用于启动混合动力车辆的内燃机的方法和系统及相应车辆与流程

文档序号:14851909发布日期:2018-07-03 23:58阅读:274来源:国知局
用于启动混合动力车辆的内燃机的方法和系统及相应车辆与流程

本发明涉及一种用于启动混合动力车辆的内燃发动机的方法,其中内燃发动机适于旋转经由变速器单元向混合动力车辆的至少一个驱动轮提供转矩的驱动轴。本发明还涉及一种用于启动混合动力车辆的内燃发动机的系统、包括用于启动内燃发动机的系统的混合动力车辆、计算机程序和计算机程序产品。



背景技术:

利用内燃发动机和辅助驱动源例如电动机的组合的混合动力车辆由于有效地利用了能量,因此变得越来越普遍。内燃发动机能间歇性地运行从而根据驾驶状态当需要时向混合动力车辆的传动系提供动力。在低速的驾驶情形下,可通过仅利用辅助驱动源操作混合动力车辆,而当需要更多动力时例如当以更高速度行驶时内燃发动机向传动系提供附加动力。对于平行式(paralleltype)混合动力车辆来说,内燃发动机和辅助驱动源二者能够通过混合动力车辆的变速器单元驱动一个或多个驱动轮。

当启动内燃发动机时,通常使用带有启动马达(startermotor)的传统12v启动系统。但是,现代混合动力车辆使用带有锂离子电池的48v电气系统或具有其它电压的系统。电动启动马达也可用于48v系统中用于在不同的驾驶状态下启动内燃发动机或用于冷启动。但是48v锂离子类型电池在低温天气条件下是动力受限的,使得很难在低温情况下例如低于-15℃乃至低至-30℃下时利用由48v电池供电的启动马达启动内燃发动机。低温下内燃发动机的另一个复杂性在于在极低温度下摩擦或拖曳转矩可能超过在48v电气系统中从启动马达可得到的最高转矩,尤其是柴油机。因而,利用现代48v混合动力车辆电气系统中的启动马达在低温下进行冷启动是很困难乃至不可能的。

该问题的一个常见解决方案是使用具有常规的12v铅蓄电池的12v启动马达。用于启动内燃发动机的另一个可选方案是通过利用存储在飞轮中的能量使用用于启动内燃发动机的飞轮。

us6098584a公开了用于包括用于旋转飞轮的装置的内燃发动机的启动仪器,飞轮在脉冲启动方法中用于通过存储在飞轮中的旋转能量启动发动机。可选择地,可使用直接启动方法,其中启动发电机直接耦接于发动机。转换装置作为发动机温度的函数在直接启动方法与脉冲启动方法之间切换,从而在相对低的温度下使用脉冲启动方法并且在相对高温度下使用直接启动方法。

这种启动仪器的主要缺陷在于解决方案不适合于包括内燃发动机和辅助驱动源的需要非常紧凑的发动机和变速器设计同时适合于在极低温度下冷启动的不同驾驶状态期间可能启动内燃发动机的现代混合动力车辆。还存在上述类型的启动仪器当从其中辅助驱动源输送动力的电驱动模式切换为其中内燃发动机也向混合动力车辆输送动力的混合驱动模式时发生喘抖现象的风险。

gb2413998a公开了控制混合动力车辆的传动系的方法,其中通过连接于飞轮的电动发电机启动发动机。车辆设置有带有发动机、电动发电机和连接于驱动轴的驱动齿轮的串联设置的平行式混合动力驱动。可控制的摩擦离合器分别设置在电动发电机的输入和输出侧处。在专用的电动模式下,通过电动发电机加速飞轮以累积过剩的冲量,其中在滑移模式下控制输出离合器。随后发动机输入侧离合器的闭合启动发动机。

在该解决方案中,通过直列式电动发电机(inlinemotorgenerator)驱动的独立飞轮用于提供充分的转矩以启动车辆的发动机。由于部件被串联设置,故解决方案不适合于混合式发动机的紧凑包装。另一个缺陷在于直列式电动发电机必须相对较大才能提供启动发动机所需的转矩。此外,通过利用独立的飞轮给系统添加了附加重量。

因而需要在具有包括内燃发动机和辅助驱动源的紧凑发动机和传动设计的混合动力车辆中启动内燃发动机的改进方法,其当启动内燃发动机时防止喘抖现象并且还可能在极低温度例如低至-30℃时启动内燃发动机。



技术实现要素:

本发明的一个目的是提供用于启动混合动力车辆的内燃发动机的方法和系统,其中避免了在内燃发动机启动期间的前述问题。通过独立权利要求的特征至少部分实现了该目的。其它权利要求包含本发明方法和系统的进一步进展。权利要求还包含包括用于启动内燃发动机的系统的混合动力车辆、用于执行这种方法的计算机程序和计算机程序产品。

本发明涉及一种用于启动混合动力车辆的内燃发动机的方法,其中内燃发动机适于旋转经由变速器单元向混合动力车辆的至少一个驱动轮提供转矩的驱动轴;其中变速器单元包括将内燃发动机连接于齿轮箱的输入轴的第一离合器,输入轴连接于变矩器(torqueconverter),其中变矩器连接于第二离合器,第二离合器通过变速器将变矩器连接于至少一个驱动轮,其中输入轴以偏移配置连接于辅助驱动源,输入轴与辅助驱动源之间具有预定转矩比;所述方法包括如下步骤:分离第一离合器,将第二离合器分离为预定转矩水平,用辅助驱动源将输入轴和变矩器加速为预定旋转速度;啮合第一离合器从而利用存储在输入轴中、变矩器中和辅助驱动源中的能量启动内燃发动机。如上所述方法的优点在于能够使用包括内燃发动机和辅助驱动源的紧凑发动机和传动设计。此外,所述方法防止了当启动内燃发动机时的喘抖现象。

根据本发明的一个方面,当通过所述辅助驱动源加速输入轴和变矩器时变矩器的锁定离合器啮合。这样,变矩器的第二半部和第二离合器的一部分也能用于存储用于启动内燃发动机的转矩。

根据本发明的一个方面,第二离合器的预定转矩水平是零。该特征的一个优点在于能够在极低温度下启动内燃发动机。

根据本发明的一个方面,内轴的预定旋转速度在100rpm与5000rpm之间。

根据本发明的一个方面,预定转矩水平是零并且维持预定转矩水平直至输入轴和变矩器被加速至启动内燃发动机。这些特征的一个优点在于当混合动力车辆运转时能够启动内燃发动机而没有喘抖现象。

根据本发明的一个方面,第二离合器的转矩水平介于30nm与300nm之间。

根据本发明的一个方面,输入轴的预定旋转速度高于内燃发动机的旋转速度介于50rpm与1000rpm之间。

根据本发明的一个方面,所述方法进一步包括如下步骤:当内燃发动机已经启动时第二离合器进入完全啮合状态从而向混合动力车辆的至少一个驱动轮输送转矩。该特征的一个优点在于能够启动内燃发动机而无喘抖现象。

根据本发明的一个方面,输入轴与辅助驱动源之间的预定转矩比在1:2与1:4之间。

本发明进一步涉及用于启动混合动力车辆的内燃发动机的系统,其中内燃发动机适于旋转经由变速器单元向混合动力车辆的至少一个驱动轮提供转矩的驱动轴;其中变速器单元包括将内燃发动机连接于齿轮箱的输入轴的第一离合器,输入轴连接于变矩器,其中变矩器连接于第二离合器,第二离合器通过变速器将变矩器连接于至少一个驱动轮,其中输入轴以偏移配置连接于辅助驱动源,输入轴与辅助驱动源之间具有预定转矩比,其中在完全分离第一离合器和将第二离合器分离为预定转矩水平之后,利用辅助驱动源将输入轴和变矩器加速为预定旋转速度从而利用存储在输入轴、变矩器和辅助驱动源中的能量启动内燃发动机。如上所述系统的一个优点在于能够使用包括内燃发动机和辅助驱动源的紧凑发动机和传动设计。

根据本发明的一个方面,第一离合器集成于第一皮带轮。这样,实现了非常紧凑的解决方案,其中添加于车辆的发动机-变速器设备的第一离合器和辅助驱动源的附加长度在几个厘米的范围内。因而可能在具有横置发动机设置的紧凑型轿车中安装所述系统。

本发明进一步涉及具有用于启动内燃发动机的系统的混合动力车辆、计算机程序和计算机程序产品。

附图说明

在下文中,将仅仅参照附图经由示例更详述此处的实施例,其中:

图1示意性地示出带有根据本发明用于启动内燃发动机的系统的混合动力车辆的示例,

图2示意性地示出根据本发明用于启动混合动力车辆的内燃发动机的系统的示例,以及

图3示意性地示出带有根据本发明用于启动内燃发动机的皮带轮的辅助驱动源。

具体实施方式

下面将结合仅为示出而非限定本发明的附图描述本发明的各个方面,其中相同的附图标记表示相同的元件,并且所述方面的变型不局限于特定示出的实施例而是适用于本发明的其它变型。

图1示意性地示出汽车形式的混合动力车辆1,其带有用虚线示出的示意性传动系以示出现代汽车车体内的有限可用横向空间。传动系包括内燃发动机2、经由驱动轴18连接于内燃发动机的变速器单元17。内燃发动机可经由变速器单元17向混合动力车辆1的至少一个驱动轮16提供转矩。

图2示意性地示出用于启动混合动力车辆1的内燃发动机2的系统,其中内燃发动机2旋转驱动轴18,驱动轴18经由变速器单元17向混合动力车辆1的驱动轮16中的至少一个提供转矩。变速器单元17包括将内燃发动机2连接于齿轮箱8的输入轴12的第一离合器3。输入轴12连接于齿轮箱8的变矩器10。变矩器设置有锁定离合器9,锁定离合器9可用于当输入轴和第二离合器的旋转速度相同时锁定变矩器10。例如在低发动机转速下,锁定离合器优选分离,即打开。变矩器10连接于第二离合器11,第二离合器11又将变矩器10通过变速器14连接于至少一个驱动轮16。变速器14设置有适于设定第二离合器与驱动轮之间转速比的多个齿轮。输入轴进一步通过安装在输入轴12上的第一皮带轮4和安装在辅助驱动源7上的第二皮带轮5连接于辅助驱动源7。柔性驱动构件6将第一皮带轮连接于第二皮带轮。

混合动力车辆1利用内燃发动机2和辅助驱动源7的组合作为电源以向车辆1的至少一个驱动轮16提供转矩。内燃发动机2能够间歇性地运行从而根据驱动状态当必要时向混合动力车辆1的传动系提供动力。例如在低速的驱动情形下,可通过仅利用辅助驱动源7操作混合动力车辆1,并且当需要更多动力时例如当以更高速度行驶时内燃发动机2向传动系提供附加动力。内燃发动机2和辅助驱动源7二者可通过混合动力车辆1的变速器单元17驱动一个或多个驱动轮16。

混合动力车辆1在本示例中利用带有电能存储装置19的48v电气系统。电能存储装置19可例如是向混合动力车辆1的辅助驱动源7和其它电器部件提供电能的锂离子电池组电池的系统。任何适宜类型的电池组电池或超级电容器可分离地或组合地用作电能存储装置。由于混合动力车辆1仅在短距离情况下适用于地完全电动模式下,故电池在大小和动力方面相当受限。辅助驱动源7可以是用作电动机和发电机的电机的形式。在电驱动模式下电机向混合动力车辆1提供动力。当内燃发动机2向混合动力车辆1提供动力时,电机可用作发电机给电能存储装置19充电。电机也可用于回收制动能量并且回收的制动能量可用于给电能存储装置19充电。电能存储装置和电气系统也可具有其它电压。

图3示意性地示出辅助驱动源7、第一皮带轮4和第二皮带轮5。辅助驱动源7不仅用于向驱动轮16供给动力还用于启动内燃发动机2。因而不需要独立的电动启动马达来启动内燃发动机2,这就给出了现代混合动力车辆所需的更紧凑设计且节省了重量。辅助驱动源7经由柔性驱动构件6连接于输入轴。柔性驱动构件6例如是有或者没有齿的向或从辅助驱动源7传递转矩的传动带。可选择地,第一和第二皮带轮也可设置有适于与链条而不是皮带相互作用的齿。轴13从辅助驱动源7延伸至第二皮带轮5。第二皮带轮5具有比第一皮带轮4更小的半径从而在第二皮带轮5与第一皮带轮4之间建立了固定的转矩比。转矩比可根据例如混合动力车辆的类型以及辅助驱动源7输送的转矩而各异,但是典型地在1:2-1:4之间的范围内,以建立驱动车辆1和启动发动机所需的充分动力。这样,能够使用相对小和紧凑的电机。

如图3所示,辅助驱动源7不是与输入轴12对齐连接,而是通过柔性驱动构件6被设置为与输入轴12呈偏移关系。该偏移配置将变速器单元17的增加长度保持为最小,这就给出了适合于现代混合动力车辆的紧凑设计。柔性驱动构件6相对于输入轴12在径向上延伸的设计提供了在变速器单元17的关键长度方向的空间节省。另一个优点在于例如当更大的发动机需要更有动力的电机或要使用其它电压的电机时辅助驱动源能够轻易更换为其它类型的电机而不影响发动机-变速器设备。而且如果电机磨损或损坏,很容易更换电机。

在启动内燃发动机2之前,辅助驱动源7根据驱动状态经由柔性驱动构件6将输入轴12和变矩器10加速为预定旋转速度。输入轴的旋转速度能够根据启动内燃发动机2所需的转矩而改变并且旋转速度适用于驱动情况和其它参数,例如发动机温度。通过旋转速度,能量被存储在输入轴12、变矩器10和辅助驱动源7的用于启动内燃发动机2的旋转质量中。当通过辅助驱动源加速输入轴和变矩器时通过啮合变矩器的锁定离合器,变矩器的第二半部和第二离合器的一部分也能用于存储用于启动内燃发动机的转矩。

此处,输入轴和变矩器被用于描述通过辅助驱动源加速的系统的旋转质量。但是,设置在第一离合器3与第二离合器之间的所有旋转部分都属于旋转质量。这包括辅助驱动源自身、第一皮带轮、第二皮带轮、柔性驱动构件、变矩器的各部分、变矩器与第二离合器之间的内轴。

当加速输入轴和变矩器的质量时,内燃发动机2经由第一离合器3与输入轴脱开连接。第一离合器3被设置为在闭合状态下啮合输入轴并且在打开状态下相对于内燃发动机2分离输入轴。第一离合器3例如是设置在输入轴与内燃发动机2之间的传统摩擦离合器。第一离合器3优选集成在第一皮带轮4的结构内以实现紧凑设计,从而例如第一离合器3的中心部分连接于内燃发动机2的驱动轴并且第一离合器3的外部经由摩擦器件可拆卸地连接于所述中心部分。第一离合器的外部进一步连接于输入轴12。这样,第一离合器和第一皮带轮的宽度将仅仅将变速器单元17的长度延长几个厘米。

通过结合第一离合器3与存储在输入轴中的旋转能量来启动内燃发动机2,变矩器和辅助驱动源经由驱动轴18从输入轴12被传送至内燃发动机。当内燃发动机2向混合动力车辆1输送动力时,第一离合器3处于其闭合状态下并且将输入轴12连接于内燃发动机2。当内燃发动机2停止时,第一离合器3将输入轴与内燃发动机分离以使得第一离合器处于其打开状态。这样,当仅辅助驱动源7向混合动力车辆1输送动力时,内燃发动机2与输入轴12和变速器单元17的其它部分分离。

输入轴12连接于齿轮箱8的变矩器10。变矩器使得输入轴12与第二离合器11的旋转速度略微不同以提高特定条件下车辆的驾驶性能。当不需要使得输入轴与第二离合器的转速不同时,变矩器的锁定离合器啮合,使得输入轴12与第二离合器11的旋转速度将相同。例如在低发动机转速下和当挡位改变时,锁定离合器优选分离即打开。

第二离合器11将变矩器10连接于变速器14。第二离合器11优选是用于手动或自动变速器的传统离合器类型。变速器14将转矩输送至混合动力车辆1的至少一个驱动轮16。第二离合器11被设置为在当通过变矩器10将转矩从内燃发动机2或辅助驱动源7输送至至少一个驱动轮16时的闭合状态下啮合变速器14并且在当不向至少一个驱动轮16输送转矩时的打开状态下相对于输入轴12分离变速器。在第二离合器11的打开状态与闭合状态之间存在滑移区域(slipregion)。当第二离合器11从啮合变为分离时发生滑移,反之亦然。事实上,这意味着第二离合器11的连接于变矩器10的该部分具有不同于第二离合器11的连接于变速器的那部分的旋转速度。旋转速度的该差异被称为滑移并且能用于维持输入轴12通过变矩器10与变速器14之间所确定的转矩传递水平。滑移可能根据所需的转矩水平而变化。当第二离合器11完全啮合时没有滑移并且当第二离合器11完全分离时也没有滑移。

当启动内燃发动机2时,第一离合器3分离以使得输入轴12与内燃发动机脱开连接。第二离合器11分离为预定的转矩水平。该预定转矩水平可被设定为根据混合动力车辆1的驾驶情况以及根据加速输入轴12和变矩器10所需的动力满足所需的转矩。预定转矩水平从其中没有传递转矩的完全打开状态到其中几乎所有可用转矩被传送至驱动轮的基本完全闭合状态可能不同。当第一离合器3分离并且第二离合器11分离为预定转矩水平时,输入轴和变矩器利用辅助驱动源7被加速至预定旋转速度。旋转速度能够根据混合动力车辆1的驾驶情况而变化。例如在较低发动机温度情况下,与更高的发动机温度水平相比,需要在输入轴和变矩器内存储更高水平能量才能启动内燃发动机3。当输入轴和变矩器已经达到期望旋转速度时,啮合第一离合器3从而利用存储在输入轴、变矩器和辅助驱动源中的能量启动内燃发动机2。

对于混合动力车辆1的内燃发动机2有两个主启动程序。第一启动程序是所谓的脉冲启动,其由于极低温度的低温天气条件下用于启动内燃发动机的电池局限性和当混合动力车辆1不运转时有限的蓄电池电源而使用。第二启动程序是所谓滑移-启动(slip-start),其是用于当车辆运转时用于启动内燃发动机3。

混合动力车辆1在所示示例中利用带有锂离子电池的48v电气系统作为电能存储装置19。48v锂-离子类型电池在低温天气条件下动力受限,使得它仅通过利用辅助驱动源7作为启动马达难以在低温情况下例如低于-15℃乃至低到-30℃下启动内燃发动机。在极低温度下,内燃发动机2中的摩擦或拖曳转矩可能超过从48v电气系统中的辅助驱动源得到的最高转矩,特别是对于柴油机来说。因而,低温下仅利用辅助驱动源的冷启动可能很难乃至不可能。

也可能将混合动力车辆1设计为带有自身不能在低温情况下输送用于启动内燃发动机2的最大所需转矩的辅助驱动源。利用存储在输入轴中、变矩器中和辅助驱动源中的能量启动内燃发动机2。辅助驱动源用于将输入轴和变矩器加速至期望的旋转速度。这样,能够获得用于电机的紧凑和有效成本的设计。

当混合动力车辆1不运转时例如当车辆处于静止位置且需要启动内燃发动机2时脉冲启动程序被用于启动。例如当如上所述混合动力车辆1在低温情况下启动时是如此。在脉冲启动程序中,第一离合器3分离以使得输入轴和变矩器从内燃发动机脱开连接。第二离合器11分离为使得预定转矩水平被设定为不传送转矩即预定转矩水平是零的完全打开状态。当第一离合器3分离并且第二离合器11分离为完全打开状态时,用辅助驱动源7将输入轴和变矩器加速至预定旋转速度。当输入轴和变矩器已经达到期望的旋转速度时,第一离合器3啮合从而利用存储在输入轴、变矩器和辅助驱动源中的能量启动内燃发动机2。当内燃发动机2运转时,第二离合器11优选啮合从而向混合动力车辆1的至少一个驱动轮16输送转矩。

作为描述脉冲启动程序的一个示例,辅助驱动源7可具有向混合动力车辆1输送150nm的最高转矩的能力。为了启动内燃发动机,第一离合器3分离以使得将输入轴和变矩器从内燃发动机脱开连接。第二离合器11完全地分离从而没有转矩传递。当第一离合器3和第二离合器11分离时,用辅助驱动源7将输入轴和变矩器加速为预定的旋转速度。为了加速输入轴和变矩器,可使用来自辅助驱动源7的150nm的可用转矩水平。当输入轴和变矩器已经达到期望的旋转速度时,第一离合器3啮合从而利用存储在输入轴、变矩器和辅助驱动源中的能量启动内燃发动机2。

输入轴和变矩器的质量和旋转速度可能根据用于混合动力车辆中的内燃发动机类型、发动机温度和启动情况而变化,但是典型地,在脉冲启动模式下启动内燃发动机所需的转矩在100-500nm的范围内。将输入轴和变矩器加速为期望旋转速度所需的时段典型为200ms至15s并且可能根据发动机温度、输入轴和变矩器的惯性以及来自电能存储装置的可用功率而变化。输入轴和变矩器的旋转速度可介于100rpm与5000rpm之间并且输入轴和变矩器的惯性可介于0.05kgm2与0.40kgm2之间。

当混合动力车辆1运转时例如当通过辅助驱动源7为车辆提供动力且需要启动内燃发动机2来向混合动力车辆1输送额外动力时滑移-启动程序可用于启动。例如当混合动力车辆1低速运转并且需要加速混合动力车辆1或者在当上坡驾驶时需要额外动力的变化地形中驾驶时是如此。在滑移-启动程序中,第一离合器3分离以便输入轴和变矩器从内燃发动机脱开连接。第二离合器11被分离为预定转矩水平,其被设定为在第二离合器中具有滑移。因而第二离合器11被设定从而传送转矩,即预定的转矩水平高于零。当第一离合器3分离并且第二离合器11分离为预定转矩水平时,用辅助驱动源7将输入轴和变矩器加速为预定旋转速度。当输入轴和变矩器已经达到期望的旋转速度时,第一离合器3啮合从而利用存储在输入轴、变矩器和辅助驱动源中的能量启动内燃发动机2。当内燃发动机2运转时,第二离合器11优选进入完全啮合状态从而向混合动力车辆1的至少一个驱动轮16输送转矩。当利用传统方法启动内燃发动机2时,由于启动内燃发动机2所需的转矩将碰撞混合动力车辆1的传动系,因此可能发生喘抖现象(hesitation)。通常地,驱动轮完全分离以便启动发动机。根据上述方法,第二离合器11中的预定转矩水平和滑移将确保不发生喘抖现象。

在描述滑移-启动程序的示例中,辅助驱动源7可具有向混合动力车辆1输送最高转矩150nm的能力。在电驱动模式下的特定情况中,辅助驱动源7输送100nm用于驾驶混合动力车辆1。如果驾驶情况改变并且例如需要向混合动力车辆1输送180nm,则辅助驱动源7不具有足够的能量来输送期望的转矩水平,需要启动内燃发动机2才能输送所需的转矩。为了启动内燃发动机,第一离合器3分离以使得输入轴和变矩器从内燃发动机脱开连接。第二离合器11分离为预定转矩水平例如100nm并且被设定为具有维持100nm转矩水平的滑移直至输入轴和变矩器被加速为启动内燃发动机2。当第一离合器3分离并且第二离合器11分离为100nm的预定转矩水平时,利用辅助驱动源7将输入轴和变矩器加速为预定旋转速度。为了加速输入轴和变矩器,可使用辅助驱动源7的50nm的剩余可用转矩从而利用了辅助驱动源的150nm的最高转矩水平。当输入轴和变矩器已经达到期望的旋转速度时,第一离合器3啮合从而利用存储在输入轴、变矩器和辅助驱动源中的能量启动内燃发动机2。

输入轴和变矩器的质量和旋转速度可能根据用于混合动力车辆中的内燃发动机类型以及驾驶情况而变化,但是典型地,在滑移-启动模式下启动内燃发动机所需的转矩在50-200nm的范围之间。将输入轴和变矩器加速为期望旋转速度所需的时段非常短并且典型地在200ms与500ms之间。输入轴和变矩器的旋转速度可高于内燃发动机的旋转速度介于50rpm与1000rpm之间,并且输入轴和变矩器的惯性可介于0.05kgm2与0.40kgm2之间。当使用滑移-启动模式时内燃发动机的旋转速度可典型地介于500rpm与3000rpm之间。

在上述滑移-启动示例中,在输入轴和变矩器的加速期间辅助驱动源向混合动力车辆1输送100nm并且向输入轴和变矩器的加速输送50nm。因而,从辅助驱动源7输送150nm的最高转矩水平。一旦内燃发动机2已经启动,则来自辅助驱动源7的动力能够根据驾驶情况减少乃至根本不输送转矩从而仅仅通过内燃发动机2为混合动力车辆1提供动力。如果需要,则辅助驱动源可用于利用来自内燃发动机2或来自回收制动能量的动力给电能存储装置充电。

用于启动内燃发动机2的系统适用于混合动力车辆1。混合动力车辆1设置有适于控制用于启动内燃发动机的系统和方法的控制单元15。控制单元15连接于混合动力车辆1的控制系统,其例如控制混合动力车辆1的内燃发动机2和其它部分。优选通过计算机程序和在车辆的电子控制单元中包含和运行的计算机程序产品执行方法步骤。

可以理解,上述描述实际上仅仅是示例性的并且不意图限制本发明、其应用或利用。虽然已经在说明书中描述和在附图中示出了特定的示例,但本领域普通技术人员应当理解,可进行各种改变并且等价物可能取代其元件而不脱离权利要求限定的本发明的范围。此外,可能做出令特定情况或材料适用于本发明教导的改进而不脱离其基本范围。因此,希望本发明不局限于附图所示和说明书所述的作为目前预计实现本发明教导的最佳方式的特定示例,而是本发明的范围将包括落在上述描述和所附权利要求中的任何实施例。权利要求中提及的附图标记不一定被视为限制权利要求保护主题的范围,并且它们的唯一功能是令权利要求更容易理解。

附图标记

1:混合动力车辆

2:内燃发动机

3:第一离合器

4:第一皮带轮

5:第二皮带轮

6:柔性驱动构件

7:辅助驱动源

8:齿轮箱

9:锁定离合器

10:变矩器

11:第二离合器

12:输入轴

13:轴

14:变速器

15:控制单元

16:驱动轮

17:变速器单元

18:驱动轴

19:电能存储装置

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1