结合有热成形能量吸收体的保险杠装置的制作方法

文档序号:3965840阅读:131来源:国知局
专利名称:结合有热成形能量吸收体的保险杠装置的制作方法
技术领域
本发明涉及车辆保险杠装置,尤其是涉及用于客车的结合有热成形能量吸收体的保险杠装置。
背景技术
现代保险杠装置被设计成在规定的行程上吸收最多的冲击能量。与此同时,它们被设计成负荷峰值最小化,并且以一种在经历车辆碰撞时促使发生均匀和可预测折皱的方式分配能量。对于能量吸收来说,每厘米的空间均非常重要,甚至是10毫米或者更小的空间。还有,能量吸收系统中的各个独立组成部分必须与其它能量吸收组成部分很好地组合在一起,例如金属的管状横梁和非管状沟槽、注模成形的“蜂窝”状能量吸收体、泡沫塑料的“块”状能量吸收体、液力减震器、皱缩塔(crush towers)和安装件、以及它们的各种组合。还有,必须保持重量较轻。再有,所希望的是保持能够定制在特定冲击区域(例如在车辆拐角或者在碰撞中部,比如发生了二次碰撞)的能量吸收。此外,保险杠装置中的所有组成部分必须具有柔性,并且能够与车辆前部的空气动力学流线形曲率(an aerodynamic sweeping curvature ofa vehicle front)一致。
值得注意的是,在用于现代客车的保险杠装置上,热成形部件尚未过多使用,因为在缓冲体工业中通常接受的是,能量吸收体必须是相对较深的部件(比如大约40毫米或者更深)并且包括相当大的壁厚(比如3毫米或者更厚),以便在冲击过程中提供良好的碰撞行程和能量吸收。还有,大多数由固体聚合物制成的注模成形能量吸收体是相对复杂的部件,带有起伏的表面、变化的壁厚以及不同的壁间距,以便在能量吸收体的不同区域中提供最佳的能量吸收。这一点与热成形部件相对,热成形部件基本上局限于相对较小的深度、相对恒定和相对较小的壁厚(或者至少在拉伸区域中具有较小的壁厚),并且没有底切/盲孔表面。由此,多年来,客车的初级设备制造商均避免使用热成形部件,尽管热成形模具通常成本较低、需要较短的订货至交货时间、提供更快的循环时间、具有较低的热能消耗、产生较小的废物以及工艺更为环保。在缓冲器设计方面的熟练技工显然没有完全认识到,当与其它能量吸收系统和组件组合起来时,热成形部件可以提供预料不到的附加益处。
因此,希望提供一种具有前述优点并且解决了前述问题的保险杠装置。

发明内容
在本发明的一个方面,一种保险杠装置包括横梁和一个热成形能量吸收体,其中热成形能量吸收体具有一个底部凸缘和垂直地形成于底部凸缘内的热成形皱缩盒(thermoformed crush boxes),皱缩盒具有至少一个平整侧壁和一个前壁,来形成盒子形状。
在本发明的另外一个方面,一种保险杠装置包括横梁和一个热成形能量吸收体,其中热成形能量吸收体具有一个底部凸缘和大体垂直地形成于底部凸缘内并且纵向细长的热成形皱缩盒。具体来说,所述皱缩盒具有最大深度小于35毫米的横剖面。
在本发明的另外一个方面,一种保险杠装置包括横梁和一个热成形能量吸收体,其中热成形能量吸收体具有一个底部凸缘和大体垂直地形成于底部凸缘内的热成形皱缩盒,皱缩盒的壁厚大约为3.0毫米或者更小,更为优选的是,小于约2.0毫米,特别是在热成形过程中受到拉伸的区域。
在本发明的另外一个方面,一种保险杠装置包括在其表面上带有凹槽的缓冲横梁,和一个具有底壁的热成形能量吸收体,其中所述底壁带有用于与所述凹槽配合的热成形功能部件。
在本发明的另外一个方面,一种保险杠装置包括具有一表面的金属管状缓冲横梁,一个具有选自于中空皱缩盒和泡沫塑料块中的一种或者两种的能量吸收块的第一聚合物能量吸收体,以及一个覆盖住第一聚合物能量吸收体的绝大部分的热成形第二聚合物能量吸收体。
在本发明的另外一个方面,一种保险杠装置包括具有一表面的缓冲横梁和一个覆盖住所述表面的能量吸收体。能量吸收体包括一块用于形成皱缩盒的热成形第一板材,其中皱缩盒带有用于吸收能量的侧壁,并且包括一块在特定部位连接或者熔接在第一板材上的第二板材,来至少在某些皱缩盒中形成截留空气的空穴。
在本发明的另外一个方面,一种提供冲击阻力的方法包括下述步骤提供一个保险杠装置,该保险杠装置包括一块带有用于形成皱缩盒的第一板材和用于在第一板材上的至少某些皱缩盒下方形成气穴的粘结第二板材。这种方法还包括在碰撞过程中吸收冲击,包括在第一步骤中至少部分地使得皱缩盒的侧壁发生折皱,来吸收一部分冲击能量,和在第二步骤中至少部分地使得气穴发生折皱,并且压缩其中的空气来吸收另外一部分冲击能量。
在一种较为具体的形式下,这种方法包括通过节流孔排出压缩空气。
在另外一种较为具体的形式下,这种方法包括壁恢复步骤,其中用于形成皱缩盒的壁返回至近似初始形状。
在本发明的另外一个方面,一种能量吸收体包括一块用于形成底壁的可热成形聚合物材料板。该板材包括大量热成形的中空能量吸收皱缩盒,这些皱缩盒从底壁上突伸出来。皱缩盒形成一个带有至少两种交替排布的不同高度的区域,从而使得在与物体发生碰撞的冲击行程初始阶段,较长的皱缩盒首先发生皱缩来提供第一层次的能量吸收,并且在冲击行程的后续阶段,较短的皱缩盒发挥作用并且发生皱缩来提供较高的第二层次能量吸收。
在本发明的另外一个方面,一种能量吸收体包括用于形成第一和第二底壁的第一和第二可热成形聚合物材料板。第一板材包括大量从第一底壁朝向第二底壁延伸的第一皱缩盒。第二板材包括大量从第二底壁延伸并且与第一底壁发生配合的第二皱缩盒,还包括大量用于与第一皱缩盒配合的第三皱缩盒。
在本发明的另外一个方面,一种能量吸收体包括一块用于形成底壁的第一可热成形聚合物材料板。大量的皱缩盒被形成于其中。这些皱缩盒均包括一个被构造成当受到冲击时吸收相当多能量的侧壁,还包括一个与底壁间隔开并且封闭住皱缩盒的第一端的底部凸缘。这些皱缩盒包括一个由底壁上的边缘材料形成的敞口第二端。一块第二板材被粘结在所述边缘材料上,并且覆盖住第二端,来在各个皱缩盒中形成一个气穴。利用这种方案,空气被截留在皱缩盒内部,以便使得在发生冲击时提供气垫作用。
在本发明的另外一个方面,一种用于车辆保险杠装置的能量吸收体包括第一和第二可热成形材料板,各个均具有一个底部凸缘和大体垂直地形成于相关底部凸缘内的热成形皱缩盒。第二板材上的至少某些皱缩盒与第一板材上的对应皱缩盒对齐,并且部分地装配入其内,来在它们之间截留空气。这些皱缩盒以及截留的空气在发生冲击时提供能量吸收作用。
在本发明的其他方面,公开了与前述构思相关的方法,并且相信能够获得专利权。
对于本技术领域的普通技术人员来说,通过参照附图阅读下面的描述以及权利要求,本发明的这些以及其他特征、目的和优点将变得明了。


图1是结合有一对安装件、一根管状横梁以及一个热成形能量吸收体的保险杠装置的透视图;图2-5分别是图1中所示热成形能量吸收体的透视图、俯视图、前视图以及端部视图;图6-7分别是沿着图3中的线VI-VI和VII-VII的剖面;图8是一个类似于图1的第一改良保险杠装置的局部透视图;
图9是一个类似于图1的第二改良保险杠装置的分解透视图,但是示出了位于图1中所示横梁与热成形能量吸收体之间的选择性中间能量吸收体;图10是图9的剖视图;图11是一个类似于图10的第三改良保险杠装置的剖视图,但是包括一个结合有气垫部件的双层热成形能量吸收体;图11A是一个沿着图11中的线XIA-XIA的剖视图;图12是一个类似于图11的第四改良保险杠装置的剖视图,但是具有一个改良的能量吸收体;图12A是一个沿着图12中的线XIIA-XIIA的剖视图;图13是一个类似于图1的第五改良能量吸收体的剖视图,但是具有一个带有三层阶梯状构造的侧壁;图14-16均为类似于图13的剖面,示出了当图13中所示能量吸收体受到冲击时的皱缩次序;图17-20是一个类似于图11的第六改良能量吸收体的剖面,图18-20示出了当图17中所示能量吸收体受到冲击时的皱缩次序;图21是一个图表,示出了一个力与变形量的曲线,该曲线示出了力和能量吸收在皱缩距离上的阶梯状增加,还示出了在冲击体解除之后能量吸收体的恢复;图22-22A均为剖视图,示出了一个本发明中的结合有热成形能量吸收体的前侧保险杠装置;图23是图22中所示热成形能量吸收体的侧视图;图24是图23中所示能量吸收体中的一块聚合物板材的平面图,所述板材包括一组热成形的皱缩盒;图24A是沿图24中的线IIIA-IIIA截取的剖视图;图25-26分别是一种改良能量吸收体的平面图和侧视图,而图26A是图26中一部分的放大剖视图;图27示出了一个第二改良能量吸收体;图28是图23中所示能量吸收体的放大局部剖视图;
图29是另外一种改良能量吸收体的透视图,包括一组热成形的皱缩盒;图30-37示出了其他的改良热成形能量吸收体,图30-32和36-37是平面图,而图33-35是侧向剖视图;图33A是另外一种改良能量吸收体的剖视图,包括一个由两块图33中所示板材形成的层压组件,带有对置的互配热成形皱缩盒和两块用于在皱缩盒中形成截留空气的背板;而图38是另外一种改良能量吸收体的剖视图,包括第一和第二热成形板材,带有以热真空方式形成于其中的皱缩盒,这些皱缩盒被设置成相互配合并且在它们之间截留空气。
具体实施例方式
保险杠装置20(图1)包括一个经辊轧且为掠过式(rollformedandswept)的B形管状横梁21,带有适合于固连在车架前侧栏杆上的安装件21′,和一个热成形能量吸收体22。能量吸收体22具有一个底部凸缘24,和多个由底部凸缘24中的材料热变形而成的热成形皱缩盒(crush boxes)23,比如通过真空成形工艺。皱缩盒23均具有平整的能量吸收侧壁25-28(图4)和一个前壁29,用以形成一个底部凸缘侧敞口的盒子形状。皱缩盒23的厚度(即高度)大约为从10毫米至60毫米中的任意值,并且优选的是高度大约为20毫米至30毫米,这取决于随着横梁21环绕在车辆前侧在横梁21前方的空间。真空形成的能量吸收体的形状被选择成在横梁21上支撑起汽车仪表板。可以想到的是,不同形状的能量吸收体22可以与同一根横梁21匹配,来在不同车型上提供汽车仪表板支撑。由于用于加工热成形部件的成本较低,而用于加工横梁21和其他注模成形能量吸收体的成本较高,所以这是一个惊人的优点。
皱缩盒23的壁25-29可以具有任意厚度的壁厚,比如大约为从1毫米至3毫米,但是优选的是,具有大约2.0毫米或者更小的壁厚,或者更为优选的是具有大约1.5毫米或者更小的壁厚,并且可以具有大约1.0毫米或者更小的壁厚。尤其是,在真空辅助式热成形过程中受到拉伸的壁的厚度可以明显减小,特别是以尖锐的半径减小。值得注意的是,为了更好地图示本发明,在图1-7中深度和壁厚被以某种程度放大了。
热成形能量吸收体22可以由任何可热成形的材料制成,但是优选的是由聚乙烯聚合物支撑,比如高密度聚乙烯(“HDPE”),其具有记忆能力,并且在车辆冲击过程中发生皱缩之后,将朝向初始的热成形形状恢复和回弹。还可以想到的是,尽管用于注模部件的加工成本明显高于用于热成形部件的加工成本,但是仍然可以注模出一种类似于所图示的能量吸收体22的形状。底部凸缘24具有热成形功能部件32′(图2),它们与横梁21表面上的两条纵向沟槽或者凹槽35中之一发生配合,由此有助于将能量吸收体22保持在横梁21上。通过改变材料厚度、材料类型、拐角半径以及其他因素,能量吸收体22可以提供用于系统的最佳能量吸收量。
保险杠横梁21可以具有多种不同的形状和轮廓。所图示的横梁21呈“B”形状,但是可以想到的是,其可以呈“D”形状、“C”形状或者其他形状。所图示的横梁经过辊轧并且呈管状,基于其强度和相对较低的成本,这是一种优选模式。
能量吸收体22(图3-4)包括由皱缩盒23的上侧和下侧水平列。上侧和下侧皱缩盒23在竖向高度上大致相等,并且大致等于它们后方的“B”横梁21上的相应顶部和底部管状部分。由此,水平延伸的顶壁27和底壁28大体对准,或者略微位于它们后方的“B”横梁21上的相应管状部分的水平顶壁和底壁内侧。还有,为了提高强度和稳固性,壁27-28(并且有可能还有壁25-26)均经过波纹或者波浪式处理。
皱缩盒23可以在长度、高度以及大小上发生变化,以便优化在保险杠装置的特定区域中的皱缩强度。例如,在图3-4中示出的接近横梁21端部的皱缩盒23比中间位置的皱缩盒23长。还有,所示出的皱缩盒23可以以相等或者不等的量间隔开。皱缩盒23均通过互连跨接片(strap)32间隔开。所示出的跨接片32包括两个U形凹槽或者弓形功能部件32′(图4),它们从底部凸缘22向后延伸,并且适合于以这样一种方式匹配地装配入横梁21的前壁29上的相应凹陷沟槽35(图1)内,即有助于精确和稳固地将能量吸收体22定位在横梁21上。具体来说,功能部件32′有助于防止能量吸收体22在产生冲击过程中不希望地上、下滑动。可以想到的是,跨接片32可以包括其他功能部件来配合和定位在横梁21上,比如钩或者球形棘爪。沟槽35横跨横梁21的前壁29纵向延伸,并且大体位于横梁21上的相应顶部和底部管状部分的前方。优选的是,壁25-29保持相对平整,并且皱缩盒23具有平行的壁或者呈棱锥形或梯形,但是需要注意的是,由于固有的热成形性能,所述壁将有些变形。还有,壁必须具有一定拔模角度,比如1度至2度,以有助于所述热成形工艺。还有,需要注意的是,壁25-29通过小的倒圆相互接合起来或者接合在底部凸缘24上,所述小的倒圆在热成形工业中是必需并且广泛采用的,以防止在热成形工艺中发生撕裂并且有利于对材料进行拉伸。一般的倒圆半径至少大致等于材料的厚度。但是,在工业上广泛接受的是,根据需要提供较大的半径,来防止壁在高拉伸区域中变得过薄。
在图8-20中示出了其他经过改良的保险杠装置和能量吸收体。在这些系统和组成部分中,许多相同或者类似的组成部分、部件以及功能部件利用相同的附图标记加以标识,但是添加了字母“A”、“B”、“C”等等。这样做减少了不必要和冗余的讨论。但是,需要注意的是,有时两个相似的热成形板材被粘结在一起,将使用不同的附图标记以避免与两块板材发生混淆(例如参见图11和38)。
保险杠装置20A(图8)包括一根“B”横梁21A和一个位于其表面上的热成形能量吸收体22A。在能量吸收体22A中,在前视图中,皱缩盒23A呈“I”形状或者横向的“H”形状。这样就增加了各个皱缩盒23A的强度和稳固性。可以想到的是,皱缩盒23A也可以呈其他形状,比如“T”、“X”、“C”、“O”或者“N”形。值得注意的是,能量吸收体22A的表面或者前壁29A大体上平整,但是可以经过竖向和水平加工,以便与汽车仪表板的轮廓相匹配,比如在横梁21A的端部附近具有锥度。还有,跨接片32A为能量吸收体22A提供了一定的纵向柔性。利用这种方案,前壁29A能够更好地与现代客车上常用的流线形曲线形状相匹配。
保险杠装置20B(图9)包括一根B状横梁21B(或者一根D状横梁21B′),一个热成形能量吸收体22B,以及一个呈能量吸收体37B、37C或者37D中之一形式的第二中间能量吸收体。能量吸收体37B、37C或者37D能够互换,并且提供热成形能量吸收体22B的优点。各个能量吸收体37B、37C、37D均包括一个被加工成能够装配入横梁21B(或者21B′)上的沟槽状凹槽35B(或者35B′)内的凸脊。能量吸收体37B包括一个整体式注模组成部分38B,该注模组成部分38B由一种可注模成形的材料制成,比如XENOY(由通用公司生产),用于形成盒状能量吸收块39B并且将U性跨接片40B互连起来,还包括多个位于能量吸收块39B之间的能量吸收泡沫塑料块41B。盒状块39B均为中空的,并且包括敞口的后侧,从而使得它们可以通过简单的单次注模工艺制成。泡沫塑料块41B紧密地装配在盒状块39B之间。热成形能量吸收体22B形成了一个用于封闭住中间能量吸收体37B的表面的帽。能量吸收体37C是一个完全整体式注模组成部分,并且包括向后敞口的盒状块39C,并且还包括向前敞口的区域42C,将盒状块39C互连起来。中间能量吸收体37D全部由泡沫塑料制成,并且适合于取代能量吸收体37C。替代性地,所述泡沫塑料能量吸收体可以被制成邻接注模能量吸收体37C的表面。正如可以看到的那样,可以在横梁21B与热成形能量吸收体22B之间设置多种不同的中间能量吸收组成部分和混合物。
图10示出了一个保险杠装置20E,其结合有一根D状横梁21E,一个注模中间能量吸收体37E以及一个热成形能量吸收体22E,同时TPO前侧汽车仪表板43E位于其上。有益的是,带有皱缩盒(23E)的不同热成形能量吸收体(22E)可以与横梁21E和主要能量吸收体37E一同使用,容许同一根横梁21E和能量吸收体37E被应用在具有不同形状的汽车仪表板(43E)的车型上。
具体来说,在不同的车辆平台或者车型上使用相同的注模部件和/或横梁潜在地具有巨大优势。热成形能量吸收体22E被用来沿着不同的汽车仪表板填充各种尺寸的间隙,以便适应不同式样的表面。所述热成形能量吸收体尤其适合于满足这种需求,因为加工成本相对较低,并且可以相对快速地制得,还有,所述热成形能量吸收体本身可以具有非常低的成本和重量,这些取决于设计以及其他条件。可以想到的是,热成形能量吸收体22E可以由前侧汽车仪表板43E保持在中间能量吸收体37E表面上的合适位置处。替代性地,可以想到的是,可以使用各种固连机构来将热成形能量吸收体22E固连在注模中间能量吸收体37E上,比如通过在中间能量吸收体37E上设置钩37E′,其中钩37E′能够与热成形能量吸收体22E上的孔或者表面功能部件发生配合,和/或通过在嵌套表面上设置其他诸如棘爪这样的凸凹接头和摩擦配合部、热变形固连结构、粘结结构以及其他固连体系。需要注意的是,图10中所示的保险杠装置20E非常环保,并且使用了可回收的组成部分,尤其是既不包括热固性材料,也不包括泡沫塑料材料,它们均难以回收。还有,所述热成形能量吸收体可以轻易地与其他材料分离开,使得其更便于回收。
保险杠装置20F(图11-11A)包括一根D形横梁21F和一个位于其表面上的能量吸收体50F。能量吸收体50F(图11-12)包括一块热成形板材22F,并且还包括一块连接在热成形板材22F上的第二板材51F,来在皱缩盒23F的下方形成空气截留凹腔。两块板材22F和51F在温度很高时被放置在一起,并且在局部进行压缩来熔接和/或粘结在一起,以便形成气密性接缝。尤其是,板材51F具有一个底部凸缘52F以及若干个球形枕状区域53F,它们部分地延伸入板材22F上的皱缩盒23F内。在各个枕状区域53F上,形成有一个或者多个小的通气孔54F。板材51F可以具有与板材22F相似的厚度,或者可以明显较薄,比如0.5毫米或者甚至是0.1毫米。优选的板材厚度取决于功能需求以及针对板材51F的材料选择。需要注意的是,能量吸收体22F可以仍旧在皱缩盒22F之间具有跨接片(参见图1中的跨接片32),其中这些跨接片与横梁21F的表面上的凹槽/沟槽(35)发生配合,但是为了更好地示出由板材22F和51F构成的本发明,在图11中没有示出这些跨接片。
可以想到的是,当保险杠装置20F受到冲击时,板材51F将如下所述保持其形状和功能。在冲击的初始阶段,遭受冲击影响的板材22F上的皱缩盒23F开始发生折皱,促使空气在凹腔52F内部受压。随着压力升高,空气开始通过通气孔54F逃逸。随着板材22F的前壁29F触及枕状区域53F的前表面,枕状区域53F的侧面发生膨胀,并且与板材22F上的皱缩盒的壁发生配合,并且提供支撑作用。在进一步皱缩时,板材22F和51F一同发生折皱(collapse)。值得注意的是,在折皱的后续阶段,板材22F和51F的壁相互支撑,并且提高了皱缩盒23F的总体强度。优选的是,板材22F和51F均由具有记忆能力的材料制成,从而使得它们在冲击结束之后恢复它们的形状。
能量吸收体22F′(图12-12A)类似于图11,但是枕状区域53F′呈盒形或者梯形,以便装配入并且与板材22F′上的皱缩盒23F′的侧壁(25F′-28F′)的下半部分相匹配。由此,在皱缩冲击的最后阶段,板材51F′的壁与能量吸收体22F′的壁25F′-28F′发生配合并且对其提供支撑和补强。
对于将空气截留在热成形板材内部或者它们之间的构思来说,可以想到多种不同的形状和方案。不仅可以改变两块板材的材料和厚度,而且可以改变皱缩盒的形状、枕状区域的形状以及通气孔的形状、尺寸和数目。还可以想到的是,除了空气之外,还可以在所述凹腔内放入不同的填料。但是,在仍旧保持有竞争力的重量较轻系统的同时,空气的重量轻和成本低难以比拟。
图13示出了一个保险杠装置20G,带有一根横梁21G和一个热成形能量吸收体22G,其中侧壁26G-28G包括由偏置部61G和62G连接起来的平整部分58G、59G以及60G。一个前壁29G将各个皱缩盒23G的前侧封闭起来。偏置部61G-62G促使平整部分58G-60G分段并且以一种可预测的能量吸收方式套叠在一起,如图13-16中所示。如图所示,部分58G和59G首先套叠在一起(图14),并且随后部分59G和60G套叠在一起。此后,整个热成形能量吸收体22G折皱至一种超薄状态,在这种状态下其具有非常小的厚度。发生了折皱的系统的薄度被认为是能量吸收体22-22G的一个重要性能。由于制取所述热成形能量吸收体的板材相对较薄,所以其折皱状态实际上仅为原始板材厚度的两倍或者三倍左右。由此,其通过填充用于最大能量吸收量的空间以及提供用于吸收冲击能量的最大行程,发挥了其所占据的有限空间的“全部优点”。
图17示出了另外一个保险杠装置20H,具有一根横梁21H和一个类似于能量吸收体22G的热成形能量吸收体50H,但是具体来说,当产生冲击时,结合有一个类似于板材51F(图11-12)的空气截留板材51H。板材22H向下折皱至板材51H的高度,同时所截留的空气通过通气孔54H排出。接着,板材22H和51H一同发生折皱(图18-20),提供了较高的能量吸收率。
图21示出了能量吸收体22G的三步折皱的力-挠曲量曲线。利用能量吸收体50H,将获得一条类似的台阶式能量吸收图线,尽管台阶将处于不同的高度并且将受到由选出的截留空气散失的能量的影响。
所图示的方案包括一个车辆前端119(图22),其具有一个保险杠装置120,该保险杠装置120包括一根强化横梁121、一个主要能量吸收体122、以及一个热成形的辅助能量吸收子组件123,它们均由汽车仪表板124覆盖住。热成形的能量吸收子组件123提供了对所述保险杠装置的低成本补充式能量吸收,并且当微调用于特定车型的保险杠装置时非常有用。这样就潜在地使得同一种保险杠装置可以被应用在不同的车辆上,但是添加了热成形能量吸收子组件123用于特定车辆所需的“额外”能量吸收能力。还有,热成形能量吸收子组件123可以被制成相对较薄,比如30毫米至20毫米或者更薄,或者可以被制成从一端向另外一端逐渐减小,比如热成形能量吸收予组件123可以被应用在此前被浪费并且没有被用于吸收能量的微小“空置”区域中。再有,热成形能量吸收子组件123可以被用作汽车仪表板的支撑部分,用以支撑起具有不同外露表面和轮廓的汽车仪表板,同时仍旧容许在其下方使用相同的缓冲横梁和主要能量吸收体。值得注意的是,根据所希望的能量吸收量和汽车仪表板支撑状况,热成形能量吸收子组件123可以潜在地被直接应用在强化横梁121(图22A)上。还有,图22和22A中所示系统可以被应用在车辆的前端或者后端上,并且可以应用在其他需要在产生冲击时吸收能量的应用领域。
如前所述,可以想象的是,可以利用本技术构思构造出多种不同的形状、布置以及构造。因此,尽管在此并未明确地描述每一种可能的组合,但是希望这些描述能够涵盖所有这些组合以及变型,只要它们可以从这些描述中合理地得知。鉴于此,下述材料被用来描述若干种不同的单块热成形板材;并且由此被用来描述两块带有能量吸收皱缩盒的互配板材,当产生冲击时,这两块板材相互配合并且相互作用;并且被用来描述两块粘结在一起用以形成空气截留皱缩盒的板材。利用不同的方案,可以获得多种不同的力-挠曲量曲线,包括阶梯式能量吸收曲线,和在产生冲击时吸收相当大部分能量的能量吸收区域。
能量吸收子组件123(图23)包括两块热成形聚合物材料板材125和125A,每块板材分别形成一个底壁126和126A(也参见图24-25),带有多个热成形于其中的皱缩盒127和/或127A,并且所述能量吸收子组件123还包括一对固连在板材125和125A背面的背板128。板材125和125A将首先描述,接着描述它们与背板128的组合。此后,将描述板材125和125A的若干种变型。对于类似和/或相同的特征和方面,将通过利用字母“A”、“B”等等对板材125的变型进行描述。
板材125上的各个皱缩盒127(图24和24A)均包括一个由底壁126的边缘材料131热成形的侧壁130。所述热成形材料形成了一个进入皱缩盒127中部的开口132,和一个与侧壁130间隔开并且封闭住皱缩盒127的远端的底部凸缘133。值得注意的是,在热成形工艺领域中已知的是,在由侧壁130和底部凸缘133形成的拐角处引入一个倒圆(并且也在由侧壁130和底壁126形成的拐角处引入一个倒圆),以便避免在热成形过程中对聚合物板材造成过拉伸、弱化和/或撕裂。可以想到的是,侧壁130可以具有任何不同的形状,包括圆柱形、截头圆锥形、矩形、卵形、O形、棱锥形、“X”形、“I”形或者任何其他所希望的结构形状。所图示能量吸收板材125上的底部凸缘133均呈杯形,并且具有相同的高度和尺寸。板材125上的皱缩盒127的图示方案形成了一个矩形阵列,并且看起来非常象一个杯形蛋糕烘烤盘。可以想到的是,也可以是其他图案和皱缩盒形状(比如侧面平整的棱锥形)。根据需要,可以在各个皱缩盒127的顶部和侧面上包括一个孔135,用于供空气流动或者进行微调来提供最佳的皱缩强度。还有,可以改变所述板材的厚度和材料来对能量吸收体进行微调,以便具有所希望的力-挠曲量曲线和冲击能量吸收量。
能量吸收板材125A(图25-26)包括一个由皱缩盒127A形成的类似阵列,该阵列与板材125上的皱缩盒127的图案和尺寸相同地加以匹配,并且在该阵列内部还散布有由较高皱缩盒127A′形成的第二图案。所图示的皱缩盒127A′大约是皱缩盒127A高度的两倍,并且被加工和定位成装配在皱缩盒127之间。利用这种方案,皱缩盒127A′的顶部与板材125的底壁126发生配合。还有,较短的皱缩盒127A与皱缩盒127的端部发生配合(参见图28)。如图28中所示,两个能量吸收体123和123A可以被设置成它们的皱缩盒126相互装配在一起,以便使得它们的侧壁130和130A相互配合并且相互支撑(参见图24中的虚线,示出了位于一块匹配板材上的皱缩盒,这些皱缩盒与所图示板材上的皱缩盒126相互装配并且相互支撑)。值得注意的是,皱缩盒127、127A、127A′中的任何一个或者多个均可以被制成更短或者更长,以获得阶梯式力-挠曲量曲线。由此,根据所经受的冲击行程的长度,提供不同层次的能量吸收。这是一个非常有用的性能,并且容许保险杠装置被微调至与特定的功能需求相匹配。
环绕板材125上的各个皱缩盒127,一块背板128(图27)被(任选性地)固连在边缘材料131的后表面上,覆盖住皱缩盒127的敞口侧。这样将在皱缩盒127的空腔132内部截留空气,在产生冲击时形成一个气垫。在背板128上(或者在侧壁上)形成有一个孔135,来在产生冲击时容许空气以一种受控方式逃逸,从而使得皱缩盒127不会爆炸,除非存在剧烈冲击。孔135可以被制成任何所希望的尺寸,并且如果需要,可以使用多个孔。还有,可以想到的是,可以在背板128上形成沟槽132′(图27),来使得从一个皱缩盒127中选出的空气与相邻皱缩盒127连通。这样能够分散应力,以及提供一个“流体”气垫。值得注意的是,所述沟槽可以被加工成能够控制气流的速度,还能够控制气流的行进路线。
板材125、125A和128可以为任何材料或者具有任何厚度。在图23所示出的方案中,可以想到的是,板材125和125A将具有足够的强度和壁厚来在它们的侧壁130和130A发生折皱时提供良好的能量吸收,比如大约1毫米至4毫米的壁厚,或者优选的是大约2毫米至2.5毫米的壁厚,并且将是一种可以轻易进行热成形或者真空成形的冲击吸收材料。但是,根据需要,板材125和125A可以被注模或者以其他方式制成具有更厚或者更薄的壁。可以想到的是,所图示的板材125和125A将具有大约20毫米至30毫米的总厚度,但是它们的总厚度当然可以根据需要发生变化。还可以想到的是,背板128和128A将具有一个非常薄的壁,比如小于1毫米,优选的是小于0.5毫米,并且将是一种能够半拉伸且能够弯曲的材料。由于背板128置靠在一根缓冲横梁121的表面上,或者置靠在一个主要能量吸收体122的表面上(或者当多个子组件123被层叠在一起时,置靠在另外一块背板128上),背板128无需达到2毫米或者更厚……尽管根据需要也可以这样做。所图示的侧壁130大约以90度延伸至底壁126,但是实际中,包括一个小的拔模角度(比如大约为1度)来有利于所述热成形工艺。侧壁130可以包括更大的角度,但是优选的是侧壁130的倾斜角度不超过45度。还可以想到的是,板材125、125A、128中之一(或者多个)可以包括横向延伸的凸缘和向后延伸到横梁121(图22A)的顶表面和底表面上的钩或者摩擦垫,以便将子组件123摩擦配合并且保持在横梁121或者主要能量吸收体122(图22)上,或者根据需要,摩擦配合并且保持在汽车仪表板124上。还有,皱缩盒127的高度可以发生变化来获得一个锥形或者空气动力学形状,以便更好地与特定轮廓相匹配,比如流线形保险杠表面。
板材125B-125H可以与板材125或者125A互换。为了简化讨论过程,利用相同附图标记标识相同或者相似的特征。
板材125B(图29)具有带有侧壁130B的甜甜圈形皱缩盒127B,但是具有一个经过改良的底部凸缘133B,其中底部凸缘133B的中心部分140B被反向热成形为使得其中心部分140B近乎与底壁126B共面。一个内侧壁141B被制成大体平行于外侧壁130B延伸。还可以想到的是,中心部分140B可以仅部分变形,以便使得其将不与底壁126B共面……在这种情况下,板材125B将提供一种阶梯式能量吸收(力-挠曲量曲线)。
板材125C(图30)示出了这样一种情形,其中皱缩盒127C由底壁126C形成,并且具有相对紧密地设置在一起的内侧壁141C和外侧壁130C。板材125D(图31)类似于板材125C,但是皱缩盒127D的内侧壁141D和外侧壁130D离得相对较远。板材125E(图32)示出了这样一种情形,其中中心部分140E仅部分地凹陷,并且并非凹陷至与底壁126E共面。板材125F(图33)类似于板材125E,但是在板材125F中,内侧壁141F与外侧壁130F之间的区域142F在中途与底壁126F间隔开,并且中心部分的中心区域或者端部140F比区域142F更为远离底壁126F地被热成形。由此,由中心区域140F和内侧壁141F形成一个突起尖端143F。子组件123F′(图33A)包括一对板材125F,同时位于一块板材上的外侧壁130F配合并且支撑起位于另外一块板材125F上的内侧壁141F。板材125G(图34)类似于板材125F,但是在板材125G中,其尖端143G具有一个非常宽的端部144G。
板材125H(图36)示出了这样一种状况,其中在底壁126H上形成有两种不同形状的皱缩盒127H和127H′。第一皱缩盒127H呈圆柱形状,并且延伸至第一高度。第二皱缩盒127H′呈一个更短的圆柱形状,并且包括一个延伸高度小于皱缩盒127H的突起尖端143H。由此,板材125H将趋于产生一条三个台阶或者三个层次的皱缩曲线(力-挠曲量曲线),每个层次均在前一层次的基础上增大强度。在板材125H中,皱缩盒127H和127H′具有间隔开的外侧壁130H。但是可以想到的是,板材125I(图37)可以被构造成使得侧壁130I在部位130I′处相互支撑,如同无需第二板材形成在单块板材上一样。
图38示出了另外一种能量吸收体200,其中第一板材201和第二板材202均被热成形为具有多少好象杯形蛋糕盘的形状。具体来说,板材201具有一个底壁203,该底壁203带有用于形成具有高度205的皱缩盒的塔状棱锥形突起204,并且板材202具有一个底壁206,该底壁206带有用于形成具有较低高度208的皱缩盒的塔状突起207。若干(或者全部)突起207利用一种LEGOTM状结构咬合或者摩擦装配到突起204内,以便形成气垫空穴210。可以在板材201或者202中之一上形成一个孔211,来在产生冲击时容许空气逃逸。替代性地,空气可以在突起的拐角处逸出。利用这种方案,所述能量吸收体提供了一种阶梯状能量吸收,并且能够在冲击物体解除之后恢复。值得注意的是,突起204和207的侧壁不仅具有一个拔模角度来容许进行热成形,而且还使得它们在冲击过程中进一步配合,来更为紧密地封闭截留在它们之间的空气。还有,所述壁相互支撑来提供额外支撑,以便防止在产生冲击时永久性皱缩。这种内壁支撑仅在高度205的一部分上延伸(即取决于较低的高度208),以便使得其在产生冲击时形成一种阶梯式能量吸收。
总而言之,热成形能量吸收体可以由单块板材制成,带有通过真空成形工艺或者其他热成形技术而形成皱缩盒。可以想到的是,所述皱缩盒可以呈任何形状,包括“杯形蛋糕盘”形状,或者其他更为复杂的杯子或者盒子形状。可以想到的是,所述皱缩盒将由在冲击结束之后能够恢复的材料制成,尽管这一点并非是必需的。所述能量吸收体可以利用除热成形之外的其他加工方法制成,比如注模工艺。所述能量吸收体可以被制成提供一条单阶梯能量吸收曲线(力-挠曲量曲线),或者可以提供一种阶梯式能量吸收。所述板材可以被制成横跨强化(金属)横梁(或者主要能量吸收体)的表面发生弯曲,来与流线形曲率相匹配,并且可以被构造成带有诸如钩状凸缘160(图22A)这样的凸缘,其中钩状凸缘160与横梁121上或者主要能量吸收体122上的孔或者凹槽162发生配合,来咬固到位。
所述能量吸收板材可以通过添加背板来截留空气而进行改良,以便使得所述板材在产生冲击时提供一种气垫作用。替代性地,通过将所述板材直接固连在横梁(或者一个汽车仪表板)上,同时所述皱缩盒保持处于封闭状态,那么可以省除所述背板。可以设置孔和/或沟槽来控制在冲击过程中从皱缩盒流出的气流,并且使得排出的空气与其他皱缩盒连通。
两块带有相互配合并且相互支撑的皱缩盒的对置板材可以被用作一个层压子组件。所述皱缩盒可以形状相同,或者形状不同但是相互匹配。除了恰好两块板材之外,可以添加其他的板材层。所述板材最好由一种能够在冲击结束之后恢复的材料制成,并且仍旧便于成形。
在前面的描述中,本技术领域中的熟练人员将会轻易明白,在不脱离在此所公开的技术构思的条件下,可以对本发明进行改进。这种改进应该被认为包括在所附权利要求中,除非这些权利要求利用它们中的语句以其他方式明确表述。
权利要求
1.一种保险杠装置包括横梁;和一个热成形能量吸收体,具有一个底部凸缘和垂直地形成于底部凸缘内的热成形皱缩盒,所述皱缩盒具有至少一个平整侧壁和一个前壁,来形成盒子形状。
2.如权利要求1所述的保险杠装置,其特征在于,所述至少一个侧壁包括大体处于垂直关系的侧壁。
3.如权利要求1所述的保险杠装置,其特征在于,所述侧壁中对置侧壁大体平行,但是具有模锻斜度来有利于成形这些部件。
4.如权利要求1所述的保险杠装置,其特征在于,所述热成形能量吸收体包括一种具有记忆能力的材料,所述记忆能力会促使这种材料在冲击结束之后恢复。
5.如权利要求4所述的保险杠装置,其特征在于,所述材料为聚乙烯。
6.如权利要求1所述的保险杠装置,其特征在于,所述至少一个侧壁包括一个用于限定出第一平面的第一部分,一个用于限定出平行于第一平面的第二平面的第二部分,以及一个偏置的连接部分,当此保险杠装置受到冲击时,该偏置的连接部分促使所述第一和第二部分相互套叠起来。
7.如权利要求1所述的保险杠装置,包括一块粘结在所述热成形能量吸收体上的板材,该板材具有用于在所述皱缩盒下方形成填充有空气的气垫空穴的部分。
8.如权利要求7所述的保险杠装置,其特征在于,所述板材在各个空穴上包括至少一个受约束的空气释放口。
9.如权利要求1所述的保险杠装置,在所述横梁和能量吸收体上包括匹配表面,用于在无需独立紧固件的条件下将所述能量吸收体摩擦保持在所述横梁上。
10.一种保险杠装置,包括横梁;和一个热成形能量吸收体,具有一个底部凸缘和大体垂直地形成于底部凸缘内并且纵向细长的热成形皱缩盒。
11.如权利要求10所述的保险杠装置,其特征在于,所述皱缩盒包括大体平整并且大体平行的对置壁,但是对置的壁具有对置的模锻斜度。
12.如权利要求11所述的保险杠装置,其特征在于,所述皱缩盒具有最大厚度大约为35毫米的横剖面。
13.如权利要求12所述的保险杠装置,其特征在于,至少在某些部位的最大深度大约为25毫米。
14.如权利要求13所述的保险杠装置,其特征在于,所述深度变化至大约为10毫米的最小深度。
15.一种保险杠装置,包括横梁;和一个热成形能量吸收体,具有一个底部凸缘和皱缩盒,这些皱缩盒带有大体垂直地形成于底部凸缘内的平行侧壁,这些侧壁具有模锻斜度,以便容许利用真空成形工艺制取。
16.如权利要求15所述的保险杠装置,其特征在于,所述壁厚小于约2.0毫米。
17.如权利要求15所述的保险杠装置,其特征在于,所述热成形能量吸收体包括一种具有记忆能力并且将在皱缩之后恢复至接近初始形状的材料。
18.如权利要求17所述的保险杠装置,其特征在于,所述材料为聚乙烯。
19.一种保险杠装置,包括在其表面上带有凹陷特征的缓冲横梁;和一个具有底壁的热成形能量吸收体,所述底壁带有用于与所述凹槽特征配合的热成形特征。
20.如权利要求19所述的保险杠装置,其特征在于,所述凹槽特征包括一条形成于所述横梁的所述表面上的纵向延伸沟槽。
21.一种保险杠装置,包括具有表面的金属管状缓冲横梁;一个具有选自于中空皱缩盒和泡沫塑料块中的一种或者两种的能量吸收块的第一聚合物能量吸收体;以及一个覆盖住第一聚合物能量吸收体的绝大部分的热成形第二聚合物能量吸收体。
22.如权利要求21所述的保险杠装置,其特征在于,所述第一和第二聚合物能量吸收体均包括匹配表面,这些匹配表面摩擦地和制动地接合,来将这些能量吸收体保持在一起。
23.一种保险杠装置,包括;具有表面的缓冲横梁;和一个覆盖住所述表面的能量吸收体,该能量吸收体包括一块用于形成皱缩盒的热成形第一板材,其中所述皱缩盒带有用于吸收能量的侧壁,并且包括一块在特定部位连接在第一板材上的第二板材,来至少在某些皱缩盒中形成截留空气的空穴。
24.如权利要求23所述的保险杠装置,其特征在于,所述第一板材包括聚乙烯材料。
25.如权利要求23所述的保险杠装置,其特征在于,所述第一板材由一种具有记忆能力的材料制成,以便使得所述皱缩盒的侧壁在皱缩冲击结束之后恢复。
26.一种提供冲击阻力的方法,包括下述步骤提供一个保险杠装置,该保险杠装置包括一块带有用于形成皱缩盒的第一板材和用于在第一板材上的至少某些皱缩盒下方形成气穴的粘结第二板材;和在碰撞过程中吸收冲击,包括在第一步骤中至少部分地使得皱缩盒的侧壁发生折皱,来吸收一部分冲击能量,和在第二步骤中至少部分地使得气穴发生折皱,并且压缩其中的空气来吸收另外一部分冲击能量。
27.一种能量吸收体,包括一块用于形成底壁的可热成形聚合物材料板,该板材包括大量由所述底壁热成形并且从所述底壁上突伸出来的中空能量吸收皱缩盒,这些皱缩盒形成一个带有至少两种交替排布的不同高度的区域,从而使得在与物体发生碰撞的冲击行程初始阶段,较长的皱缩盒首先发生皱缩来提供第一层次的能量吸收,并且在冲击行程的后续阶段,较短的皱缩盒发挥作用并且发生皱缩,来提供较高的第二层次能量吸收。
28.如权利要求27所述的能量吸收体,其特征在于,较长的皱缩盒包括以第一间距与所述底壁间隔开的第一凸缘,并且第一壁支撑起这些第一凸缘,较短的皱缩盒包括以与第一间距不同的第二间距与所述底壁间隔开的第二凸缘,并且第二壁支撑起这些第二凸缘;由此在冲击行程的第一阶段,由于所述第一凸缘首先发挥作用并且第一壁开始受到压缩,所述能量吸收体提供一条第一力-挠曲量曲线,并且在冲击行程的第二阶段,由于所述第一和第二凸缘均发挥作用并且第二壁受到压缩,所述能量吸收体提供一条更大的第二力-挠曲量曲线。
29.如权利要求27所述的能量吸收体,其特征在于,所述大量的能量吸收皱缩盒包括含有所述第一凸缘的第一皱缩盒和含有所述第二凸缘的第二皱缩盒,第一和第二皱缩盒在所述底壁上横向间隔开。
30.如权利要求27所述的能量吸收体,其特征在于,所述第一和第二皱缩盒单独地形成于所述底壁上,并且沿着平行于所述底壁的方向相互间隔开。
31.如权利要求27所述的能量吸收体,其特征在于,所述底壁发生弯曲来与缓冲横梁的流线形前表面相匹配。
32.如权利要求27所述的能量吸收体,其特征在于,所述底壁具有柔性并且能够弯曲,适合于与弯曲的流线形横梁发生配合。
33.如权利要求27所述的能量吸收体,其特征在于,所述能量吸收体具有大约为30毫米的最大深度。
34.如权利要求27所述的能量吸收体,其特征在于,所述能量吸收体具有大约为20毫米的最大深度。
35.如权利要求27所述的能量吸收体,其特征在于,所述能量吸收体中的材料具有记忆能力,并且所述能量吸收体适合于在冲击结束之后恢复至接近初始形状。
36.如权利要求27所述的能量吸收体,包括一块用于与所述底壁发生配合的背板,来形成截留空气的空穴。
37.一种能量吸收体,包括用于形成第一和第二底壁的第一和第二可热成形聚合物材料板,所述第一板材包括大量从第一底壁朝向第二底壁延伸的第一皱缩盒,而所述第二板材包括大量从第二底壁延伸并且与第一底壁发生配合的第二皱缩盒,还包括大量用于与第一皱缩盒配合的第三皱缩盒。
38.一种能量吸收体,包括一块用于形成底壁的第一可热成形聚合物材料板,该板材包括大量形成于其中的皱缩盒,这些皱缩盒均包括一个被构造成当受到冲击时吸收相当多能量的侧壁,还包括一个与所述底壁间隔开并且封闭住皱缩盒的第一端的底部凸缘,以及一个由所述底壁上的边缘材料形成的敞口第二端;和一块第二板材,被粘结在所述边缘材料上,并且覆盖住所述第二端,来在各个皱缩盒中形成一个气穴,以便使得截留在所述皱缩盒内部的空气在产生冲击时用作一个气垫。
39.一种用于车辆保险杠装置的能量吸收体,包括第一和第二可热成形材料板,各个均具有一个底部凸缘和大体垂直地形成于相关底部凸缘内的热成形皱缩盒,第二板材上的至少某些皱缩盒与第一板材上的对应皱缩盒对齐,并且部分地装配入其内,来在它们之间截留空气,其中所述皱缩盒以及截留的空气在产生冲击时提供能量吸收作用。
40.如权利要求39所述的能量吸收体,其特征在于,所述第一和第二板材中之一包括一个孔,用于供截留空气受约束地逸出。
41.如权利要求39所述的能量吸收体,其特征在于,所述第一和第二皱缩盒均具有平整侧壁,并且均呈棱锥形。
42.如权利要求41所述的能量吸收体,其特征在于,对应的第一和第二皱缩盒的平整侧壁在车辆冲击过程中相互支撑。
43.一种车辆保险杠装置,包括适合于安装在车辆上并且具有一个表面的强化横梁,和位于所述表面上的在权利要求39所述的能量吸收体。
44.如权利要求43所述的车辆,包括一个注模而成的第二能量吸收体,该第二能量吸收体包括用于形成蜂窝形状的壁,并且被部分地设置在所述横梁与第二板材之间。
全文摘要
一种保险杠装置包括管状横梁(21)和一个带有皱缩盒(23)的热成形能量吸收体,其中皱缩盒(23)比如通过真空或者热成形工艺形成于底部凸缘之内。皱缩盒具有深度大约为10毫米至35毫米的平整能量吸收侧壁,壁厚大约为1毫米至3毫米,并且由聚乙烯或者其他具有记忆能力的热成形材料制成。底部凸缘可以包括用于与所述横梁上的凹槽发生配合的热成形特征,并且能够与注模成形或者泡沫塑料能量吸收体组合使用,来提供设计灵活性。在一种形式下,所述能量吸收体包括一块用于形成皱缩盒的热成形第一板材,和一块粘结在第一板材上的第二板材,以便形成带有穿孔的气穴。还公开了相关的制造方法和冲击过程。
文档编号B60R19/18GK1849234SQ200380110421
公开日2006年10月18日 申请日期2003年12月15日 优先权日2003年7月3日
发明者D·埃文斯, M·吉勒斯 申请人:奈特夏普国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1