用于以密集流方法气动输送散状物料的装置和方法

文档序号:4385127阅读:173来源:国知局
专利名称:用于以密集流方法气动输送散状物料的装置和方法
技术领域
本发明涉及按独立权利要求前序部分所述的用于以密集流方法气动输送可散装的物料的一种装置和一种方法。此外,本发明还涉及所述按本发明的装置的应用。
背景技术
气动输送的原理基于这样的公知物理基础,即流动的气体在特定的前提下能够承载并带动较重的固体。在气动输送时,有针对性地在技术上利用了这种输送原理。其中,经常通过管道进行输送。输送媒质总是一种气流,尤其是空气流,该气流由在管道前端和末端之间的压差所引起。
气动输送应用在不同的制造业中,并且用于输送多种散状物料。气动输送设备分为抽吸式和压力式输送设备。此外,压力式输送设备还分为稀薄流输送以及密集流输送,其中稀薄流输送又称为飞行输送(Flugfrderung)。
在稀薄流输送时,输送物料在气动飞行输送系统中在使用大量空气的情况下通过使用鼓风压力在很高的约为20到40米/秒的空气速度下以较小的量用悬浮或弹跳方法(Springverfahren)进行输送。在这种情况下,输送气体的速度明显高于散状物料的下沉速度,使得散状物料回旋并且作为几乎完全混合的气体-固体流在稳定状态下持续不断地移动通过输送管路。输送气体中的压力损失产生于输送气体的流体摩擦、输送物料的重力以及一部分固体-壁体-摩擦。这种输送状态可以类似于一种气流加以说明。因此在稀薄流输送中实现大概1到10的装料比例。装料比例表示每“千克”输送空气中的输送物料的“千克”数这种混合比。为此,在稀薄流输送中的压差通常处于0.5到1bar的范围内,但在例外情况下也高达4bar。
这种输送技术的缺点一方面是相对于所使用的气流很少的物料输送量以及在输送磨蚀性散状物料如矾土时在输送管路中产生很高的磨损。此外,对那些不允许出现颗粒破坏的散状物料如易碎的、晶体状或粒料状散状物料来说,借助于飞行输送来输送物料时不能对这些散状物料本身进行足够的保护。
其它的情况存在于气动式密集流输送中,在这种输送法中,约为1到15米/秒、尤其为2到10米/秒的气体速度处于散状物料颗粒的下降速度范围内或低于其下降速度。此名称表示与稀薄流输送相比具有更高的固体质量流,其中材料输送在这里更确切地说近乎于“推动”。其中,属于密集流输送这个概念的还有作为过渡方式的扎束输送(Strhnenfrderung)、打包输送(Ballenfrderung)以及所谓的相对于输送空气量具有很高的固体质量流的栓塞输送(Pfropfenfrderung)。
在密集流输送时,可以实现高于10、尤其高于30或更高的装料比例。上装料极限可以按输送物料情况大致为150。尤其在栓塞输送中,可以实现30到120这样的装料比例。在密集流输送中的压差高于1bar,尤其处于4到8bar的范围内,其中也完全可以实现高达16bar的压差。
通过低的气体速度在输送管路中形成沙丘形式或封闭的栓塞形式的物料堆。这样的栓塞会完全填满管道横截面。在栓塞输送中,由于空气流动因而总是一再形成散状物料栓塞,使其松散和加速。
相对于飞行输送,这种输送方式的主要优点是,显著降低了散状物料的磨损,并且减少了管道磨损,并且由于压缩机功率低从而也降低了能量成本。
这种方法的缺点是,散状物料通过栓塞的不断形成和瓦解不稳定地移动通过输送管路,其中管路中的压力由于栓塞经常长时间上升,直到该栓塞突然继续移动通过输送管路。由于在该栓塞前面的处于压力之下的气体量卸载,所以达到很高的栓塞速度,该栓塞速度甚至会超过气体速度,并且有时候使栓塞象弹头一样往前移动。
为了克服上述缺点,人们转而通过平行的旁通管路向输送管路中供给压缩气体。所述在侧面从旁通管路导入输送管路中的气流分解了散状物料堆,由此压缩气流的侵蚀作用对沙丘或栓塞的形成起到反作用。此外,所述在栓塞或材料堆之前形成的过压通过旁通管路在栓塞旁边引出,并且再次输送给该栓塞后面的输送通道并且进行分配。此外,物料堆和栓塞通过所述流进输送通道中的压缩气体而持续地受到侵蚀。
通过这种措施,可以在密集流方法中提高输送能力,并且进一步减少磨损。此外,所述附加的压缩气体旁通管路在输送中断之后能够在输送管路被填塞的情况下恢复输送。但是,根据上述方法这种输送物料也是不稳定地移动通过输送管路,因为在质量流中仍然会出现散状物料堆。

发明内容
因此,本发明的任务是提供用于以密集流方法对散状物料进行气动输送的一种装置和方法,该装置和方法能够利用密集流方法尽可能不形成栓塞或者说减少栓塞形成地并且具有较少的材料堆地输送散状物料。
该任务通过独立权利要求所述特征性特征得到解决。本发明的特殊实施方式通过从属权利要求得到说明。
所述装置的突出之处在于,为输送管路配设了流化机构,并且该流化机构包括具有流化气体通道和流化气体通气件的流化本体,其中所述流化气体通气件用于从流化通道向输送通道中供给流化气体。
横截面封闭的输送管路意味着,这样的输送管路朝自由的环境大气方向封闭,并且在输送管路和环境大气之间无法进行直接的空气交换。
可自由流动的材料尤其是指粉尘状、粉末状、细颗粒状、颗粒状、粒状或粒料状的散状物料。所述的散状物料优选是一种干燥的散状物料,并且由比如略带圆形的、球形的、小板形的、针形的或有棱角的形状的固体颗粒的积聚物所组成。所述散状物料颗粒的大小优选基本上是统一规格。借助于按本发明的装置所输送的散状物料可以具有20毫米以下的颗粒大小,并且具有比如大于2%的精细份额或粉尘份额。散状物料颗粒优选具有小于等于2毫米、尤其是0.04到1毫米的平均颗粒大小。
压缩气体旁通管路或者说压缩气体通道优选布置或敷设在所述输送通道或者说输送管路的上半横截面内部、尤其是里面。“上”和“下”这两个概念在这里应该按照在重力场中的空间布置来理解。压缩气体旁通管路优选布置在所述输送通道的上半横截面的顶部区域中。但所述压缩气体旁通管路或者说压缩气体通道也可以布置在输送通道的外部(上侧)。
压缩气体通气件优选由一种以下说明的透气材料制成,该材料能够在产生气流的情况下使压缩气体逸出所述压缩气体旁通管路进入输送通道中。透气性可以比如通过通气本体中的小口、气孔、钻孔、缝隙或穿孔来实现。
所述透气材料可以比如由一种烧结金属制成,如烧结青铜或烧结铁,或者由一种烧结的陶瓷材料如氧化铝制成。多孔材料也可以由一种金属丝网、一种多孔的陶瓷材料、一种钻孔的、开缝的或者说穿孔的材料制成,如由金属或塑料制成的板材、平板或管子。此外,该材料也可以由一种渗透多孔的塑料制成。
此外,透气的材料也可以由一种纺织的表面构形物制成,比如毛毡、纺织品、纱布、编织物、闷光织物、针织品、刺绣物或针织物。所述加工成表面构形物的纤维可以是有机纤维,如天然纤维,或者是人造纤维,如聚酯纤维,或者是无机纤维,如玻璃纤维或碳-(芳族聚酰胺)-纤维、金属纤维,或者是陶瓷纤维,如氧化铝。也可以使用混合纤维。
压缩气体旁通管路优选包括冲孔形式或缝隙形式的通气口,压缩气体可以通过这些通气口从压缩气体旁通管路流进输送通道中。所述冲孔或缝隙比如可以以3到10厘米的间距沿输送方向进行布置。所述冲孔可以比如具有0.1到2毫米的直径。所述通气口的直径优选小于输送物料的颗粒直径。通过所述通气口的特殊造型在压缩气体流出压缩气体旁通管路的同时给予压缩气体一个沿输送方向的方向分量。但压缩气体首要用于使输送物料松散,而不是用于使输送物料向前移动。
所述压缩气体旁通管路可以连续地或局部平行于输送管路进行敷设。所述压缩气体旁通管路尤其优选是压缩气体管路,尤其是具有环形横截面的管路。输送管路的内径(最小直径)优选相当于所述压缩空气旁通管路的内径(最小直径)的2.5到60倍,优选3.5到40倍,特别是4到30倍。
这里的管子,在以下说明中除了具有略带圆形的或环形横截面的管路之外,尤其也指具有多边形、尤其是矩形或正方形横截面的管路或者是具有略带圆形和多边形横截面的组合横截面的管路。原则上,可以任意构造管路横截面。
所述压缩气体旁通管路也可以是槽式型材,在其敞开的一侧上在形成一条封闭的通道的情况下布置所述压缩气体通气件,并且使该压缩气体通气件与该槽式型材相连接。
所述压缩气体旁通管路优选塞入所述输送通道中,并且通过合适的固定手段如螺纹连接、铆接、钎焊、焊接、夹紧、粘接等与输送管路相连接。
此外,所述压缩气体通道也可以是所述输送管路的集成组成部分,方法是比如将输送管路与各一条(较小的)压缩气体通道和(较大的)输送通道制造成一体结构。在这种情况下,在压缩气体通道和输送通道之间的间壁包括所述气体通气件或形成所述气体通气件。
也可以使所述压缩气体旁通管路包括多条压缩气体通道,这些压缩气体通道比如由多条平行的压缩气体管形成。
作为压缩气体,优选使用空气。但是为产生或阻止化学反应或者出于其它原因,也可以使用其它气体或气体混合物,如一种惰性气体或氮气(N2)。
所述压缩气体通过压缩气体发生设备产生,所述压缩气体旁通管路通过输入管路与该压缩气体发生设备相连接。所述的设备优选包括一台或多台压缩机,所述压缩机将压缩气体加压到所期望的压力上。压缩气体发生设备也可以包括一个或多个压力容器。
所述压缩气体旁通管路可以包括用于调节压力降的器件,如障碍物,比如使横截面变窄的机构或者说横截面收缩部位。此外,所述压缩气体旁通管路的通气口包括阀门,这些阀门通过阀门控制机构根据压缩气体旁通管路和输送管路之间的压差进行操作。在这种情况下,通过压力传感器来检测出压差。
所述流化机构包括一个带有流化气体通道的流化本体。其中,所述流化气体通道通过流化气体通气件在朝向输送通道的方向上受到空间限制。所述流化本体或者说流化气体通道优选布置在输送通道或输送管路的内部。流化本体优选布置在输送通道的下横截面中,尤其布置在下横截面的底部区。所述流化本体或者说流化气体通道也可以布置在输送通道的外部(底板侧)。
所述流化机构可以设置在所有在输送方向上具有水平分量的管段中。此外,所述流化机构可以仅仅局部设置在特定的管段上,比如仅仅设置在具有正的坡度的管段上。
所述流化本体优选塞入输送通道中,并且通过合适的固定手段如螺纹连接、铆接、钎焊、焊接、夹紧、粘接等与输送管路相连接。流化本体尤其通过借助于螺纹连接固定在输送管路上的流化气体输入管路与输送管路相连接。
所述压缩气体旁通管路的压缩气体通道以及流化机构的流化气体通道优选沿着一个共同的重力平面(E)进行布置,该重力平面沿着输送管路延伸,并且优选与输送管路的顶部点和底部点相交。所述的重力平面沿重力方向延伸。
所述流化气体通气件优选由一种透气的材料制成,该材料能够在形成气流并且使处于输送通道中的散状物料流化的情况下使在流化气体通道中处于压力之下的气体逸出。透气性可以比如通过通气本体中的小口、气孔、钻孔、缝隙或穿孔来实现。
通过流化气体通气本体的造型,尤其是流化气体通气口的造型和/或流化气体通气本体的布置,尤其是流化气体通气口的布置来保证,在输送系统的每种工作状态中固相无法逸进流化气体通道中。因此可以如此构造流化气体通气口的大小,使得输送物料颗粒无法通过开口侵入流化气体通道中或者无法堵塞开口本身。此外,可以如此对流化气体通气口进行定向,使得输送物料颗粒可以仅仅通过反向于重力的运动通过开口进入到流化气体通道中。
优选如此构造所述流化气体本体或者说流化气体通气件,使得所述流化气体均匀分配地供给到输送通道中,并且由此用于输送物料的平面流化。
所述透气材料比如可以由一种烧结金属制成,如烧结青铜或烧结铁,或者由一种烧结的陶瓷材料如氧化铝制成。多孔材料也可以由一种金属丝网、一种多孔的陶瓷材料、一种钻孔的或者说穿孔的或者开缝的材料制成,如由金属或塑料制成的板材、平板或管子。
所述流化气体通气件可以比如包括设有钻孔或穿孔的流化气体通道壁体。此外,该材料也可以由一种渗透多孔塑料制成。
此外,透气材料也可以由一种纺织的表面构形物制成,比如毛毡、纺织品、纱布、编织物、闷光织物、针织品、刺绣物或针织物。所述加工成纺织的表面构形物的纤维可以是有机纤维,如天然纤维,或者是人造纤维,如聚酯纤维,或者是无机纤维,如玻璃纤维,或者是碳-(芳族聚酰胺-)纤维、金属纤维或者陶瓷纤维,如氧化铝。也可以使用混合纤维。
所述流化机构可以包括导向机件,用于使穿过流化气体通气件从流化气体通道流入输送通道中的流化气体转向。优选如此布置所述导向机件,使得所述转向的流化气体具有至少一个反向于对散状物料颗粒起作用的重力的方向分量,也就是说一个上升的趋向。
此外,还优选如此布置所述导向机件,使得其就在流化气体流出流化气体通道之后并且在其起到流化作用之前对流化气体进行转向。
在使用导向机件时,优选将所述通气口如此在流化本体中定向,使得所述流入输送通道中的流化气体包括一个指向重力方向的方向分量,也就是一个下降的趋向。所述流化气体在这里优选在侧面斜着向下流出流化气体通道。
所述导向机件优选包括具有平坦的、凹入的或凸出的导向表面的导向元件。所述导向元件可以比如是导向薄板或导向板。所述导向机件可以比如是(半-)轴瓦元件。此外,导向元件也可以由输送通道的壁体本身形成。
所述流化气体优选在大量细小的、细微的从流化本体的开口中流出的气流中导引到所述导向机件上,其中如此构造所述导向机件,使得气流得到偏向并且优选同时得到分散,从而使输送物料因偏转的和分散的气流大面积地且均匀地流化。气流的分散可以通过导向表面的特殊造型、尤其通过粗糙度图案的设置而得到进一步支持。
所述流化机构在一种优选的实施方案中包括一根形成流化气体通道的流化气体管。所述流化气体通气件按照该实施方式在所述流化气体管的壁体中包括钻孔开口或缝隙。所述开口优选包括一个指向重力方向的方向分量,其中在这些开口对面布置导向元件,尤其是具有凹入的导向表面的导向元件。
所述钻孔开口的直径可以为0.04到2毫米。单个开口彼此间的间距可以为0.5到50厘米,尤其为2到20厘米。通气口的直径优选小于固体颗粒的直径。
在本发明另一种实施方式中,所述流化气体通气件包括一个透气的纺织的表面构形物。该纺织的表面构形物优选如此布置,使得所述从流化气体通道流进输送通道中的流化气体具有一个反向于重力方向的方向分量,也就是说具有一个上升的趋向。该输送气体优选基本上垂直地穿过所述纺织的表面构形物流进输送通道中。
所述纺织的表面构形物优选通过相应的固定手段如夹紧、铆接、粘接等固定到一个敞开的槽状型材上,并且与该槽状型材一起形成一个对固相来说横截面封闭的流化气体通道。
所述纺织的表面构形物尤其优选形成一个所谓的流化底板,该流化底板与上述重力平面(E)之间呈一个直角。
所述流化本体可以包括多条流化通道,比如多个平行的流化气体管。
所述按本发明的装置的输送管路在该装置的一种优选的实施方式中包括多个组装的、也就是相互接合的输送管段。所述单个的输送管段可以具有几米的长度,比如从1到18米的长度。通常,一个输送管段的长度约为6米。所述单个的输送管段为此优选为直线的和刚性的管段。可能出现的倾斜变化优选通过单独的弯曲部段元件来实现,这样的弯曲部段元件比如通过接合器与输送管段相耦合。这里的弯曲部段元件比如是铸件、尤其是金属或塑料铸件。它们可以围成大于0°并且小于180°的输送角度。
所述输送管段优选形成一个接头,所述输送管段在该接头上借助于连接元件连接成气密的管路系统。但输送管段也可以插接在一起或者通过其它的连接技术如焊接、钎焊、螺纹连接、铆接、粘接等彼此相连接。也可以考虑不同连接技术的组合。
所述单个的或所有输送管段分别包括一个流化本体,而该流化本体则具有一个带有一个或多个流化气体输入口以及流化气体通气件的流化气体通道。所述流化通道优选全方位地封闭,也就是说,尤其在两个端面上气密封闭。因此,单个输送管段的流化本体优选没有直接彼此相连接。
输送管段的流化本体在本发明优选的实施方式中没有超过输送管段的终端侧的端面。所述流化气体通道或者说流化本体优选与所述输送管段等长或短于所述输送管段,使得输送管段可以顺利地接头对接头地接合。
为输送管段的每个流化本体配设一个、两个或多个汇入流化气体通道中的流化气体输入管路。如果流化本体布置在输送通道中,那么所述流化气体输入管路就横穿输送管路的壁体。
所述流化气体输入管路通过流化气体管路系统与压缩气体发生设备相连接。该压缩气体发生设备优选包括一台或多台压缩机,它们将流化气体加压到所期望的压力水平上。此外,所述压缩气体发生设备可以配设有一个或多个压力容器,这样的压力容器暂时存储所产生的压缩气体。
多个或所有输送管段的流化本体可以通过一个共同的流化气体输入管路系统彼此相连接,并且进行中央触发。调节机件如调压阀或类似的具有相关控制功能的机件可以使单个的流化本体彼此独立地进行触发,并且彼此独立地得到流化气体供给。此外,可以设置一些机件,这些机件能够对用于单个流化本体的气体压力进行单独控制。
优选通过一台共同的压缩气体发生设备对多个或所有输送管段的流化本体进行供给。但也可以通过多台彼此独立工作的压缩气体发生设备单个的或成组地对流化本体进行供给。
如果所述输送管路具有一个弯度很大的反向于重力指向上方的弯曲部段,尤其是大约90°的弯曲部段,那么在弯曲部段中可以设置一个附加的流化机构,该流化机构在输送物料进入指向上方的管段时使其流化。通常所述指向上方的管段垂直走向。所述流化机构为此布置在弯曲部段的底部区或者说脚部区中,并且包括流化气体室、流化气体通气件以及流化气体输送件。流化气体通气件优选由纺织的表面构形物形成。但也可以如上所述一样考虑其它的流化气体通气件。在管段中的流化机构的流化气体通气件则不一定与在弯曲部段中的流化气体通气件相同。
所述纺织的表面构形物将流化气体室与输送通道隔开,并且形成一个所谓的流化底板。流化机构优选以可松开及气密的方式连接到一个在弯曲部段元件中的底板侧开口上。可以通过彼此进行螺纹连接的环形法兰进行这种连接。
所述弯曲部段可以是一种铸件,尤其是一种金属或塑料铸件,该铸件包括一个底板侧的开口,用于对上述流化机构进行法兰连接。所述输送管段比如借助于接合器安装在弯曲部段的输入口或输出口上。
原则上,上述在弯曲部段中的流化机构可以不依赖于流化机构或压缩气体旁通管路在输送设备的管段中的存在而设置。这里所描述的具有流化机构的弯曲部段元件因此也可以看作是独立的发明主题。这种弯曲部段元件尤其用在按说明书导言定义的密集流输送设备中。
优选使用空气作为流化气体。但是为产生或阻止化学反应或者出于其它原因,也可以使用其它气体或气体混合物,如一种惰性气体或氮气(N2)。
因为所述压缩气体和流化气体在输送通道中与输送气体相结合,所以它们优选具有相同的成分。因此,压缩气体、输送气体以及流化气体也可以来自相同的压缩气体发生器(比如压缩机)或压缩气体存储器。也就是说,在密集流方法中为在发送器中形成压力而需要的压缩气体和输送气体也可以来自相同的压缩气体发生器或者说压缩气体存储器,并且由此来自相同的压缩气体供给网,对此参见下文。
如早已提到的一样,用于上述用途的压缩气体可以暂时存储在一个或多个彼此相关的或彼此独立的配有公知的调节仪器的蓄压器中。该压缩气体可以借助于公知的调压阀、分配阀和调节阀从压缩气体发生器或者说压缩气体存储器导引到其目的地,也就是说导引到发送器、流化气体通道、压缩空气旁通管路或者导引到输送管路。该压缩气体为此优选通过调压阀相应加压到相应的压力水平,并且通过单独的输入管路输送给所述输送通道或者说发送器、流化气体通道以及压缩空气旁通管路。
由于由很高的固体浓度引起的很高的沿着输送管路的压力降,气动式密集流输送器如早已解释的一样包括一个压力容器,又称为发送器,用于向输送管路中输入固体。此外,为该发送器配设了用于均匀地或者按节拍地输送压缩气体的机件,其目的是在压力容器中形成压力。所述机件比如包括一台或多台压缩机、一个压缩气体管路以及调节阀和按具体情况需要的压缩气体存储器。在这种情况下,所述密集流输送设备是一个封闭的系统,该系统具有在其管路系统内部受到控制的压力情况。
可以通过一个极限开关来保证压力容器的充填极限。利用气动式阀门控制机构可以精确地调节压力容器中的装料情况。可以通过定量或称量来保证压力容器的充填极限。压力容器的形状确保散状物料在受到控制的情况下均匀并且完全地压入输送管路中。
比如在压力容器前面配设一个存储器容器或一条输入管路。该输入管路间接或直接地连接到该压力容器上。按具体情况可以紧接在压力容器后面设置用于向输送管路中均匀地或按节拍地供给一种额外的输送气体的机件,但这不应该与来自压缩气体旁通管路的压缩气体的输送相混淆。所述输送管路终止于一个用料设备中,这里的用料设备比如可以是加工设备或存储器容器。
所述输送管路、压缩气体旁通管路以及流化本体可以由一种金属尤其是钢或铝制成,或者由一种耐压的塑料制成。如果所述的管路或通道由管子形成,那么这些管路或通道可以借助于挤压法或者由一种轧制产品制成。在后一种情况下,所述管子具有焊缝或焊接处。如果所述流化本体或压缩气体旁通管路包括一种槽式型材,那么该槽式型材同样可以借助于一种挤压法或由一种轧制产品制成。
所述输送管路或输送管的横截面优选为环形。由此可以使单个的输送管段用简单的接合器在保持气密的情况下结合成一条输送管路。但原则上管路横截面可以为任意造型。
为运行所述密集流输送设备,从一个储备容器中或者说通过一条输入管路向压力容器中供给输送物料。可以通过料位探测器对发送器中的盛装物进行检查。随后,在形成一个特定的气体-输送物料-混合比例的情况下,将输送气体输入到压力容器中。可以通过压力传感器对发送器中的压力进行监控。优选使用空气作为输送气体。为产生或阻止化学反应或者出于其它原因,也可以使用其它气体或气体混合物,如一种惰性气体或氮气(N2)。
随后,处于压力之下的输送物料被从发送器排放到与其相连接的输送管路中。通过一个传感器支配的控制机构来确保该输送物料在受控制的情况下均匀并且完全地压入输送管路中。
为使输送物料松散并且为了防止或减少材料堆积,通过压缩气体旁通管路将压缩气体供给到输送通道的上横截面区中。可以暂时地或永久地以及连续地或局部地在与局部的输送情况相匹配的情况下将压缩气体输送到输送管路系统的输送通道中。此外,该压缩气体可以均匀地、脉冲式地或者以交变的强度导入。压缩气体的供给可以在整个输送管路范围内或者点状地或者说局部地进行。这就是说,仅仅在物料堆积成沙丘或栓塞的地方吹入压缩空气。在后一种实施方式中,有必要通过阀门对压缩气体的输送进行相应的控制。为此,相应的控制信号可以从通过输送通道中的压力传感器进行的压力测量中求得。
由这种导入的压缩气体弄松的输送物料因在输送通道的下面的也就是底板侧区域中的流化气体供给而一同流化。这里的流化是指,散状物料被所供给的流化气体弄松散,并且转化为一种气体-固体混合物,方法是颗粒由所述从底板向上流动的流化气体克服重力向上提起,并且转化为一种悬浮状态,其中在颗粒之间出现一层空气层,从而使得输送物料的内部摩擦显著降低。这种气体-固体混合物在其流动性能方面在管道内部有压差的情况下类似于一种流体。现在这种流化的输送物料在永久存在的输送压力下象流体一样沿输送方向输送给用料设备。
可以暂时地或永久地以及连续地或局部地在与局部的输送情况相匹配的情况下将流化气体输送到输送管路系统的输送通道中。此外,流化气体向单个管段中的供给同样可以随着输送过程中输送条件的变化而变化。该流化气体的供给可以在整个输送持续时间里均匀地或者以交变的强度进行。因为单个输送管段的流化本体优选没有直接彼此相关,所以可以通过合适的(压力)传感器机件以及控制机件如上所述在单个输送管段范围内使流化条件保持不同。
驱动力在按本发明的密集流方法中与飞行输送法相反,在飞行输送法里绝大部分是静态压力,这种静态压力在高压容器中形成并且可能在通向输送管路的压缩空气输入管路范围内形成。基本上通过输送管路内部的压力梯度来产生用于输送散状物料的驱动力。因此,与飞行输送法相反,在输送管路内气体的压缩在密集流方法中具有重要意义。相反,通过压缩气体旁通管路进行的压缩气体的输送以及流化气体的输送优选仅仅用于使输送物料松散及流化,而不用作或者最多在很小的程度上用作输送物料的运输驱动力。
至于过压对用料设备的影响则可以通过装置技术上或者说方法技术上的措施来加以避免,方法是降低输送流的压力,比如直至其达到在进入用料设备的汇入口处的压力,通常为大气压。
已经公开的运输溜槽,又称为空气输送器或流化槽,同样使用流化原理,与这样的运输溜槽相反,所述装置并非必然依赖于测量学上的压降。
更确切地说,所述装置和方法相当于一种密集流输送和流动输送的组合。在这种情况下,沿输送方向的气体速度优选处于颗粒下降速度的范围内或低于其下降速度。
在流化气体通道中的气体压力为此高于输送通道中的气体压力。对在压缩气体旁通管路中的气体压力来说同样如此,该气体压力通常高于在输送通道中的气体压力。如果在输送通道中发生了在连续运行中不应出现的、而是至多在填满或充填的输送管路中刚开始输送过程时出现的堵塞现象,那么所述在栓塞后面形成的气体压力就高于在压缩气体旁通管路中的气体压力,因而所述输送气体流入压缩气体旁通管路中并且通过这种方式绕开栓塞。
在流化气体通道中的气体压力可以高于、等于或小于在压缩气体旁通管路中的气体压力。优选在流化气体通道中的气体压力比在压缩气体旁通管路中的气体压力高0.1到2bar。
输送速度优选为15米/秒或更小,尤其为10米/秒或更小,并且最好为5米/秒和更小,以及优选为0.1米/秒或更高,尤其为1米/秒或更高,最好为2米/秒或更高。所应用的在发送器和用料设备之间的压差优选超过1bar,尤其超过2bar,最好超过4bar,以及优选低于20bar,尤其低于10bar,并且最好低于8bar。
按本发明的装料比例优选超过10,尤其超过30,最好超过40,以及优选低于200,尤其低于160,最好低于80。
利用按本发明的装置,可以在水平的、倾斜的或垂直的线路范围内向下以及向上节省能源地运输输送物料。利用按本发明的装置,尤其可以顺利地克服大于0°到20°的坡度。此外,如上所述,也可以通过在弯管中布置流化单元来顺利地克服即使是垂直的坡度。
其中输送线路可以毫无困难地达到几千米,比如大于0到5千米。输送管路的内径可以多种多样,并且取决于散状物料及所要求的输送能力。因而,输送管路的内径可以比如为30到750毫米,尤其为50到500毫米。根据输送通道的大小来确定所述压缩气体旁通管路和流化机构的尺寸。
输送过程可以在不完全清空输送通道的情况下通过气体压力的降低来结束。而留在输送管路中的材料则压实沉积。因此管路保持部分充填,从而在恢复用料设备的输送过程后就可以直接供给输送物料,而不必事先进行耗时很多的输送管路的填充。
在重新启动输送过程时,所述堆积的散状物料事先因从压缩气体旁通管路中流出并且流进输送通道中的压缩气体而变得松散。所述松散的输送物料因而可以因流化气体的输入而流化,从而在设备启动之后在不采取进一步措施的情况下就可以直接开始散状物料的输送。在现有按本发明的设备上,没有必要进行其它气动式输送系统所要求的输送管路的空吹风(Leerblasen)。但这引起这一情况,即如所说明的一样为输送管路配设一条压缩气体旁通管路,因为在局部有时大量沉积在已停机的输送设备中的输送物料仅仅通过流化气体的供给不能特别有效地或者根本不能进行松散或者说流化。
所述装置和方法优选用于在制铝业中输送可散装的铁矾土和氧化铝或者说矾土。所述输送情况可以是比如将矾土从象船舶或车辆一样的运输工具转送到象圆形料仓或贮仓一样的存放设备中,或者从存放设备转送到电解仓中以及用于向电解室供料。所述矾土可以包括象氟化物或熔剂一样的混合物。
此外,所述装置和方法也应用于-用于运输粉末化的煤或灰的火力发电厂;-用于运输塑料粉末或者说塑料粒料及其它散状物料的化学工业;-比如用于输送可散装的象盐、食糖、可可豆粉、面粉、奶粉或细颗粒状的种子一样的食品的食品工业;-用于运输比如石膏、水泥、砖粉及辅助材料、砂子、石英、磨细的煤或石灰的水泥业或者说建筑材料业。
所述按本发明的装置或者说方法比如用于在一种象船、轨道车辆或公路车辆一样的运输工具和一种象(储备)圆形料仓或贮仓一样的仓储设备之间输送散状物料,或者相反。此外也用于在两个仓储设备或两个运输工具之间输送散状物料。此外,本发明还用于在仓储设备或者说运输工具与象加工设备(如电解炉)一样的用料设备之间输送散状物料。


下面示例性地并且参照附图对本发明进行更详细地解释。附图示出图1是按一种第一实施方案的按本发明的装置的输送管路的横截面;
图2是按一种第二实施方案的按本发明的装置的输送管路的横截面;图3是按所述第一实施方案的流化机构的纵剖面;图4是按所述第一实施方案的流化机构的侧视图;图5是一个具有一个布置其中的流化机构的处于通往垂直上升管的过渡部分中的弯管的横截面;图6是一个气动式密集流输送系统的示意图。
具体实施例方式
按一种第一实施方式(图1)的按本发明的气动式密集流输送系统1包括一条输送管路3,而该输送管路3则具有一条横截面封闭的输送通道2。箭头(S)相应地示出重力方向。
在上半部分通道14a的顶部区域15中布置了一个具有压缩气体通道18及通气口5的压缩气体管路4。在输送通道2的下半部分通道14b的底部区域中,也就是在所述压缩气体管路4的对面布置了流化机构的流化本体6。该流化本体包括一个形成流化气体通道8的具有流化气体通气口9的流化管7。所述流化气体通气口9倾斜向下指向,也就是说它们包括一个沿重力方向的方向分量,使得从所述流化气体通道中流出的气体倾斜往下流出,并且输送物料无法进入流化通道中。此外,该流化本体6包括一个凹入的(半)轴瓦形式的导向机构10,该导向机构10如此布置,使得流出的流化气体转向进入所述输送通道中,并且形成一个与重力反向的方向分量。此外,该导向机构10还包括用于敷设流化气体输入管路11的通孔。
此外,以大量细微的细小的气流形式从通孔中流出的流化气体在其转向过程中被分散,使得所述输送物料因这种转向的流化气体而大面积地并且均匀地流化。
此外,该流化机构包括一个流化气体输入管路11,该流化气体输入管路11具有一条用于将压力加载的流化气体输进所述流化气体通道8(图3)中的流化气体输入通道12。该流化气体输入管路11借助于垫圈16上的锁紧螺母17以及与该垫圈16相连接的针对输送管路3密封的橡胶密封件13加以固定。该流化气体输入管路11与流化管7相连接,比如相焊接,从而通过该流化气体输入管路11借助于锁紧螺母与输送管路3的固定也将流化管7固定在输送通道2中。因为所述导向机构10夹层式地夹紧在输送管路3的壁体和流化管7之间,所以该导向机构10不需要强制性地与流化管7或输送管路3进行连接。
按一种第二实施方式(图2)的按本发明的气动式密集流输送系统21包括一条输送管路23,而该输送管路23则具有一条横截面封闭的输送通道22。在上半部分通道34a的顶部区域35中,布置了具有压缩气体通道30及通气口25的压缩气体管路24。在输送通道的下半部分通道34b的底部区域中,也就是在所述压缩气体管路24的对面布置了流化机构的流化本体26。该流化本体包括一个形成流化气体通道28的槽式型材27。所述流化气体通气口由一个纺织的表面构形物29构成,该表面构形物29布置在所述流化气体通道28的上面的朝向输送通道的区域上。该纺织的表面构形物通过支撑底板36得到支撑,使得该表面构形物形成一个平坦的流化底板样式的表面,而该流化底板则包括用于在流化气体通道28中进行气体循环的开口或中断处。该支撑底板36的横截面为波形。该纺织的表面构形物在侧面在所述槽式型材27的整个长度范围内被向里卷边或者说被夹紧,尤其夹层式地被夹紧。此外,该纺织的表面构形物还可以被粘合和/或旋紧或者说被铆接。为此,将槽式型材27的纵向延伸的侧面端部区段37进行弯曲,并且以夹紧方式压紧在所述平放在槽式型材27的纵向延伸的肩部表面或侧面38上的纺织表面构形物29上。
如所提到的,所述流化气体通道28由一个向上用纺织的表面构形物29所封闭的槽式型材27构成。该槽式型材27优选由一种借助于合适的成型技术如卷圆成型为槽式型材的金属轧制产品制成。但它也可以是一种挤压型材。
所述流化气体按照该实施方式在输送物料流化的情况下反向于重力方向在一种上升运动中从流化通道28穿过所述纺织的表面构形物29流入所述输送通道22中。
此外,该流化机构还包括一条流化气体输入管路31,该流化气体输入管路31具有一条用于将压力加载的流化气体输进所述流化气体通道28中的气体输入通道32。该流化气体输入管路31借助于垫圈40上的锁紧螺母41以及与该垫圈40相连接的针对输送管路23密封的橡胶密封件33加以固定。该流化气体输入管路31如此与流化本体27相连接,比如相焊接,从而通过该流化气体输入管路31在输送管路23上的固定也将流化本体26固定在所述输送通道22中。
通过平板式的支承元件39来导引所述流化气体输入管路31,该支承元件39提供了一个平坦的用于所述槽式型材27的支承面,并且同时用作用于固定流化气体输入管路31的配对固定元件。该支承元件39比如为正方形或矩形并且包括一个通孔。
所述在图1和2中所示的颗粒流仅仅用作说明,并且不是必然与密集流中输送物料的实际密度分布相对应。
按照图1和2的实施方式的突出之处在于简单的并且因而成本低廉的设计。同时该设计也证实在有磨蚀的环境中非常耐用,并且使用寿命长,而且此外极具维修友好性。
图4示出一根流化气体管42的侧视图,该流化气体管42具有安装在其上面的按图1的流化气体输入管路43。为将该流化气体管42安装在输送管路中,将流化气体管段置入输送管段中,并且将流化气体输入管路43通过流化气体管段中的开口穿到外面。将流化气体管段固定在输送管路上,方法是通过定位螺纹件46将输送管路的壁体夹紧地固定在橡胶密封件44和导向元件47之间的缝隙45中。
在输送管路的弯曲部段中优选相应地布置一个附加的流化机构。在图5中示意示出的输送管段63具有一个90°的弯曲部位。在弯曲部段元件71的底部区域中,一个流化机构65通过一个旋紧的环形法兰连接件64以可松开及气密的方式与所述弯曲部段元件71相连接。该流化机构65包括一个流化室68以及一条流化气体输入管路62。通气件69由纺织的表面构形物构成。该表面构形物将所述流化室68与弯曲部段的输送通道61b隔开,并且形成一个所谓的流化底板。此外,起输送作用的输送通道61a还包括一个流化机构70以及一个按照本发明的压缩气体旁通管路67(仅仅示意示出)。
该弯曲部段元件可以是一种铸件,尤其是一种金属铸件或塑料铸件,它包括一个底板侧上的开口用于对上述流化机构进行法兰连接。所述输送管段比如借助于接合器安装在该弯曲部段元件的输入口或者说输出口上。
图6示出了一个封闭的气动式密集流输送设备51的示意图。从一个圆形料仓52将输送物料输送到一个压力容器(发送器)53中,并且在压力下压入输送管路54中并且输送给接收器55。
权利要求
1.用于以密集流方法气动输送可散装的物料的装置,包括横截面封闭的、具有输送通道(2)的输送管路(3)、具有压缩气体通道(18)和用于从该压缩气体通道(18)向所述输送通道(2)供给压缩气体的压缩气体通气件(5)的压缩气体旁通管路(4),其特征在于,为所述输送管路(3)配设流化机构,并且该流化机构包括具有流化气体通道(8)和用于从所述流化气体通道(8)向所述输送通道(2)中供给流化气体的流化气体通气件(9)的流化本体(6)。
2.按权利要求1所述的装置,其中所述压缩气体通气件(5)包括处于压缩气体通道(18)和输送通道(2)之间的通气的间壁。
3.按权利要求1到2中任一项所述的装置,其中所述压缩气体旁通管路(4)是敷设在输送通道(2)内部的顶部区域(15)中的具有通气口的压缩空气管。
4.按权利要求1到3中任一项所述的装置,其中所述压缩气体通气件(5)在所述压缩气体旁通管路(4)的壁体中包括钻孔、缝隙、穿孔或气孔。
5.按权利要求1到4中任一项所述的装置,其中所述流化本体(6)布置在输送通道(2)内部的底部区域中。
6.按权利要求1到5中任一项所述的装置,其中所述流化气体通气件(9)包括处于流化气体通道(8)和输送通道(2)之间的通气的间壁。
7.按权利要求1到6中任一项所述的装置,其中流化气体通气件(9)包括所述流化气体通道(8)的设有钻孔、穿孔或气孔的壁体。
8.按权利要求1到7中任一项所述的装置,其中所述流化机构包括使穿过所述流化气体通气件(9)流进输送通道(2)中的流化气体转向的导向机件(10),其中如此布置所述导向机件(10),使得所述转向的流化气体具有反向于对输送物料颗粒起作用的重力的方向分量。
9.按权利要求8所述的装置,其中所述导向机件(10)包括导向元件,如平坦的或者凹入的导向薄板或导向板,或者由输送通道(2)的壁体构成。
10.按权利要求1到9中任一项所述的装置,其中如此对所述流化气体通气口进行定向,使得从所述流化气体通道(8)中流出并进入输送通道(2)中的流化气体包括指向重力方向的方向分量。
11.按权利要求1到10中任一项所述的装置,其中所述流化本体(6)包括形成所述流化气体通道(8)的流化气体管(7),并且所述流化气体通气件(9)在该流化气体管(7)的壁体中包括开口,尤其是钻孔口。
12.按权利要求1到10中任一项所述的装置,其中所述流化气体通气件(29)是一种纺织的表面构形物。
13.按权利要求12所述的装置,其中如此布置所述纺织的表面构形物,使得所述从流化气体通道(28)中流出并进入输送通道(22)中的流化气体具有反向于重力方向的方向分量。
14.按权利要求1到13中任一项所述的装置,其中所述输送管路(23)由多条输送管段组成,并且所述流化气体通道(28)形成封闭的、尤其在两个端面上封闭的、具有用于流化气体输送和流化气体通气的开口的空腔。
15.按权利要求14所述的装置,其中为每个输送管段配设了流化本体,并且所述单个输送管段的流化本体不是直接地彼此相连接。
16.按权利要求14到15中任一项所述的装置,其中输送管段的流化本体通过流化气体输送管路系统与至少相邻的输送管段的流化本体相连接。
17.按权利要求14到16中任一项所述的装置,其中所述流化本体与所述输送管段等长或短于所述输送管段,并且优选没有突出超过所述输送管段的终端侧的端面。
18.按权利要求14到17中任一项所述的装置,其中为每个输送管段配设了一个、两个或更多个横穿所述输送管路并且汇入流化气体通道中的流化气体输入管路(11)。
19.用于在使用一种按权利要求1到18中任一项所述的装置的情况下输送可散装的物料的方法,其特征在于,所述输送物料在压力容器(59)中被置于压力之下,并且从该压力容器输送到输送管路(54)中,并且借助于从所述压缩气体旁通管路(4)从上面输送到所述输送通道(2)中的压缩气体进行松散,并且通过从所述流化气体通道(8)在底板侧输送到所述输送通道(2)中的流化气体进行流化。
20.按权利要求1到18中任一项所述的用于在制铝业中输送矾土、尤其用于向电解炉供给矾土的装置的使用。
21.按权利要求1到18中任一项所述的用于在水泥业中输送水泥的装置的使用。
全文摘要
本发明涉及一种用于以密集流方法气动输送一种可散装的物料的装置,该装置包括横截面封闭的具有输送通道(2)的输送管路(3)、具有压缩气体通道(18)和用于从所述压缩气体通道(18)向所述输送通道(2)供给压缩气体的压缩气体通气件(5)的压缩气体旁通管路(4)。本发明的突出之处在于,为所述输送管路(3)配设流化机构,并且该流化机构包括具有流化气体通道(8)和用于从所述流化气体通道(8)向所述输送通道(2)中供给流化气体的流化气体通气件(9)的流化本体(6)。
文档编号B65G53/58GK1993279SQ200580026372
公开日2007年7月4日 申请日期2005年7月22日 优先权日2004年8月5日
发明者P·欧内斯特 申请人:艾尔坎技术及管理有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1