共挤压成型薄膜和制造该薄膜的方法

文档序号:4447520阅读:245来源:国知局
专利名称:共挤压成型薄膜和制造该薄膜的方法
背景技术
多聚合物组分共挤压成单层铸造薄膜在本领域是比较常见的。通常,多聚合物流动流在模具或供料机(feedblock)中以分层的形式混合以提供顶到底的多层薄膜。不同的聚合物流动流通常在供料套管部分等混合并且然后以分层的结构进入常规铸造悬架模具装置中,在那里该流动流平整成薄膜状流动流并且被挤压进入铸造轧薄滚轮等中。这种装置形成薄膜,其中聚合物在厚度尺寸形成层。
或者,还提出提供更复杂的共挤压薄膜结构,其中各层不是沿厚度方向划分成共同扩张的层,而是沿着薄膜的宽度方向划分。其中一个例子是聚合物以并列结构或其变化形式被划分,以在第二聚合物的连续基质内的提供不连续的第一聚合物的包含区。美国4,426,344号专利描述了一种复杂的供料套管方法,其采用初始设置在厚度方具有之字形界面向的两种共挤压熔融流,并且使该顶到底分层聚合物改变方向成并列结构,结果薄膜具有正弦形或之字形界面,其中沿宽度方向具有不同的区。虽然两半表示为用同样的材料形成,但是想像得到可以在两半中采用不同材料,尽管这里没有特别说明。
日本公开8-187113号公开了并列共挤压的可能性,虽然用于实现该共挤压的方法没有具体公开。美国6,221,483号专利公开了一种用于尿布的固定薄片的弹性材料和无弹性材料的并列共挤压。该弹性材料被无弹性材料断续地间隔。该并列结构通过在常规的两层开口模具中利用一个插入物实现,其挡住来自两个狭口的弹性和无弹性材料的交错的道并以交替的形式将它们弄到一起。这种方法需要很高的压力防止由于其熔融流的不同引起的相应材料的渗漏。一旦这两种材料通过该插入物之后它们必然会在模具中产生横向流动。美国专利4,787,897号也公开了一种多层并列结构,虽然在这个例子中描述了三个区。有两个外部无弹性区和单个内部弹性区。该内部弹性区用模具中的单一弹性熔融流的聚合在以某种方式形成,但是不清楚这是怎样形成的。美国5,429,856号专利公开了一种通过包含物共挤压技术在无弹性基质内形成不连续的弹性线或区的可能性,这种技术利用Cloeren型三层模具输送不连续的弹性线进入中心熔融流中,该熔融流具有两个无弹性外层,其夹有不连续的弹性流动流。
所有上述方法描述了形成薄膜的方法。与厚度方向的简单的多层不同的任何事物,例如并列的分层的或更复杂的层结构通过修改供料套管或模具形成,其中聚合物熔融流转向或改变方向等。这些方法由于某种原因在公开的模具或供料套管中出现问题。它们需要不同聚合物材料的熔融流在模具或歧管的主体内面临复杂的非线性流动样式。这样能够导致复杂流动相互作用并且有剩余物聚集并需要定期拆卸和清洗的问题。而且由于聚合物在模具或歧管的流动特性不总是一样的,不同的材料通常不能以预定的方式混合。当材料被混合时,在聚合物的聚集区和挤压模具的浇铸口之间产生复杂的流动相互作用,因而得到的不是特定希望的薄膜。本发明通过在挤压薄膜中提供并列型的相关层解决上述一些问题,这是在模具浇铸口在薄膜挤压物中交替提供不连续的热塑树脂流实现的。

发明内容
本发明涉及在宽度方向或横截面方向具有由成型挤压薄膜形成的具有各种不同聚合物区的共挤压聚合物薄膜。该成型挤压薄膜是三维的并具有第一面和第二面。该聚合物薄膜用常规的多层或多部件模具共挤压,然后该流动在模具面被具有成形开口的成型模具板划分,该成型开口从上部区域到下部区域在中心线的两侧波动。该薄膜的特征是具有两个或更多个并列区并且是非平面的,该并列区具有不同的聚合物或聚合物的相关比例。一般而言,当波动结构基本上是规则的时,在非平面薄膜的任何给定平面,在该平面内该聚合物或聚合物的相关比例基本上是相同的。
优选的方法通常包括共挤压两种或更多种热塑性树脂流通过成型模具板。该成型模具板的形状做成以形成非平面薄膜(三维的),优选用从顶表面到底表面规则波动的峰谷结构,在薄膜两面形成纵向延伸的隆起。该薄膜通过将该薄膜共挤压通过该波动的模具板开口,使树脂沿该薄膜的宽度方向划分在不同的区。薄膜的平整得到具有由不同聚合物或相关比例的聚合物形成的并列区的薄膜。


下面将参考附图进一步描述本发明,其中在不同图中同样的附图标记是指同样的零部件,其中图1是形成本发明薄膜方法的示意图。
图2是根据本发明所用的用于形成产物前体薄膜的模具板的剖视图。
图3是根据本发明所用的产物前体薄膜的透视图。
图3a是根据本发明所用的产物前体薄膜的透视图。
图4是平整为平面形式的图3薄膜的剖视图。
图5和图6是在一面上以规则间隔以波动方式切割并平整的图3薄膜的透视图。
图7是根据本发明用图6被切割的薄膜生产的网织品的透视图。
图8是根据本发明的三层薄膜实施例的透视图。
图8a是平整为平面形式的图8薄膜的剖视图。
图8b是沿横向取向的图8薄膜的剖视图。
图9是在一面上以规则间隔切割的图8薄膜的透视图。
图10是沿纵向取向以形成网织品的图9被切割薄膜的透视图。
图11是根据本发明用于形成产品前体所用的模具板的剖视图。
图12是根据本发明具有钩元件的薄膜实施例的透视图。
图13是平整为平面形式的图12的薄膜的剖视图。
图14是以规则间隔在一面上切割的图12薄膜的透视图。
图14a是根据本发明的网织品的透视图。
图15是根据本发明的两层薄膜的透视图。
图16是以规则间隔在一面上切割的图15的薄膜的透视图。
图17是纵向取向以形成网织品的图16的被切割薄膜透视图。
图18根据本发明的三层薄膜的透视图。
图19是与隆起成一定角度切割的图18的薄膜的透视图。
图20由图19的被切割薄膜形成的网织品的透视图。
图21是根据本发明用于形成另一种实施例薄膜的模具板的剖视图。
图21a是用图21的模具板生产的薄膜的透视图。
图22是在一个面上以交替深度切割的图21a薄膜的透视图。
图23是用图22的被切割薄膜生产的网织品的透视图。
图24是根据本发明的薄膜的透视图。
图25在两面切割的图24的薄膜的视图。
图26是用图25的已切割薄膜形成的网织品的透视图。
具体实施例方式
本发明的形成共挤压薄膜的方法示意地示于图1。一般而言,该方法包括第一挤压成型的多层薄膜通过图2和图11所示的模具板1和100。热塑性树脂从常规的薄膜积压机51、151提供通过具有模具板1、100的模具52,该模具板1、100具有非直线开口2、102,非直线的是指该模具板开口作为一个整体不是矩形形式,但是该模具板开口一部分可以是直线的。该模具板可以,例如,用电子放电机械加工切割,其形状做成以形成非平面的薄膜10、110,其选择地(更具图12)可以具有沿着薄膜10的一个或两个表面3和4延伸的细长的间隔的结构7。如果细长的间隔结构7设置在该薄膜10的一个或两个表面3和4上,该结构7可以具有任何预定的形状,包括钩部分或钩部件的形状。该非平面薄膜10、110通常沿着滚轮55拉通过充满冷却液体(例如水)的冷却槽56,其后该薄膜10、110可以横向地滑动或沿着其纵向以间隔的位置20、120用切割器58切割以形成薄膜10、100的不连续的切割部分,形成图5和图14所示的网织品前体。可选地,该薄膜可以由诸如在加热的两辊之间的间隙中等的热处理被变成平面的。图2和图21示出的模具板100、300具有成型的切口102、302,该切口沿着模具板的横向在宽度上是均匀的,如果希望的话,沿着模具面的横向该宽度可以变化也是可能的。如图3a所示,该挤压薄膜的厚度“t”可以是不变的或者通过改变该成型切口的宽度可以沿着薄膜的横向变化。
在图3和图12所示的共挤压薄膜为两层结构。具有上部区和下部区的常规的两层产物前体薄膜流动流从模具输送进入模具板1或100(具有波峰和波谷形状),该模具板使上部聚合物流薄膜层9、109被收集在该非平面薄膜的上半6、106中,并使下部聚合物流薄膜层8、108收集在该非平面薄膜的下半5、105中。该挤压的非平面薄膜的上半和下半之间的两个多流聚合物薄膜层的划分决定于它们相关的质量流率。上部薄膜层9、109可以延伸进入该非平面薄膜的下半5或105,或者下部薄膜层8、108可以延伸进入该非平面薄膜的上半6、106。由于这种两层结构,该上下层往往以平面方式不成比例地划分,这导致在完工的薄膜110’或10’明显不同的并列划分而不需要在供料套管或模具主体中复杂的流动转向。该聚合物沿着该薄膜10’或110’的宽度方向延伸划分使得两种(或更多种)聚合物沿着薄膜的宽度变化。在该两层实施例中,这种变化使得具有从在第一宽度方向区的第一聚合物层的基本上100%到在第二宽度方向区的第二聚合物的基本上100%的聚合物的完全的划分。由于三层或更多层,至少一层聚合物的厚度通常沿着该织物的横向变化。厚度变化的聚合物层通常将包括0-90%的薄膜总厚度。沿着该薄膜宽度(Y向)方向在任何点每层可以包括从0-100%的薄膜总厚度。最厚的区和最薄的区相比,厚度变化的聚合物层通常将变化至少10%,或者可选地,变化至少20%或至少50%。该划分将由产物前体聚合物薄膜层的相关比例和模具板1或100的开口形状确定。由于模具板具有规则地波动的开口,该划分将得到如图3a所示的非平面的薄膜,其中假定共挤压聚合物流动流沿着其宽度具有恒定的聚合物比例,那末在给定的平面该聚合物的相关比例将基本上是同样的。在模具板开口如图2所示在厚度T’、角度“β”、幅值“H”、波长“W”,或其任何组合上变化的情况下,聚合物各层的划分将变化,但是流动流将仍然在该模具板开口的波峰和波谷之间划分。该划分的比例还取决于该模具板开口的波峰和波谷的两腿部之间的夹角β,在角度β小于90度的情况下,至少其中一层趋于完全划分使得它在该形成的薄膜中不连续地分布。在具有形成少于该薄膜50%的外薄膜层的情况下这是千真万确的。当角度β大于90度时,各层往往划分成使得没有不连续层,特别是在一层为该薄膜的50%或更少时更是如此。通常角度β在从170°到5°、140°到10°、110°到20°或90°到30°的范围内。该模具板开口的波峰波谷结构通常将对应于所希望的成型薄膜。该波峰波谷结构可以是如图所示的规则波动的曲线、阶跃函数曲线或任何其他变化。
如图12和图3所示的薄膜10、110具有第一顶面4、104和第二底面3、103,其中薄膜厚度14、114从25微米到1000微米,优选为50微米到500微米。薄膜10、110是非平面的,其中薄膜以基本连续的隆起形式从第一上平面12、112到第二下平面13、113波动成波峰和波谷。因此这意味着该薄膜自身,或除去该薄膜表面上的构造以外的连续的薄膜衬底(backing)是非平面的并且从上平面到下平面波动。该薄膜衬底围绕中线15、115上下波动并且该非平面薄膜的特征是第一半6、106在该中线15、115的一侧上延伸,而第二半5、105在该中线15、115的相对的一侧上延伸。在该薄膜衬底上的隆起的波峰,或在该薄膜顶面上的结构45、145的顶部通常至少延伸到上平面12、112。在该薄膜衬底上的隆起的波峰,或单个的波峰45,145可以终止在该上平面12、112之下或之上,优选终止在该中线15、115和顶平面12、112之间的位置。该薄膜衬底底面3、103上的波峰17、117通常也延伸至少到下平面13、113。但是,该薄膜衬底平面,或单个的波峰可以终止在该下平面13、113之上或之下,并且优选终止在该中线15、115和该下平面13、113之间。波峰通常从下平面13、113到上平面12、112交变,但是多个波峰通过具有仅延伸到该中线或该中线以下的中等波峰可以以一排的形式延伸到上平面或下平面而不延伸到该非平面薄膜面的另一半。一般来说,非平面薄膜将具有每线性厘米(cm)至少约两个波峰(45、145和/或17、117),并且优选每线性厘米(linear centimeter)至少5个增加到多至50个波峰。每个波峰可以延伸通过该薄膜的中线到这样的程度使得该波峰的下侧18、118延伸通过相邻的相对波峰的下侧19、119至少10微米,优选至少50微米。中线和上平面12、112或下平面13、113之间的距离6、106或5、105通常是约50微米到2000微米,优选为约100到1000微米。
如图14和5所示,对于已切割薄膜,切口20、120之间的距离大约对应于将如图所示的被形成的切割部分31、131的所希望的宽度21、121,例如,在图7和图14a所示。该切口20、120可以与薄膜纵向(X向)形成任何所希望的角度,通常从30°到150°。可选地,该薄膜可以在切割之前被拉伸以对聚合物薄膜10、110提供进一步的分子取向并减小该薄10、110的厚度14、114和该薄膜上的任何结构。切割器可以用任何常规的装置,例如往复运动的或旋转运动的刀片、激光或水射流,但是优选该切割器用相对于该薄膜10、110的纵向以大约60度到90度的角度取向的刀片。
图3和图12的薄膜也可以形成网织品。在这个实施例中,薄膜10或110可以从上平面12、112向着中线15、115在上面4、104上切割,或从下平面13、113朝着中线在下面3、103上被切割,例如,如图14和图5所示。该切口20或120从上平面或下平面延伸至少通过该波峰的下侧18、118或19、119。该面上的至少一些波峰45、145被切割,优选所所有波峰或基本上所有的波峰被切割。切口20或120优选将至少延伸大该薄膜衬底的中线。通常该切口能够延伸使得它们到相对波峰的下侧。优选该切口将在到达基本全部该相对波峰的下侧之前终止以避免切断该薄膜。在一面上的波峰的下侧将形成该相对面的波谷。在另一个实施例中,该薄膜如上所述能够在两面上被切割,只要在相对面上的切口偏离开以便不完全切断该薄膜。形成切割部分31和131的切口21和121之间的距离通常是100微米到1000微米,优选从200微米到500微米。该切割部分31、131形成沿网织品40、140的横向延伸的股46、146。沿着纵向延伸的股41、141由薄膜的未切割部分形成。当薄膜衬底只在一面切割时这些纵向股通常是连续地。当切口是连续的时至少一些横向股46、146至少在部分地通常总是连续的。
在切割薄膜10、110之后,该薄膜能够如图6实施例所示被平整,或如图14实施例所示留作波动的薄膜。然后该切割的薄膜能够以2∶1到4∶1的拉伸比例纵向拉伸,并且优选以3∶1的拉伸比例拉伸,优选在以不同表面速度驱动的第一对压轧滚轮60和61和第二对压轧滚轮62和63之间拉伸。这样形成例如图14a和图7所示的开口的三维网织品。滚轮61通常被加热以在拉身前加热该薄膜,而滚轮62通常是冷却的,以稳定被拉伸的薄膜。可选地,该薄膜也可以横向拉伸以对该薄膜提供横向取向并且使形成的该网织品的外形变平。该薄膜也能够沿着其他方向或沿着多个方向拉伸。由于薄膜只在一个面上切割,开口区域43、143通常被直线股41、141分开,该股沿着纵向具有非直线截面或是非平面的,或者两者兼有。横向股通常是非平面的,尽管它们在截面上也能够是直线的。非平面的股或非平面的网织品提供更柔软的网织品,由于其非平面性质,其通过该薄膜(由该网织品的开口区域)和沿着分成小格的网织品的平面形成透气性。该开口区域通常包括至少该网织品的约50%表面面积,并且优选至少60%。该网织品的表面区域沿着X-Y平面是该网织品的平面截面区域。这种大百分比的开口区域形成非常柔性的透气网织品。形成在钩子网织品上的钩子头沿着平行于该钩子头伸出物的方向优选小于该网织品的单个的开口,使得钩子网织品不是自接合的。在图14a的钩子网织品实施例中该方向是横向Y。
拉伸在该薄膜的已切割部分31和131之间产生空间43和143并通过未切割部分的取向形成纵向股41和141。横向股44、144通过相互连接的切割部分形成,每个切割部分具有连接在波峰45、145的腿部。相邻切割部分的腿部被股(例如41和141)或未切割的薄膜被部分连接。
图14a和图7、10、17、20、23、26是根据本发明能够生产示范性的聚合物网状物或网织品,其被赋予附图标记40、140。该网织品包括上主表面46、146和下主表面47、147。在上主表面46上的切割隆起形成多个钩子部件48。
该网织品形成为具有沿着横向延伸的由三维薄膜的切割部分形成的横向延伸的股,和由该薄膜的未切割部分至少部分地形成的纵向延伸的股。当沿着纵向对薄膜施加张力或拉伸时,该薄膜的切割部分31、131分开,如图14a和图7所示。当薄膜只在一面上切割时,在切割线之间的该薄膜的未切割部分沿着纵向对齐,当拉伸或拉紧该被切割的薄膜时导致形成沿着纵向延伸的直线股41、141。在图14a和图7所示的实施例中横向股44、144由切割部分形成。该切割部分连接由未切割部分形成的纵向股41、141。在图14a的实施例中,形成在该切割部分上的钩子部件形成具有钩子接合元件的网状的网织品,提供可透气的、柔顺的和可变形钩子网织品。这种类型的钩子网织品对于诸如一次性吸收物品(例如尿布、妇女卫生用品、有限使用的外衣等)的有限使用物品是非常希望的。
该网织品的特性是在横向股和纵向股的交叉点没有结合点或结合材料。该网织品是由连续材料整体形成的。股元件之间的连接在该薄膜形成工艺中形成,其中该股是通过切割该整体薄膜形成的。因此该网织品在交叉点是连续的均质的聚合物相。也就是说,在股的交叉点没有由分离的股元件的融结或粘结引起的两表面间的边界。优选地,至少一组股具有由拉伸引起的分子取向,这通常是纵向股。这些取向的股可以具有任何截面形状,并且由于在拉伸时的聚合物流动往往变成圆形的。取向在这些股中形成的强度提供沿着具有连续直线的取向方向的尺寸稳定的织物。由于切割操作未取向的股通常是截面中的直线股。两组股通常沿着Z向或厚度方向以大于零(0)度的角度α相交于该网织品的平面,角度α通常未20度到70度,优选为30度到60度。
形成的网织品也能够被热处理,优选通过非接触加热表面。加热的温度和时间应当选择成使被加热的钩子产生皱褶或厚度减小从百分之5到百分之90。加热优选用非接触加热表面完成,其包括辐射、热空气、火焰、UV、微波、超声或聚焦的红外加热灯。这种热处理能够是在包含钩子部分的整个带状物上,或者可以是只在该带状物的一部分上。该带状物的不同部分能够被热处理到或多或少的处理程度。
图8是图3中薄膜30的另一个实施例,其用三个聚合物层37、38和39形成。当挤压通过图2的成型模具板100时,这也将得到这三层沿薄膜30的宽度尺寸的不均匀的划分。该划分在邻近该模具板的波峰和波谷的最外层是最极端的。这是由于在波峰和波谷区域最外层的汇集(poling),而中心聚合物流动得到一般的等量分布。这在图8a看得更清楚,在图8a中图8的薄膜30已经平整成平面薄膜30’。该三层31、32和33沿该薄膜的宽度方向在厚度上变化使得上薄膜层37从波峰34的最大厚度31’变到波谷35的最小厚度31,而下薄膜层38从波峰34’的最大厚度33’变到波谷35’的最小厚度33”。中间层32保持基本不变的厚度32’。该薄膜30然后可以沿长度方向或宽度方向拉伸或取向,如图8b所示,结果得到变薄的层37’、38’和39’。图8b示出在沿着横向被拉伸之后的图8a的薄膜。
图9实施例与图5实施例是同样的,但是利用图8的三层薄膜。结果得到的如图10所示的网织品410已经被拉伸,同时该薄膜仍然是其成型的非平面薄膜形式。在拉伸之前或之后它能够平整。由于层37和38的不同的划分,波峰区440和波谷区450将具有与波峰区和波谷区之间的中间区460不同的性质,该波谷区呈连续的股的形式。
图15和图16是类似于图5的实施例,但是其中切口220只部分地延伸通过上聚合物层206,留下小的部分210未切割。这使得当该被切割的薄膜210’如图17所示被拉伸时,上聚合物层206的小部分能够改变下聚合物层209的性质。如果下聚合物层是弹性体聚合物而上层是比较无弹性聚合物时,第一聚合物层的这个小部分210’能够,例如,产生强的效果。这在长度方向取向之前将稳定该切割的薄膜210’以允许搬运,但仍在拉伸活化之后能够利用该弹性性质。拉伸活化之后,比较无弹性的未切割材料210将永久变形。如果上聚合物层206是弹性体层而下聚合物层209是比较无弹性的,在被切割的薄膜210’取向成网织品210”之后,未切割的弹性区201将使弹性材料能够牢固地结合于下部无弹性层209。
图18是的图8的薄膜,其然后按照图19的切割样式被切割。除了切口120”是以比较不平行于该薄膜110”的横向的角度之外,这个实施例与图5和图6的实施例基本上是一样的。当纵向拉伸时,该薄膜得到如图20所示的网织品,结果在切割部分131”和纵向股141”之间得到空间143”横向股144”由互连接的切割部分131”形成,每个切割部分具有连接于波峰145”和未切割部分141”的腿部。该空间143”交错并沿着作为横向股144”的切割方向对齐。
图21是具有切口302的另一种模具板300,其形状做成以形成如图21a所示的具有上平面312和下平面307的产物前体。在这个实施例中,一些隆起345大于具有中等隆起355的另一些隆起,该中等隆起的波峰终止在上平面312之下但是在中线315之上。然后该薄膜以变化的深度从上面304或上平面向着具有上半306和下半305的中线315被切割成在一面上具有多个切口322、320,如图22所示。下面303是未切割的。较深的切口320从上平面延伸至少通过该中等隆起355的下侧。由于切口终止在该下部隆起317的下侧319之前,所以下部隆起317没有被切割。浅切口322只切割较大的隆起345,导致一些较大的隆起345具有较多的切口并且具有不同的深度。这导致图23所示的网织品在各切割部分331之间具有许多不同尺寸和形状的空间343。横向股344类似于图5和图6实施例的横向股,但是由最深的和最宽地间隔的切口形成。
图24是图18的前体薄膜,该前体薄膜然后在相对的薄膜面上被切割,其中切割线基本上是不重叠的。这样得到由未切割部分主要由未切割部分形成的纵向股。切口461和462在每个面上并且是相等地间隔并错开的。当如图25所示这个实施例的切割薄膜被纵向拉伸时,得到的网织品如图26所示。在这个实施例中纵向股470通常由沿着Z向延伸未切割部分464和463形成。空间443和483在不同平面上。这是在两个面上具有空间的图10网织品的型式,但是具有不连续的纵向股。纵向股段倾向于被取向。
用于制造本发明的共挤压薄膜的合适的聚合物材料包括热塑性树,包括脂聚烯烃类,例如聚丙烯和聚乙烯、聚氯乙稀、聚苯乙烯、尼龙、诸如涤纶等的聚酯以及共聚物及其混合物。优选该树脂是聚丙烯、聚乙烯、聚丙烯-聚乙烯共聚物或其混合物。
该多层结构能够利用例如美国专利5,501,675、5,462,708、5,354,597以及5,344,691号公开的任何多层或多部件薄膜挤压工艺。这些参考文献公开了各种形式的多层或共挤压弹性体层压制品,具有至少一个弹性层和一个或两个比较无弹性的层。但是多层薄膜也可以用已知的多层多部件共挤压技术由两层或更多层弹性层或两层或更多层无弹性层,或其任何组合形成。
无弹性层优选用半晶质的或非晶质的聚合物或混合物形成。无弹性层可以是主要由诸如聚乙烯、聚丙烯、聚丁烯或聚丙烯-聚乙烯共聚物的聚合物形成的聚烯烃。
能够挤出成膜的弹性材料包括ABA嵌段共聚物,聚氨酯,聚烯烃弹性体,聚氨酯弹性体,EPDM弹性体,聚烯烃金属茂合物弹性体,聚酰胺弹性体,乙烯与醋酸乙烯弹性体,聚酯弹性体,等等。ABA嵌段共聚物弹性体一般是这样一种材料,其中A嵌段为聚乙烯芳烃,优选地聚苯乙烯,而B嵌段为共轭二烯烃,具体为低(lower)烷撑二烯烃。A嵌段一般主要由单烷撑芳烃,优选地由苯乙烯半族,且最优选地由苯乙烯制成,其具有分布在4000和50000之间的嵌段分子量。B嵌段一般主要由共轭二烯烃,且平均分子量在从约5000到500000之间范围内,其B嵌段的单体还可以氢化或者官能化。A和B嵌段通常被构造成线性、放射状或者星形构造,其中嵌段共聚物含有至少一个A嵌段和一个B嵌段,但是优选地含有多个A和/或B嵌段,这些嵌段可以是相同的或者不同的。这种类型的典型的嵌段共聚物是线性ABA嵌段共聚物,其中A嵌段可以是相同的或者不同的,或者是主要具有A尖端嵌段的多嵌段共聚物(具有大于三个嵌段的嵌段共聚物)。这些多嵌段共聚物还可以包含一定比例的AB双嵌段共聚物。AB双嵌段共聚物趋向于形成较粘的弹性薄膜层。其它弹性体可以与提供的、不会不利影响弹性薄膜材料的弹性的嵌段共聚物弹性体混合起来。A嵌段还可以由α甲基苯乙烯,t-丁基苯乙烯和其他主要为烷基苯乙烯、以及它们的混合物和共聚物制成。B嵌段一般可以由异戊二烯,1,3-丁二烯,或者乙烯-丁烯单体制成,不过优选地是由异戊二烯或1,3-丁二烯制成。
对于所有的多层实施例,各层可以用于沿薄膜的一个方向或两个方向提供特定的功能性质,例如弹性、柔软性、硬度、刚性、弯曲性、粗造度等。各层能够沿着Z向引向由形成该薄膜的不同材料形成的不同的位置,形成如上所述的具有横向变化性质的薄膜。
钩子尺寸产物前体织物的尺寸用具有变焦透镜的Leica显微镜以大约25倍的放大倍数测量。样品放置在x-y移动台上,并通过移动台到最接近的微米。至少用3个同样的样品,并且平均每个尺寸。
实例1利用类似于图1所示的设备制造共挤压的成型织物,但是利用三个挤压机生产三层结构,包括第一层白层“A”、第二层红层“B”和第三层红层“C”。第一层具有聚丙烯/聚乙烯抗冲击共聚物(99%的7523,4.0 MFI,荷兰,Hoofddorp市的Basell polylefins公司)和1%的聚丙烯为基的彩色浓缩物的白色TiO2。第二和第三层具有98%的7523聚丙烯/聚乙烯抗冲击共聚物和2%的红色的聚丙烯为基的彩色浓缩物。6.35厘米的单螺纹挤压机用于供给用于第一层的7523共聚物,3.81厘米的单螺纹挤压机用于供给用于第二层的7523共聚物,而2.54厘米的单螺纹挤压机用于供给用于第三层的7523共聚物。全部三个挤压机的筒体温度分布大致是相同的,从送料区的215℃逐渐增加到筒体端部的238℃。三种挤压机的熔融流被供给到A、B、C层共挤压送料套管(德克萨斯州,Orangel市的Cloeren公司)。该送料套管安装在类似于图2的具有成型模具浇铸口的20厘米的模具上。该送料套管和模具保持在238℃。该模具浇铸口机械加工成使得在两个连续的通道部分之间的角度(β)为67度。在被模具浇铸口做成形状(成型)之后,挤压物通过水槽被冷却并且被抽出,并且以6.4米/分钟速度绕在空转滚轮上,水的水温保持在约45℃。该织物被空气烘干并收集在滚轮上。结果得到的如图3所示的织物具有所述的正弦形结构,其白色层(A)和红色层(B和C)分别划分进入上平面(波峰)和下平面(波谷)。红色层(B和C)在图3中表示为1层,由于形成两层的材料是一样的,因此在这个实施例中用作1层。测量图3a所示的该正弦形的织物的基本重量、波长(W)、幅值(h)和厚度(t)并记录在下面的表1中。
实例2如在实例1中一样制造共挤压织物,但是该挤压物通过水槽被抽出,并且以9.5米/分钟速度绕在空转滚轮上。该织物对空转滚轮的张力有助于使整个正弦形结构。相当薄的、重量轻的织物被生产成具有比较平的平面结构,当它离开模具板时其表面的不规则性对应于该挤压物的波峰波谷区,该织物的实际尺寸示于下面的表1中。
实例3如在实例1中一样制造共挤压织物,但是红色层“B”和“C”用苯乙烯-异戊二烯-苯乙烯嵌段共聚物(KRATON 1114,德克萨斯州,Houston市的Kraton Polymer公司)生产。该在织物中得到的各层的划分在横向具有弹性性质,在纵向具有无弹性性质。该织物的实际尺寸示于下面的表1中。
表1

权利要求
1.一种用于形成热塑聚合物薄膜的方法,包括(a)混合两种或两种以上的聚合物熔融流;(b)在具有上部区和下部区的模具中以基本上平面的流动流的方式挤压该混合的熔融流;(c)挤压该平面的混合的流动流通过具有从上部区到下部区波动的非直线的成型切口的模具板,因而该上部区的聚合物的至少一部分不成比例地划分到该上部区,并且该下部区的聚合物的至少一部分不成比例地划分到该下部区,以形成至少上部和下部聚合物层;(d)形成薄膜,其中由于该聚合物流在该模具板中的划分,该上部或下部聚合物层的至少其中之一的厚度在该薄膜的宽度方向上是变化的,结果得到所述热塑聚合物薄膜,该薄膜具有延伸为从顶表面到底表面波动的波峰和波谷的一系列隆起,该波峰和波谷沿着第一方向延伸形成连续的隆起。
2.如权利要求1所述的方法,还包括平整该聚合物薄膜。
3.如权利要求1所述的方法,其中该非平面薄膜在该波峰和波谷之间没有平面的部分,并且该薄膜具有从25微米到1000微米的厚度。
4.如权利要求1所述的方法,其中波峰以交替方式从该薄膜的中线延伸到外平面,并且该中线和上平面之间的距离是从50微米到2000微米,并且该薄膜的每线性厘米具有至少5个波峰。
5.如权利要求1所述的方法,还包括在至少一个面上沿着与所述第一方向成一个角度的第二方向在多个切割线处切割所述非平面薄膜,基本上穿透该薄膜以便形成多个切割部分,沿着所述第一方向取向所述被切割的薄膜,以便分开所述切割部分,形成一组由未切割部分连接的分开的股。
6.如权利要求5所述的方法,其中该切口延伸穿过该波峰的下侧,且该薄膜面上的至少一些波峰被切割,并且当切口到达相对的薄膜面上的基本全部波峰的下侧时该切口终止。
7.如权利要求5所述的方法,其中该薄膜在两个面上以交替的样式被切割,其中在一个面上的切割线与在相对面上的切割线错开。
8.如权利要求1所述的方法,其中该薄膜以从2∶1到4∶1的比例被拉伸。
9.如权利要求1所述的方法,其中至少一个聚合物层的厚度从其最薄的区部分到其最厚的区部分是变化的,使得它沿着该薄膜的宽度包括从0到100%的薄膜总厚度。
10.如权利要求1所述的方法,其中至少一个聚合物层的厚度从最厚到最薄区变化0-90%。
11.如权利要求1所述的方法,其中该模具板包括正弦形的成型开口。
12.如权利要求1所述的方法,其中该模具板包括直线形的成型开口。
13.一种热塑聚合物薄膜,包括两个或两个以上的聚合物层,该薄膜具有一系列波动的波峰和波谷,该波峰和波谷沿着第一方向延伸,形成连续的隆起,带有在波峰中不成比例地划分出的至少一个聚合物层、以及至少第二个聚合物层,使得两个或两个以上的聚合物层的厚度沿着宽度方向变化。
14.如权利要求13所述的薄膜,其中该非平面薄膜在该波峰和波谷之间没有平面的部分。
15.如权利要求13所述的薄膜,其中该薄膜具有从25微米到1000微米的厚度。
16.如权利要求13所述的薄膜,其中至少一个聚合物层的厚度从最厚到最薄区变化至少10%。
17.如权利要求13所述的薄膜,其中至少一个聚合物层的厚度从最厚到最薄区变化至少50%。
全文摘要
本发明涉及热塑聚合物薄膜(110)和制造该薄膜的方法,包括两层(112、113)或更多层的热塑聚合物的薄膜(110)具有一系列波峰和波谷,该波峰和波谷沿着第一方向延伸形成连续的隆起,至少一个被不成比例地划分在波峰的聚合物层和至少第二层使得两层或更多层的厚度在薄膜的宽度方向变化。
文档编号B29C55/02GK1972794SQ200580018886
公开日2007年5月30日 申请日期2005年5月6日 优先权日2004年6月8日
发明者罗纳德·W·奥森, 珍妮特·A·文内, 杰施里·塞思 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1