第3连接层中的导电粒子的比例带来的影响。比例的数值为0的情形是导电粒子只存在于第1连接层中的情形,比例的数值为1的情形是导电粒子只存在于第3连接层3中的情形。

使用所得各向异性导电膜,与实施例1同样地得到了连接构造试样体。通过电子显微镜观察该连接构造试样体的连接部的截面,如图7所示,可确认在导电粒子的周围存在绝缘性树脂层。

对于所得连接构造试样体,如以下的说明,与实施例1同样地试验评价“最低熔融粘度”、“粒子捕获效率”和“绝缘性”。对于“导通可靠性”,如以下的说明进行试验评价。所得结果如表3所示。

“导通可靠性”

将连接构造试样体放置于85℃、85%rh的高温高湿环境下,以100小时的间隔取出,确认导通电阻的升高。将导通电阻超过50ω的时间作为发生不良的时间。实际应用上希望为1000小时以上。

[表3]

由表3的结果可知,通过使相邻的导电粒子之间的中央区域的光聚合性绝缘性树脂层厚度t1与导电粒子附近的光聚合性绝缘性树脂层厚度t2(参照图2b)的比例[t1/t2]为0.2-0.8,导通可靠性、绝缘性、粒子捕获效率的各项目均得到了良好的结果。另外,随着[t1/t2]的数值减小,特别是绝缘性有提高的倾向。

即使光聚合性绝缘性树脂层厚度t1设为0时(实施例9、13、17),如果使光聚合性绝缘性树脂层厚度t2的厚度较厚、优选比导电粒子直径的等倍数还大但低于3倍,更优选设定为1.25-2.2倍,则导通可靠性、绝缘性、粒子捕获效率的各项目均得到良好的结果。还可知,使光聚合性绝缘性树脂层厚度t2的厚度增厚,则全部导电粒子中的存在于第3连接层中的导电粒子的比例有增大倾向。可知即使全部导电粒子的过半数存在于第3连接层一侧,各向异性导电膜的性能也没有特别问题。

产业实用性

第1连接层被绝缘性的第2连接层和第3连接层夹持的3层结构的本发明的各向异性导电膜中,第1连接层具有导电粒子以单层在绝缘性树脂层的第3连接层一侧的平面方向上排列的结构,并具有相邻的导电粒子之间的中央的绝缘性树脂层厚度比导电粒子附近的绝缘性树脂层厚度减薄的结构。因此有导电粒子以单层排列的各向异性导电膜中可实现良好的连接可靠性、良好的绝缘性和良好的粒子捕获效率。由此,可用于ic芯片等电子部件与布线基板的各向异性导电连接。

符号说明

1第1连接层

1x第1连接层中固化率低的区域

1y第1连接层中固化率高的区域

2第2连接层

3第3连接层

4导电粒子

10光聚合性绝缘性树脂层

20透光性的转印模

21开口

22剥离膜

100各向异性导电膜。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1