用于提高机动车的混合动力传动系中的混合动力分离离合器的可用性的方法与流程

文档序号:13253774阅读:238来源:国知局
技术领域本发明涉及一种用于提高机动车的混合驱动系中的混合动力分离离合器的可用性的方法,其中混合动力分离离合器设置在内燃机和电动牵引驱动器之间。

背景技术:
从EP1497151B1中已知用于运行具有驱动系中的驱动马达和变速器的机动车的方法。在此,在驱动马达和变速器之间设置有分离离合器,所述分离离合器由静液压执行器操作。在此,静液压执行器承担将转矩传递到分离离合器上。静液压执行器的控制借助于控制单元进行,所述控制单元包括控制和功率电子装置,所述控制和功率电子装置控制执行器的驱动马达,例如电动机。为了控制分离离合器,控制设备与另外的传感器连接,其中还设有到其他的电子单元、例如上级的控制设备、如马达电子装置、防抱死系统或防打滑调节装置的信号连接装置。在混合动力驱动系统中使用这种由静液压执行器操作的分离离合器时,所述分离离合器设置在内燃机和电动牵引驱动器之间。在此,电子牵引驱动器用于:将混合动力车辆置于运动中,而没有应用内燃机。通过电动机以马达的方式运行的方式,借助电动牵引驱动器的电动机能够在借助内燃机行驶时提高转矩。但是电动机也能够用于在发电机运行中对电池充电并且将内燃机在具有更高效率的范围中运行。静液压执行器对于至大约25bar的液压介质的压力而言是自保持的。这表示:不必应用电能来将系统保持在当前位置处,因为该液压系统中的压力通常处于阈值之下。在静液压执行器失效时,离合器保持在其目前的位置中,使得能够出现如下情况,在所述情况中混合动力车辆继续行驶不再可能。

技术实现要素:
本发明所基于的目的是:确保用于在离合器操作系统故障时提高混合动力分离离合器的可用性的方法。根据本发明,所述目的通过如下方式实现:经由静液压执行器控制混合动力分离离合器,其中在检测到静液压执行器的故障的情况下,为了操作在未受操作的状态下闭合的混合动力分离离合器,将静液压执行器的由控制设备检测到的最后的状态用于估算可传递的最小离合器力矩。借助于该可传递的最小离合器力矩应确保,也还将混合动力车辆保持在行驶运行中。有利地,所检测到的故障在于:静液压执行器没有经由通信连接装置做出反应,静液压执行器借助于通信连接装置与控制设备连接,其中从在通信失效的时间点的静液压执行器的当前速度和混合动力分离离合器的位置中确定混合动力分离离合器的能传递的最小离合器力矩。在此基于:尽管故障了到静液压执行器的通信连接,但是静液压执行器本身还是能工作的,使得混合动力分离离合器也还能够被操作。在此,将可传递的最小离合器力矩调节成,使得混合动力分离离合器传递离合器力矩进而实现混合动力驱动器的继续运行。在一个替选方案中,所检测到的故障存在于静液压执行器的部件失效中,其中根据失效的部件闭合混合动力分离离合器,其中优选从在部件失效的时间点的静液压执行器的当前速度和液压分离离合器的位置中确定混合动力分离离合器的能传递的最小离合器力矩。在此区分:静液压执行器的哪个部件不再工作,并且根据该区别继续控制混合动力分离离合器。在一个变型形式中,能传递的最小离合器力矩与用于能传递的最小离合器力矩的状态信号共同地由变速器控制设备传递给上级的控制设备,所述变速器控制设备与静液压执行器连接并且变速器控制设备检测故障。尤其也控制电动牵引驱动器的电动机和内燃机的上级的控制设备因此获得相应的信息,以便将混合动力车辆继续保持运行。状态信号为上级的控制设备实现关于由变速器控制设备建议的可传递的最小离合器力矩的可靠性的评估。在一个改进形式中,当能传递的最小离合器力矩的状态信号相当于最大的离合器力矩时,将状态信号设定到值“安全”上。这用信号通知上级的控制设备:能够在正常运行中继续行驶。在一个替选方案中,当能传递的最小离合器力矩小于最大的离合器力矩时,将状态信号设定到值“估算”上。该信息对于设置上级的控制信号表示:在混合动力驱动器的控制中必须以特别的灵敏度进行。在一个变型形式中,在具有值“估算”的状态信号的情况下,上级的控制设备通过在提高离合器力矩时观察内燃机和电动牵引驱动器的电动机之间的打滑确定最大的离合器力矩,以便能够继续运行混合动力车辆。有利地,电动牵引驱动器的电动机在通过上级的控制设备确定最大的离合器力矩期间在发电机式的运行模式中工作。由此确保:电动机产生能量,所述能量存储在电池中并且在电动机的马达式运行中准备用于其驱动。在一个实施方式中,上级的控制设备限制内燃机的转矩,使得在混合动力分离离合器处不存在过多的打滑。由此确保:仅传递一定需要的转矩,其中驾驶员的行驶感觉不受打滑损害。在一个变型形式中,上级的控制设备选择在下游连接的变速器中的传动级,使得内燃机的转速实现对电动牵引驱动器的电动机的电池进行充电。附图说明本发明允许大量的实施方式。其中一个应根据绘图中示出的附图详细阐述。其示出:图1示出混合动力驱动器中的混合动力分离离合器的布置的原理图;图2示出在混合动力分离离合器运行时,静液压执行器的可能的失效的故障树;图3示出根据本发明的方法的原理图。相同的特征设有相同的附图标记。具体实施方式在图1中示出混合动力驱动器1的原理图,如所述混合动力驱动器使用在混合动力车辆中。混合动力驱动器1在此包括内燃机2和电动机3,所述电动机设置在电动牵引驱动器4中。电动牵引驱动器4与变速器5连接。在电动牵引驱动器4的电动机3和内燃机2之间设置有混合动力分离离合器6,所述混合动力分离离合器由静液压执行器7操作。这种静液压执行器7在此包括离合器控制设备8和电动机11,所述离合器控制设备与变速器控制设备9经由通信线路12连接,所述电动机由于离合器控制设备8的信号而被激活以便控制混合动力分离离合器6。关于静液压执行器7的具体结构和功能参考EP1497151B1。这种静液压执行器7能够由于不同的原因而失效。能够导致静液压执行器7失效的可能的故障在根据图2的故障树中示出。在此,区分两组故障。故障组F1涉及通过故障的通信连接引起的故障。在通信连接故障的情况下,静液压执行器7从变速器控制设备9来看而没有做出反应。在该故障组F1中必须注意到三种不同的故障。第一种故障F1.1能够存在于:构成为CAN连接线路的通信线路12被中断,所述通信线路在静液压执行器7的离合器控制设备8和变速器控制设备9之间伸展。在该情况下基于:静液压执行器7机械地且电地还毫无问题地工作。但是,静液压执行器7的离合器控制设备8不从变速器控制设备9接收CAN信号并且由此引入故障反应,其方式在于离合器控制设备完全断开静液压执行器7进而完全闭合混合动力分离离合器6。第二种故障F1.2能够在于:供电电压不再施加到静液压执行器7上。该组F1的第三种故障F1.3能够在于在静液压执行器6的离合器控制设备8的计算单元中的故障,使得切断所述离合器控制设备。第二故障组F2涉及静液压执行器7之内的部件失效。在此,区分六种故障。第一种故障F2.1在于:压力传感器失效。静液压执行器7上的软件识别到该故障并且将其报告给变速器控制设备9。静液压执行器7能够无问题地完全断开进而完全闭合混合动力分离离合器6。在第二种故障F2.2中,绝对行程传感器失效。在此,静液压执行器7上的软件也识别到该故障并且将其报告给变速器控制设备9。静液压执行器7能够通过分析霍尔信号还完全地被断开进而完全地闭合混合动力分离离合器6,因此能够继续保持行驶运行。在第三种故障F2.3中,霍尔传感器失效。静液压执行器7上的软件识别到该故障并且将其报告给变速器控制设备9。然而,正常的马达运行不再可能。断开混合动力分离离合器6能够通过控制静液压执行器7的作为步进马达的电动机11在没有直接测量的情况下进行。经由绝对行程传感器能够检查:静液压执行器7的电动机11刚好位于哪里并且混合动力分离离合器6的断开是否成功。另一种故障F2.4能够在于:中断静液压执行器7的电动机11的一个或多个绕组,使得静液压执行器7的电动机11不再能够运动。混合动力分离离合器6的当前位置能够经由绝对行程传感器检测并且报告给变速器控制设备9。根据故障F2.5,静液压执行器7不再能够机械地运动,这同样能够经由绝对行程传感器检测并且报告给变速器控制设备9。在故障F2.6中,温度传感器失效。在此,仅还能够通过断开静液压执行器6引起混合动力分离离合器6的最终闭合。如上面描述的那样,在组F2的各个故障中能够以高的安全性由变速器控制设备9报告上级的控制设备10:混合动力分离离合器6是否闭合或闭合多大。上级的控制设备10的连接在图3中表示:静液压执行器7的离合器控制设备8在何处经由变速器控制设备9与上级的控制设备10连接。在确定故障时,变速器控制设备9将最小的离合器力矩报告给上级的控制设备。对于组F1中的全部故障得出:上级的控制设备10识别:静液压执行器7不再做出反应。从在失效的时间点的静液压执行器7的速度和混合动力分离离合器6的位置中,变速器控制设备9能够对可传递的最小离合器力矩进行估算,这应当以两个实例阐述。实例1:其基于:静液压执行器7静止。混合动力分离离合器6在最后的时间点例如传递50Nm的离合器力矩,在所述最后的时间点中通信还正常进行。在该时间点,出现组F1中的故障。因此,50Nm的该最后的离合器力矩作为估算的可传递的离合器力矩由变速器控制设备9报告给上级的控制设备10。实例2:如果在失效的时间点因组F1中的描述的故障断开静液压执行器7进而以特定的转矩梯度闭合混合动力分离离合器6,那么从在该失效时间点已经达到的例如50Nm的离合器力矩还提高离合器力矩。例如80Nm的离合器力矩随后能够由变速器控制设备9作为可传递的最小离合器力矩报告给上级的控制设备10。相同的内容适用于静液压执行器7的闭合。在那里随后例如能够将20Nm的离合器力矩作为可传递的最小离合器力矩报告给上级的控制设备10。但是在与第二组F2关联地出现的故障中,对可传递的最小离合器力矩的估算不足够。在该情况下,附加地还将离合器力矩的状态设有值“安全”或“估算”。与可传递的最小离合器力矩关联地,于是将状态由变速器控制设备9传递给上级的控制设备10。如果是状态“安全”,那么估算的可传递的最小离合器力矩相当于最大的离合器力矩,混合动力分离离合器6能够传递所述最大的离合器力矩。在状态“估算”中,可传递的最小离合器力矩小于可传递的最大离合器力矩。在该情况下,上级的控制设备10必须通过观察在电动牵引驱动器4的电动机3和内燃机2之间的混合动力分离离合器6的打滑自动地通过提高内燃机2处的转矩来发现:可传递的最大离合器力矩多大。在此,电动机3能够以发电机的方式运行。如果在提高内燃机2处的转矩期间混合动力分离离合器6处的打滑显著上升并且又能够仅通过下降内燃机2的转矩来降低,那么就发现最大的离合器力矩的极限。上级的控制设备10在用于提高混合动力分离离合器6的可用性的措施期间满足如下任务。内燃机2的转矩通过上级的控制设备10能够适当地限制,因此不在混合动力分离离合器6处形成过多打滑。因为上级的控制设备10通常需要待传递的离合器力矩,所以必须通过打滑监控来确定:内燃机2的转矩是否没有超过实际可实现的离合器力矩并且混合动力分离离合器6是否由此会损坏。作为第二任务,上级的控制设备10必须选择在下游连接的变速器5中的传动级,使得实现尽可能高的内燃机转速,所述内燃机转速有助于对用于驱动器的电动机3的电池充电。这与内燃机2是否经由电动机3或附加的启动马达来启动无关。如果例如发现最大的离合器力矩小至使得其对于混合动力车辆的起动不足,但是对于以均匀速度行驶足够,那么必须附加地使用电动牵引驱动器4的电动机3,以便实现起动。为了按顺序实现多次起动,那么必须考虑对电动机3的电池充电。附图标记列表1混合动力驱动器2内燃机3电动机4电动牵引驱动器5变速器6混合动力分离离合器7静液压执行器8离合器控制设备9变速器控制设备10上级的控制设备11静液压执行器的电动机12通信线路
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1