可固化粘合剂组合物及其在光学领域中的用途的制作方法

文档序号:4447557阅读:151来源:国知局
专利名称:可固化粘合剂组合物及其在光学领域中的用途的制作方法
背景技术
本发明涉及可固化、优选可光致固化的粘合剂组合物及其在光学领域中的用途。
用数种涂料涂覆眼科透镜的至少一个表面以赋予该成品透镜额外的或改进的光学或机械性能在该领域中是普遍做法。
因此,通常做法是从眼科透镜(其通常由有机玻璃材料制成)正面开始连续地用耐冲击性涂层(耐冲击性底漆)、耐刮擦性涂层(硬质涂层)、抗反射涂层和,任选地,疏水性面层涂覆该透镜的至少一个面。其它涂层如偏振涂层、光致变色或染色涂层也可以施涂到眼科透镜的一个或两个面上。
对于涂覆眼科透镜的面来说,已提出了许多工艺和方法并进行了公开。
US 2003/0017340描述了将涂层从至少一个模型件转移到透镜毛坯的至少一个几何界定的表面上的一种工艺或方法,该工艺或方法包括-提供具有至少一个几何界定的表面的透镜毛坯;-提供具有内表面和外表面的载体或模型件,该内表面带有涂层;-在所述透镜毛坯的所述几何界定的表面上或在所述涂层上沉积预定量的可固化粘合剂组合物;-彼此相对地移动该透镜毛坯和该载体以使该涂层与可固化粘合剂组合物接触或使该可固化粘合剂组合物与该透镜毛坯的几何界定的表面接触;-向该载体的外表面施加足够的压力使得在该可固化组合物固化后最终粘合剂层的厚度小于100μm;-将粘合剂组合物层固化;和-取出该载体或模型件以回收具有涂层的透镜毛坯,其中涂层粘附到所述透镜毛坯的几何界定的表面上。
所谓的预定量是指足够将涂层转移并粘附到透镜毛坯上的可固化粘合剂组合物的量。
优选地,将涂层转移到透镜毛坯的背面(背面处理或BST)。
可固化粘合剂组合物不但必须使得将涂层从载体快速和安全地转移到透镜毛坯表面并将该涂层良好地粘附到该透镜毛坯表面,而且必须不损害所得眼科透镜的光学和机械性能,例如良好的粘附性、雾度、没有施涂污染(application stain)以及耐热破裂性(临界温度)。
施涂污染是指在透镜毛坯上存在与初始粘合剂组合物施涂区域重合的雾度水平增加的区域。当使用有色透镜毛坯时,施涂污染是尤其严重的。如果在经历表面转移过程之前允许粘合剂组合物在透镜毛坯表面上静置20秒以上,则可以观察到雾度。
WO 03/004255公开了可固化的胶合剂或粘合剂可以是聚氨酯化合物、环氧化合物、(甲基)丙烯酸酯例如聚乙二醇二(甲基)丙烯酸酯、乙氧基化双酚-A二(甲基)丙烯酸酯。
优选的用于可固化的胶合剂或粘合剂的化合物是丙烯酸酯化合物例如聚乙二醇二丙烯酸酯、乙氧基化双酚A二丙烯酸酯、各种三官能的丙烯酸酯例如(乙氧基化)三羟甲基丙烷三丙烯酸酯和三(2-羟乙基)异氰脲酸酯三丙烯酸酯。
单官能丙烯酸酯例如异冰片基丙烯酸酯、苄基丙烯酸酯、苯基硫代乙基丙烯酸酯也是适合的。
这些化合物可以单独使用或结合使用。
发明概述因此,本发明的目的是提供一种可光致固化的粘合剂组合物,其克服了现有技术可固化粘合剂组合物,尤其是用于涂层转移过程的可固化粘合剂组合物的缺陷;本发明的另一个目的是提供如上所述的可光致固化粘合剂组合物,其不但使得涂层或涂层叠层良好地粘附到基材上而且不损害最终产品的光学和机械性能,例如雾度、施涂污染和耐热破裂性,尤其是当使用有色基材例如有色的透镜毛坯或透镜时。
根据本发明,在以下描述中将变得明显的这些目的和其它目的通过提供可固化的粘合剂组合物,优选可光致固化的粘合剂组合物达到,该组合物基于该组合物的可聚合单体和/或低聚物的总重量包含(A1)20-80wt%至少一种二丙烯酸酯单体或其低聚物;(A2)80-20wt%至少一种多烷氧基化双酚二甲基丙烯酸酯或其低聚物;和(B)0-50wt%至少一种不同于(A1)和(A2)的可共聚合单体;条件是该组合物不含任何硫代(甲基)丙烯酸酯(-SCOCR′=CH2,其中R′=H或CH3)单体或其低聚物。
在一个优选实施方案中,该可固化、优选可光致固化的粘合剂组合物包含(A1)20-71wt%至少一种二丙烯酸酯单体或其低聚物;和(A2)80-29wt%至少一种芳族二甲基丙烯酸酯单体或其低聚物;优选该芳族二甲基丙烯酸酯单体或其低聚物是至少一种多烷氧基化的双酚二甲基丙烯酸酯或其低聚物。
优选地,二甲基丙烯酸酯组分(A2)具有通式 其中R是H或C1-C4烷基,优选CH3且m+n>0,优选m+n≥2,更优选m+n≥4;和优选组分(A1)是非芳族二丙烯酸酯单体或低聚物。
优选组分(A2)是上述通式的二甲基丙烯酸酯单体或低聚物,其中m+n为2-10,更好2-8,更优选3-5。
优选本发明的组合物包含28-71wt%、更优选28-42wt%组分(A1)和72-29wt%、更优选72-58wt%组分(A2)。
优选组分(B)占30wt%或更少,更好小于20wt%并再更好小于10wt%。
在最优选的情况下,本发明的组合物不含组分(B)。
通常,可固化粘合剂组合物不包含溴化的单官能丙烯酸酯并优选不包含任何溴化的丙烯酸酯。
更优选可固化粘合剂组合物不包含任何包括溴原子的单体。
在一个优选实施方案中,二丙烯酸酯单体(A1)具有8-12、优选8.5-11.5(cal/cm3)1/2的计算的溶解度参数。
此外,优选的二丙烯酸酯单体(A1)具有小于500,优选≤350的分子量。
对于组合物的每个组分来说,低聚物优选具有小于10000的分子量。
本发明还涉及用于将涂层从载体转移到聚合物材料基材,优选热塑性材料基材表面的工艺或方法,该工艺或方法包括-提供具有至少一个主表面的聚合物材料基材,优选热塑性材料基材;-提供具有内表面和外表面的载体,该内表面带有涂层;-在该基材的所述主表面上或在所述涂层上沉积预定量的可固化粘合剂组合物;-彼此相对地移动该基材和该载体以使该涂层与可固化粘合剂组合物接触或使该可固化粘合剂组合物与该基材的主表面接触;-向该载体的外表面施加足够的压力使得该可固化组合物固化后最终粘合剂层的厚度小于100μm;-将粘合剂组合物层固化;和-将该载体取出以回收具有涂层的基材,该涂层粘附于该基材主表面,其中该可固化粘合剂组合物是如上述限定的可固化粘合剂组合物。
本发明还涉及重叠模塑方法,该方法包括-提供具有至少一个主表面的聚合物材料基材,优选热塑性材料基材;-提供具有内表面和外表面的模型件;-在该基材的所述主表面上或在该模型件的所述内表面上沉积预定量的如上述公开的可固化粘合剂组合物;-彼此相对地移动该基材和该模型件以使该模型件的内表面或该基材的主表面与该可固化粘合剂组合物接触;-向该模型件的外表面施加足够的压力以使得该可固化粘合剂组合物均匀地铺展并在固化后形成厚度至少为200μm的均匀层;-将粘合剂组合物层固化;和-将该模型件取出以回收用该可固化粘合剂组合物的固化层重叠模塑的基材。
粘合剂组合物重叠模塑的固化层优选具有至少500μm的厚度。
所谓的载体或模型件的内表面,是指该载体或模型件面向热塑性材料基材的一个主表面的表面。
使用其中已预沉积一定量可固化粘合剂组合物的载体或模型件包括在本发明范围内。然而,在本发明的方法中,优选正好在将基材和模具朝彼此移动之前施涂该粘合剂组合物。
本发明进一步涉及制造层压聚合物制品,优选热塑性制品,例如层压眼科透镜的方法,该方法包括在由聚合物材料制成的第一部件的主表面上沉积预定量的可固化,优选可光致固化的粘合剂组合物,使该沉积的可固化粘合剂组合物与由聚合物材料,优选热塑性材料制成的第二部件的主表面接触,将该第一和第二部件彼此靠着按压以使该可固化粘合剂组合物均匀地铺展而形成均匀的薄层并将该薄层固化,优选光固化以获得层压制品,其中该可固化粘合剂组合物如上述限定。
本发明的粘合剂组合物可以沉积在裸露的基材上,即其主表面上没有任何涂层的基材上,或者沉积在已涂覆的基材上。特别地,本发明粘合剂组合物尤其适合于将有机玻璃基材上的涂层转移,在该基材中,染料或颜料已经在表面上扩散,或者该基材已预先涂有可着色材料例如丙烯酸类材料且染料或颜料已扩散在其中(通常通过将该已涂覆基材浸在染色浴中)。
优选地,该部件是眼科透镜元件并用聚碳酸酯制成。
所谓的预定量是指足够将基材的涂层或重叠模制品转移或粘附或者将该两个部件粘附的可固化、优选可光致固化的粘合剂组合物的量。
附图简述当结合附图进行考虑时,本发明的上述内容和其它目的、特征以及优点对于本领域技术人员来说通过阅读以下详细的说明将变得明显,在附图中-

图1A-1C是本发明方法第一个实施方案的主要步骤的示意图,这些步骤用于将涂层转移到透镜毛坯的光学表面上;和-图2A-2C是本发明方法第二实施方案的主要步骤的示意图,其中将涂层同时转移到透镜毛坯的两个光学表面上;以及-图3A和3B是使用可膨胀膜装置的本发明方法第三个实施方案的主要步骤的示意图。
优选实施方案的具体描述本发明可固化、优选可光致固化的粘合剂组合物的第一组分(A1)包括至少一种二丙烯酸酯单体或其低聚物。优选二丙烯酸酯单体(A1)具有8-12(cal/cm3)1/2,更优选8.5-11.5(cal/cm3)1/2的溶解度参数和小于500,优选350或更少,且通常为200-300,最优选200-275的分子量。
用基团分布法计算二丙烯酸酯单体(A1)的溶解度参数,在该计算中使用由Hoy测定的基团值(Hoy基团贡献值可以参见Band Up J,和E.H.Immerget,ed S.Polymer Handbook,第三版,John Wiley and Sons,New York 1989)[524-525页])。
优选二丙烯酸酯单体(A1)是非芳族丙烯酸酯单体。还优选二丙烯酸酯单体(A1)是低折射指数的丙烯酸酯单体。
所谓的低折射指数丙烯酸酯单体是指通过均聚合产生折射指数nD25为1.47-1.53的均聚物的丙烯酸酯单体。
优选的二丙烯酸酯单体(A1)中可以列举的是
当然,二丙烯酸酯单体的混合物可以用于组分(A1)。
本发明可固化组合物的第二组分(A2)包括至少一种芳族二甲基丙烯酸酯单体或其低聚物,其优选具有通式
其中m+n>0,优选m+n≥2,且更优选m+n≥4。通常,m+n为2-10,优选2-8,更优选3-5。
优选的乙氧基化双酚-A二甲基丙烯酸酯单体中可以列举的是乙氧基化(2)双酚A二甲基丙烯酸酯m+n=2、乙氧基化(4)双酚-A二甲基丙烯酸酯(m+n=4)、乙氧基(8)双酚-A二甲基丙烯酸酯(m+n=8)和乙氧基化(10)双酚-A二甲基丙烯酸酯(m+n=10)。
当然,芳族二甲基丙烯酸酯单体的混合物可以用于组分(A2)。
任选的组分(B)可以是除了组分(A1)和(A2)之外的任何可共聚合单体,但排除任何硫代(甲基)丙烯酸酯单体,即包含至少一个-SCOCR′=CH2(R′=H或CH3)官能团的单体。
优选的组分(B)中可以列举的是除了单体(A1)和(A2)之外的单(甲基)丙烯酸酯单体和聚(甲基)丙烯酸酯单体例如四氢糠基丙烯酸酯和聚(亚烷基二醇)单丙烯酸酯,烯属化合物,尤其是芳族烯属化合物例如二乙烯基苯或苯乙烯。
优选本发明的组合物不包含组分(B)。
本发明的可固化组合物可以是热可固化组合物和/或可光致固化组合物,但优选是可光致固化组合物。
通常,本发明的可光致固化组合物还包含至少一种光致聚合引发剂。
作为光致聚合引发剂,可以使用任何将其加入以使可聚合单体和/或低聚物光聚合的广泛已知的化合物而没有限制。可以合适地用于本发明的光致聚合引发剂中可以列举的是二苯甲酮化合物、苯乙酮化合物、α-二羰基化合物、酰基氧化膦化合物、双酰基氧化膦化合物以及它们的混合物。
更具体地说,光引发剂化合物可以由以下通式表示 其中R3是烷基或氢原子,且R4和R5是一起可以形成环己烷环的烷基, 其中R6相同或不同并且是甲基、甲氧基或氯原子,e是2或3,且R7是苯基或甲氧基,
可以优选用于本发明的光致聚合引发剂的实例如下所述苯乙酮聚合引发剂1)1-苯基-2-羟基-2-甲基丙烷-1-酮,2)1-羟基环己基苯基酮,和3)1-(4-异丙基苯基)-2-羟基-2-甲基丙烷-1-酮。
α-二羰基化合物1)1,2-二苯基乙二酮,和2)甲基苯基二羟乙酸。
酰基氧化膦光致聚合引发剂1)2,6-二甲基苯甲酰基二苯基氧化膦,2)2,4,6-三甲基苯甲酰基二苯基氧化膦,3)甲基2,4,6-三甲基苯甲酰基二苯基次膦酸酯,4)2,6-二氯代苯甲酰基二苯基氧化膦,和5)2,6-二甲氧基苯甲酰基二苯基氧化膦。
双酰基氧化膦光致聚合引发剂1)双(2,6-二甲氧基苯甲酰基)-2,4,4-三甲基戊基氧化膦。
这些光致聚合引发剂可以以一种使用或以两种或多种结合使用。
优选的光引发剂是下列光引发剂Irgacure500二苯甲酮和1-羟基环己基苯基的1/1混合物。
Irgacure184 Irgacure819
Irgacure1850 在本发明中,基于100重量份组合物的可光致聚合单体和/或低聚物,以常用量,即0.1-5重量份,优选1-5重量份添加光引发剂。
固化之后,本发明优选的可光致固化粘合剂组合物具有1.53-1.65,优选1.53-1.57,通常为1.54-1.55的高折射指数nD25和优选至少50℃,更优选至少60℃,且更好至少70℃,以及再更好至少80℃的玻璃化转变温度Tg。
该可固化、优选可光致固化的粘合剂组合物适合用于涂层转移方法、层压和重叠模塑方法,其中使用裸露的或涂覆的基材例如有机玻璃基材,尤其是热塑性基材并优选PC基材。本发明组合物尤其适合用于有色基材,以避免施涂污染。它对制造眼科透镜和其它光学制品尤其有用。
现将本发明可固化组合物的用途作为应用于涂层转移方法用以制造涂覆的基材例如眼科透镜进行描述。应理解的是本发明的可光致固化粘合剂组合物可以用于任何涂层转移方法而不仅仅是下面描述的方法。
该基材优选是透镜毛坯。优选涂层转移到其上的毛坯的主表面是几何界定的表面。
所谓的透镜毛坯或模型件的几何界定的表面是指光学表面,其为具有需要的几何结构和光滑度的表面,或者是具有需要的几何结构但可能仍然显示一定粗糙度的表面,例如已经被磨光和精制但没有抛光到所需几何结构的透镜毛坯。表面粗糙度通常为Sq 10-3-1μm,优选10-3-0.5μm,并最优选10-3-0.1μm。
Sq离均差的均方值Sq=1NMΣx=1NΣy=1MZx,y2]]>计算表面幅度的有效值(RMS)。这一参数包括在EUR 15178 EN报告中(欧洲共同体委员会),Stout等人,1993三维空间中粗糙度表征方法的进展。
粗糙度(Sq)通过KLA-Tencor的P-10 Long Scan测量。
测量条件如下2μm针尖、1mg力、10个扫描、500μm长、2000个数据点。
所谓的光学表面是指已被磨光、精制和抛光或模塑到所需几何结构和光滑度的透镜毛坯或模型件的表面。
基材可以由通常用于制造光学制品,尤其是眼科透镜的任何透明材料,例如无机或有机玻璃,优选有机玻璃制成。
优选的基材由聚合物材料制成,并更优选由热塑性材料制成。
适合用于本发明的有机玻璃基材可以列举的为通过将以下物质聚合获得的基材(甲基)丙烯酸烷基酯,尤其是(甲基)丙烯酸C1-C4烷基酯例如(甲基)丙烯酸甲酯和(甲基)丙烯酸乙酯,烯丙基化合物例如线性或支化,脂族或芳族多元醇的烯丙基碳酸酯,硫代(甲基)丙烯酸酯,硫代氨基甲酸酯,芳族多烷氧基化(甲基)丙烯酸酯如多乙氧基化芳族二甲基丙烯酸酯,尤其是多乙氧基化双酚盐二甲基丙烯酸酯和聚碳酸酯(PC)。
优选的基材可以列举的是由以下物质聚合得到的基材多元醇烷基碳酸酯,尤其是多元醇烯丙基碳酸酯,例如乙二醇双烯丙基碳酸酯、二甘醇双(烯丙基碳酸酯)、二甘醇双(2-甲基碳酸酯)、乙二醇双(2-氯代烯丙基碳酸酯)、三甘醇双(烯丙基碳酸酯)、1,3-丙二醇双(烯丙基碳酸酯)、丙二醇双(2-乙基烯丙基碳酸酯)、1,3-丁二醇双(烯丙基碳酸酯)、1,4-丁二醇双(2-溴代烯丙基碳酸酯)、二丙二醇双(烯丙基碳酸酯)、1,3-丙二醇双(2-乙基烯丙基碳酸酯)、1,5-戊二醇双(烯丙基碳酸酯)、二亚丙基双酚-A双(烯丙基碳酸酯)和聚碳酸酯,尤其是双酚-A聚碳酸酯。
在一个优选实施方案中,基材是有色基材,即该基材中至少一种染料或颜料已经在该基材本身中表面扩散,或者该基材至少一个主表面已涂有一层可着色材料例如丙烯酸类材料并且染料或颜料已经扩散在其中(通常通过在染色浴中扩散)。此类着色方法在本领域中是已知的并且尤其公开于国际专利申请WO 03/040461中。通常,染色浴包含水、至少一种染料或颜料、载体和任选地包括表面活性剂。
如法国专利申请9904409公开的那样,也可以在已通过UV辐射预处理的基材上进行染色过程。
简而言之,这一染色过程包括用UV辐射辐射基材,尤其是PC基材以在该基材内获得厚度至少为1μm的表面光致降解层和让该光致降解层与着色剂接触以使该着色剂在该光致降解层内扩散到至少1μm的深度。
UV光在辐射期间具有的波长谱要使得至少50%的辐射能量由波长≤320mm的辐射提供。优选≤320mm的UV光的辐射能量为2.4-48J/cm2,更优选10-30J/cm2,并且>320mm的UV光的辐射能量为0.9-15J/cm2,优选2-8J/cm2。
辐射通常持续0.1-10秒,优选0.4-4秒。
本发明方法的重要特征在于将涂层转移到透镜毛坯几何界定的表面上在没有任何显著压缩该毛坯的情况下进行并因此没有任何使该毛坯几何结构尤其是其几何界定的表面变形的风险。
尽管如此,施加在该载体外表面上的压力优选基本上维持到至少让粘合剂组合物胶凝化。维持该压力可以通过使用置于该载体外表面上的可膨胀膜来进行。
优选施加的压力为5-50Psi(0.35-3.5kgf/cm2),并更特别是0.3-3kgf/cm2。
最优选的范围是5-20Psi(0.35-1.40kgf/cm2)。
使用上述方法,可以将涂层连续地或同时地转移到透镜毛坯的前后两个几何界定的表面上。涂层也可以仅转移到透镜毛坯的一面,优选转移到背面(或后面)。
涂层载体可以简单地为由合适材料例如塑性材料制成的薄支持膜,例如聚碳酸酯薄膜。涂层载体优选是由任何合适的材料制成的模型件,优选由塑性材料特别是热塑性材料并尤其是聚碳酸酯制成的模型件。
模型件的工作表面可以具有根据图案组织的浮凸,换言之,可以是微观结构化的并可以为最终透镜提供具有由该微观结构赋予的性能(例如抗反射性能)的光学表面。
获得微结构化模型件的不同技术在WO 99/29494中进行了公开。
模型件或载体可以通过使用已知的方法来获得,例如表面加工、热成形、真空热成形、热成形/压缩、注射模塑、注射/压缩模塑。
注射模塑包括将熔融状态的热塑性材料注入模腔中然后通过冷却将该注射的热塑性材料固化。
载体,通常是模型件,可以是刚性或挠性的,但优选是挠性的。使用刚性模型件需要具有大量的各自包括几何界定的表面的模型件,该几何界定的表面的几何结构适应于透镜毛坯几何界定的表面的具体几何结构。为了避免需要如此大量不同模型件,模型件优选是挠性模型件,尤其是由塑性材料例如聚碳酸酯制成的挠性模型件。当使用这一挠性模型件时,仅需要提供具有如此表面的模型件,该表面的几何结构与涂层将要转移到其上的透镜毛坯光学表面的总体形状相符,或凹形或凸形,而没有必要让这一表面严格地与待涂覆的透镜毛坯表面的几何结构对应。因此,可以用相同的模型件将涂层转移到具有不同具体几何结构的表面的透镜毛坯上。通常,挠性模型件具有两个平行的主表面并因此具有均匀的厚度。
挠性模型件的带有涂层的表面优选是球状的。
挠性模型件将通常具有0.2-5mm,优选0.3-5mm的厚度。更优选挠性模型件由聚碳酸酯制成,并且在此情况下,厚度为0.5-1mm。
已发现,如果满足与模型件和透镜毛坯的基础曲率有关的具体要求,会获得转移方法的最佳实施方案。
在本专利申请中,所谓的模型件的基础曲率,是指模型件工作表面的基础曲率,也就是指带有要转移到透镜或透镜毛坯上的涂层的表面。
同样地,透镜或透镜毛坯的基础曲率是指涂层将要从上述模型件转移到其上的表面的基础曲率。
在本申请中,基础曲率具有以下定义-对球状表面来说,曲率半径为R,基础曲率(或基础)=530/R(R的单位为mm);此种定义在本领域中是很典型的。
-对于复曲面来说,存在两个曲率半径并根据上述公式计算两个基础曲率BR、Br,其中BR<Br。
对于向透镜或透镜毛坯的球状背面的涂层转移来说,为了避免变形,尤其是当使用挠性模型件时,挠性模型件(正面)的基础曲率(BC)必须略微比该涂层将要转移到其上的该透镜或透镜毛坯的几何界定的表面的基础曲率(BL)高。然而,为了避免在转移过程中涂层的破裂或在转移之后光功率处于光学实验室标准Z80.1的容限之外,BC不应太高。
通常,对于球状透镜或透镜毛坯来说,该透镜或透镜毛坯的基础曲率BL和挠性模型件的基础曲率BC应满足以下关系式0<BC-BL<1.5优选0.2<BC-BL<1对于向具有两根主子午线的、半径为R和r且R>r的透镜或透镜毛坯复曲面背面的涂层转移来说,可以计算两个分别与界定该复曲面的半径R和r对应的基础曲率BLR和BLr。
透镜的基础曲率BLR和BLr及挠性模型件的基础曲率应该满足以下关系式
BLR<BLra)如果BLr-BLR≤3.50<BC-BLR<3}|BC-BLr|<1}优选0.2<BC-BLR<2.5}|BC-BLr|<0.5}b)如果BLr-BLR>3.5BLR<BC<BLr当使用刚性模型件时,优选地,该模型件的基础曲率(BC)与透镜或透镜毛坯的基础曲率(BL)相同。
优选地,彼此相对地移动模型件和毛坯时,涂层与可固化粘合剂组合物之间的接触或粘合剂组合物与透镜毛坯几何界定的表面之间的接触分别在涂覆的模型件的中心区域中或在透镜毛坯几何界定的表面的中心区域中发生。
尤其是在挠性模型件的情况下,该模型件的凸状正面可以具有比待涂覆的毛坯的凹表面短的曲率半径。因此,在中心处施加压力,然后使该模型件变形以适应该毛坯表面。形成从该毛坯中心开始的胶合层,这样避免在最终的固化粘合剂组合物层内夹持气泡。当使用曲率半径比待涂覆的凸状毛坯表面更长的模型件的凹状表面时,情况仍然如此。
如前面提到的那样,从挠性模型件转移可以使用可膨胀膜来进行。
可膨胀膜可以由任何弹性材料制成,该弹性材料在适合的流体加压下可以足够地变形,用以促使挠性模型件贴住透镜或透镜毛坯而与该透镜或透镜毛坯的表面几何结构适应。
可膨胀膜可以由任何合适的弹性材料制成。通常,该可膨胀膜具有0.50-5.0mm的厚度和100-800%的伸长率以及10-100的肖氏A硬度。
对于UV固化来说,则应选择透明材料,例如透明的硅橡胶或其它透明的橡胶或胶乳UV光优选从模型一侧辐射。
由可膨胀膜施加到模型件的压力将优选为30-150kPa并将取决于透镜或透镜毛坯和挠性模型件的尺寸和曲率。当然,需要将压力维持在该挠性模型件和该透镜或透镜毛坯上直到胶合剂或粘合剂足够地固化以致获得了涂层对该透镜或透镜毛坯的足够粘附。
透镜毛坯可以是这样一种透镜,其一个或两个面被表面加工或铸塑成需要的几何结构。(只有一个面被表面加工或铸塑成需要的几何结构的透镜称作半成品透镜)。
优选地,透镜毛坯具有提供渐进功率(progressive power)的第一面和提供非渐进功率的第二面,但是优选对具有球状或复曲面状的面进行根据本发明方法的涂层转移。优选地,渐进面是毛坯的正面。
透镜毛坯也可以是半成品透镜,其中该透镜的一个面,优选该透镜的正面已预先用合适的涂料(抗反射、硬质涂层等)处理,并且该透镜剩余的面,优选后面使用本发明的转移方法进行涂覆。透镜毛坯可以是偏振透镜。
虽然以下描述提到使用优选的挠性模型件,但是应理解的是所述方法也可以使用刚性模型件进行。
现参照附图尤其是图1A-1C,将具有凹表面2的透镜毛坯1放在载体元件3上,其中该透镜毛坯的凹表面2朝上。然后将预定量的UV可固化粘合剂组合物的液滴4沉积到该透镜毛坯1的表面2上。将具有已预先涂有规定的涂层6的凸状光学表面的挠性模型件5放在载体元件7上,其中挠性模型件带有光学涂层的表面朝下。
涂层6在该挠性模型件5表面上的沉积可以通过光学领域中采用的任何常用的沉积方法进行,例如真空沉积、旋涂、刷涂、浸涂等。当然,该沉积方法将取决于在该挠性模型件5表面上沉积的涂层的性质。
此后,彼此相对地移动载体元件3、7以让涂层6和UV可固化粘合剂组合物液滴4接触,并将压力施加到与该涂层相对的该模型件外表面上,这样使得该UV可固化粘合剂组合物液滴将在透镜毛坯1的表面2上和在涂层6上铺展。然而,施加的压力应仅足以将粘合剂组合物液滴铺展以获得最终的固化膜所需的厚度(通常是100μm或更少)但不足以使透镜毛坯1发生任何变形。
如图1B所示,然后将由透镜毛坯1、粘合剂组合物膜4、涂层6和模型件5形成的组件放入用于将该粘合剂组合物膜4进行UV固化的装置中。在膜4的UV固化之后,如图1C所示,取下模型件5,将涂层6粘附到其凹面2上的毛坯1回收。
现参照图2A-2C,其示出了如结合图1A-1B所述的类似方法,但是其中透镜毛坯1的两个表面通过本发明的转移方法用涂层进行涂覆。
如图2A所示,将挠性模型件8,例如由聚碳酸酯制成的厚度为1mm的模型件放到载体元件3上,该挠性模型件8的凹表面已预先用光学涂层9进行了涂覆。然后将预定量的UV可固化粘合剂组合物的液滴10沉积到涂层9上。然后将透镜毛坯1放在模型件8上,其中它的凸表面2′与胶合剂液滴10接触。然后将预定量的UV可固化粘合剂组合物液滴沉积在透镜毛坯1的凹表面2上。将挠性模型件5,例如厚度为1mm的聚碳酸酯模型件放在载体元件7上,该挠性模型件的凸表面已预先用光学涂层6进行了涂覆。然后彼此相对地移动载体元件3、7以使涂层6与粘合剂组合物液滴4接触,并在一个模型件的至少外表面上施加压力以使粘合剂组合物液滴4和10铺展而形成薄膜。如先前所述,施加的压力必须仅足以将粘合剂组合物液滴铺展并在固化之后形成所需厚度的薄膜,但不足以使透镜毛坯1产生任何变形。
此后,将由模型件、光学涂层、粘合剂组合物薄膜和透镜毛坯组成的组件放入UV固化装置中,其中粘合剂组合物薄膜4、10被UV固化。
在粘合剂组合物薄膜的固化完成之后,如图2C所示,取下模型件5和8,回收光学涂层5、6粘附到该透镜毛坯1的两个表面上的成品透镜。
图3A和3B是本发明方法的第三个实施方案的示意图,其中涂层转移使用挠性模型件或载体进行,使用可膨胀膜促使该挠性模型件或载体贴着透镜毛坯表面。
图3A示出了在加压和膜膨胀之前的透镜毛坯、挠性载体和可膨胀膜,而图3B示出了在加压和膜膨胀之后的它们。
参照图3A,将透镜毛坯1放入透镜毛坯载体中,其中其几何界定的表面1a朝上。
将可光致固化粘合剂组合物的液滴3沉积在该透镜毛坯1的几何界定的表面1a的中央。
将可转移涂层5沉积在该载体的一个面上的薄挠性载体4,例如球状载体放在粘合剂组合物液滴3上,使得该可转移涂层5与粘合剂液滴3接触。挠性载体4的基础曲率比透镜毛坯1的几何界定的表面1a的基础曲率略高。
将整个组件放在可膨胀膜装置10前面。
可膨胀膜装置10包括流体储存器11,例如设置有流体口12的空气储存器,例如与加压流体源(没有示出)连接用以将加压流体引入该储存器以及将加压流体从该储存器排出的空气口。该储存器10的顶面包括光可透过部分13,例如UV可透过的石英玻璃部分,而该储存器10的下面包括与该透明石英玻璃13对齐的透明可膨胀膜14。
如图3A所示,该装置10还包括导向装置15用以在可膨胀膜14的膨胀期间横向引导该可膨胀膜14。更具体地说,这一导向装置包括向外凸出的截锥部件或漏斗15形成该储存器10的下面,其较大基面被可膨胀膜封闭,其较小基面是圆形开口,该开口具有的直径至少等于挠性载体4的基圆直径但优选略大于基圆直径(至多大5mm)。
通常,该漏斗的高度将为10-50mm,优选10-25mm,并将具有10-90°,优选30-50°的锥度。
最后将光源例如UV光源16放在透明石英板13前面的储存器10的后面。
通常,包括透镜毛坯支架2、透镜毛坯1、粘合剂组合物液滴3和挠性载体4的组件的放置要使得该挠性载体4的边沿在漏斗15的较小基面开口边沿的平面内或与那里相距至多50mm,优选至多20mm。
如图3B所示,从外部源(没有示出)通过进口12将加压流体,例如加压空气引入储存器11。该储存器内的压力增加使可膨胀膜14均匀地膨胀,推动该挠性载体靠上透镜毛坯1,同时使粘合剂3均匀地铺展。
然后将该粘合剂组合物UV固化。
在固化步骤完成之后,从支架2上拆下透镜毛坯1,并取下挠性载体4以回收其几何界定的表面1a带有转移的涂层5的透镜毛坯1。
使用刚才描述的漏斗型装置,获得了好的涂层转移,其中就功率、柱面、棱柱和变形而言,具有符合美国光学实验室标准(ANSI Z80.1-1987)的好的光学性能。
膜导向装置(漏斗)对于让膜以好的形状和方向扩张用以通过透镜毛坯对挠性载体施加均匀的压力而没有任何额外的压力施加在载体和透镜毛坯边缘上是非常重要的。
如前面提到的那样,在固化之后最终粘合剂组合物层的厚度小于100μm,优选小于80μm,最优选小于50μm,并通常是1-30μm。
非常优选用于本发明方法的基材由任何热塑性材料制成,尤其是由适合于制造光学透镜的热塑性材料例如聚碳酸酯制成。
然而,即使不是优选的,但是也可以使用由热固性(交联)材料例如二甘醇双烯丙基碳酸酯聚合物(CR39PPG)、聚氨酯、聚硫氨酯、环硫化物高指数材料制成的基材。
基材可以任选地包含光致变色化合物。
优选地,基材具有非常高的折射指数,即1.56或更高,通常是1.56-1.74,优选1.57-1.59的折射指数nD25。
优选的基材材料是聚碳酸酯(PC)。
转移的涂层可以包括光学领域中传统使用的任何涂层或涂层的叠层,例如疏水性面层、抗反射涂层、抗磨损涂层、耐冲击性涂层、偏振涂层、光致变色涂层、光电子涂层、电光致变色涂层、染色涂层、印刷层例如标志或两个或多个这些涂层的叠层。
根据本发明的一个优选实施方案,将叠层转移到透镜毛坯几何界定的表面上,该叠层包括-任选地,疏水性面层;-抗反射叠层,通常包括无机材料例如金属氧化物或二氧化硅;-抗磨损(硬质)涂层,优选地包括一种或多种环氧基硅烷的水解产物和,任选地,一种或多种无机填料如胶体二氧化硅;
-任选地,耐冲击性底漆,优选聚氨酯胶乳或丙烯酸类胶乳;将每一个该叠层按上述次序沉积在载体上。
本发明方法尤其有利于将包括“面层、抗反射涂层、硬质涂层和底漆层”的整个叠层转移。
通常,抗反射涂层或叠层的厚度为80-800nm,并优选100-500nm。
硬质涂层的厚度优选为1-10μm,优选2-6μm。底漆层的厚度优选为0.5-3μm。
通常,待转移的涂层总厚度为1-500μm,但是优选小于50μm,更优选小于20μm,或更好为10μm或更少。
以下实施例将示例性说明本发明。
多层涂层在所有实施例中,转移的多层涂层包括疏水性面层/抗反射涂层/硬质涂层/底漆层(HMC)。
实施例中给出单体相对于单体组合物(单体+引发剂)总含量的百分率。
人们可以容易地计算出基于组合物的可聚合单体总重量的单体的相应百分率。
步骤1防护和防粘涂层防护和防粘涂层的组成如下
使用肥皂水清洗PC载体并用压缩空气干燥。然后将载体凸表面用上述防护涂料组合物经旋涂涂覆,其中以600rpm的涂覆速度施涂3秒,以1200rpm的干燥速度干燥6秒。使用Fusion System H+灯泡以1.524米/分钟(5英尺/分钟)的速度将该涂层固化。
步骤2疏水性面层和抗反射(AR)涂层在沉积防护涂层之后如下真空涂覆该PC载体A/标准真空AR处理在标准箱式涂覆机中使用熟知的真空蒸发作业进行该真空AR处理。以下是在模具上获得VAR的一个程序1.将其表面上已施涂了防护涂层的载体放入标准箱式涂覆机中并将该腔室抽到高的真空水平。
2.使用热蒸发技术将疏水性涂层(化学制品=Shin Etsu KP801M)沉积到载体的该表面上到2-15nm的厚度。
3.然后,与正常次序相反,沉积由一叠高指数和低指数材料的次层构成的介电多层AR涂层。这一沉积的细节如下交替的低指数和高指数层的光学厚度在下表中给出
B/在四层抗反射叠层的沉积完成时,将由1-50nm物理厚度组成的SiO2薄层沉积。此层将促进氧化抗反射叠层和漆硬质涂层之间的粘附性,该漆硬质涂层将稍后在该涂覆的模具上沉积。
步骤3硬质涂层(HC)&胶乳底漆层该硬质涂层的组成如下
该底漆的组成如下
在步骤1和2中的防护涂层和AR涂层沉积之后,然后在600rpm/1200rpm下通过HC溶液旋涂该PC载体,并在80℃下预固化10分钟,并在相同的速度下通过胶乳底漆溶液再次旋涂并在80℃下后固化1小时。
该偶联剂是以下物质的预缩合溶液
测试和检查程序-根据ISTM 02010,使用交叉划线(cross-hatch)粘附性试验测量粘附性,其中使用3M SCOTCHn°600透明带。
形成25个正方形。
粘附性评定如下
-根据ISTM方法n°02032通过测量临界温度(Tc)来测定耐热破裂性。
抗反射处理过的透镜的临界温度Tc是这样一个温度,在该温度下通过目测首次发现抗反射处理的银纹(细裂纹)。将透镜放入温度受控烘箱中(起点为50℃)一小时,然后取出并迅速检查银纹。如果没有发现微裂,则将该透镜放入温度比前一个烘箱高10℃的烘箱中。重复该方法直到发现微裂,或者该透镜能经受100℃。
如果刚从烘箱中取出之后在透镜上发现微裂,但24小时后不再可见(保持在室温下),则所报道的临界温度用“+”后缀修饰。
如果Tc>60℃,优选Tc≥65℃,则认为涂覆的透镜是耐热破裂性的。然而,Tc≥50℃的涂覆透镜也认为是可接受的。
-使用具有Vita-Life 15瓦荧光灯泡的标准R17应用灯,然后使用由OSRAM制造的微点41601灯视觉测定雾度和施涂污染水平。
用大致垂直于透镜表面的入射光观察透镜。雾度定义为光在透镜的大面积上的一般晦暗度或漫反射度。以视觉方式进行该检查。
微点灯比具有Vita-Life灯泡的灯更精确。
结果评定如下0无1轻度2中等3强烈如果雾度和涂覆污染各自达到2,则透镜是不适合的。
如果雾度或涂覆污染达到3,则透镜是不适合的。
在某些情况下,也已使用Hazeguard装置测定雾度。
实施例1-7和对比实施例C1和C2在用压缩空气干燥之前,将透明(未着色)PC透镜(5.0后屈度(curve),-2.00屈光度)用肥皂和水洗涤并用去离子水冲洗。然后,用抗静电空气喷吹它们,并将其放入可膨胀膜装置的透镜架中。将粘合剂组合物液滴(预先通过0.45μm的注射过滤器过滤)施涂在该透镜的背面一滴在中间,4滴与第一滴等间距滴在1.6cm2正方形的角上。
将先前公开的HMC涂层提供到6.1前屈度的表面加工过的PC载体上(实施例1-3和C1)或5.5屈度、中央厚度为0.47mm的热成型载体(实施例4-6和C2)上,并且使用本发明的BST方法将该HMC涂层转移到透镜的背表面上。可膨胀膜装置是手动装置或自动装置且转移参数如下手动装置-载物台和膜环之间的距离 31mm-膜压力(通过膜施加在模具上的压力)12psi(0.827巴)-UV辐射 具有D-灯泡部件n°38560的泛UV光的UV灯Dymax 5000-EC,亮度135mW/cm2-曝光(固化)时间 30秒-总BST处理时间 65秒自动装置-载物台和膜环之间的距离27.5mm-膜压力12psi(0.827巴)-UV辐射UV灯Xenon(890-1886)B4.2″螺旋灯(无臭氧)脉冲UV(100PPS),亮度1188mW/cm2-充气时间 21-23秒-放气时间 3秒-曝光(固化)时间25秒-总BST处理时间 120秒在BST处理之后,使用Horizon 2刀刃在慢转轮上对该透镜载体组件进行裁边(气压10-12Psi(0.689-0.827巴))。最后,使用压缩的空气将该载体吹离该透镜。
实施例1-3和C1使用手动装置,实施例4-7和C2使用自动装置。
表1
这些实施例表明对于表面加工过的载体来说,本发明的二元组合物用于BST方法是完全令人满意的,含多于80wt%组分(A1)的组合物在施涂污染和雾度方面是不令人满意的,含小于20wt%(A1)的组合物在粘附方面是不令人满意的。
这些实施例旨在说明当与有色透镜一起使用时本发明粘合剂组合物在施涂污染方面的独特优点。
根据WO 03/040461中公开的方法将和实施例1-7一样的PC透镜着色。在实施例8-10中,透镜是蓝色的,且在实施例11-13中,透镜是绿色的。
将有色PC透镜的表面与一滴粘合剂组合物接触然后擦去并检测施涂污染。
对于对比实施例C3来说,两个有色透镜显示相同的结果。
组合物配料和结果在下表2中给出表2
结果表明当与有色透镜一起使用时,在施涂污染方面,本发明组合物优于包含硫代甲基丙烯酸酯组分的三元组合物,并且对于包含28-42重量份组分(A1)和72-58重量份组分(A2)的根据本发明的组合物来说尤其如此。
实施例14-16如实施例1-7中所公开的那样使用BST方法用HMC涂料涂覆透明的PC透镜,但具有以下改变-透镜是透明的PC透镜(5.1后屈度,-2.00屈光度)-载体是PC热成型载体(5.5后屈度),0.47mm中央厚度-可膨胀膜装置是自动装置组合物配料和性能在下表3中给出表3
实施例17-19使用热成型5.5后屈度载体,5.1后屈度、-2.00屈光度透镜重复实施例1-7且组合物配料在表5中给出。透镜的性能也在表5中给出。
表4
实施例20-25使用注射模塑PC载体(5.5基础屈度、0.56mm中央厚度)和自动装置(使用表5的组合物)在5.1后屈度PC透镜(-02.00功率)上进行HMC涂层转移。所得涂覆透镜的性能也在表5中给出。
在自动层压设备上制作HMC转移透镜。
表5
数个市购的可光致固化粘合剂组合物用于上述的涂层转移和试验。
组合物和结果在表6中给出。
表6
NT=归因于过早破坏没有测试固化说明简称CST 完整叠层转移IST 不完整叠层转移EC BST过程中边缘破裂EC+ 大范围边缘破裂n/a 不可施涂表6表明几乎没有市购粘合剂获得具有全部所需性能的最终涂覆透镜。
溶解度参数的计算实例以下实例将逐步说明如何计算新戊二醇二丙烯酸酯的溶解度参数。溶解度参数计算以基团贡献技术为基础,该技术假定分子中每个官能团累加地贡献热力学性能。Hoy基团贡献值源自蒸气压测量。
蒸发能由以下公式给出ΔEv=∑jnjΔej其中nj是分子中j类基团的数目,Δej是基团j蒸发贡献的能量。
Hoy(及其它)基团贡献值作为摩尔吸引常数(F)进行了报道,它们按以下方式与蒸发能关联Fj=ΔEvi,jVi,j]]>其中Vi是分子的摩尔体积。
分子的溶解度参数(δ)按以下方式与该摩尔吸引常数关联δj=ΔEivViVi2=ΣjFjVi=ρijΣjFjMi‾]]>其中ρij是分子的密度,Mi是分子量。
步骤1将分子拆分成由Hoy列出的不同的官能团。图1示出了新戊二醇二丙烯酸酯的球棍图。已将不同的官能团编号,其中多次出现的相同官能团给予相同的编号。
步骤2将每个官能团出现的基团贡献值制成表(如表7所示)。
表7
步骤3将总基团贡献值相加,然后乘以单体密度,并用所得数值除以单体分子量。这样得到的溶解度参数。
新戊二醇二丙烯酸酯的密度=1.031,分子量是212(Sartomer Co.Data)。
(518+498+1376+65+606)=3601(3601*1.031/212=17.51(MPa)1/2*{(cal/cm3)1/2/2.046(MPa)1/2}=8.56(cal/cm3)1/2。
权利要求
1.可固化,优选可光致固化的粘合剂组合物,其基于该组合物的可聚合单体和/或低聚物的总重量包含(A1)20-80wt%至少一种二丙烯酸酯单体或其低聚物;(A2)80-20wt%至少一种多烷氧基化双酚二甲基丙烯酸酯或其低聚物;和(B)0-50wt%至少一种不同于组分(A1)和(A2)的可共聚合单体;条件是该组合物不含任何硫代(甲基)丙烯酸酯(-SCOCR′=CH2,其中R′=H或CH3)单体或其低聚物。
2.根据权利要求1的可固化,优选可光致固化的粘合剂组合物,其中该多烷氧基化双酚二甲基丙烯酸酯具有以下通式 其中R是H或C1-C4烷基且m+n≥0。
3.权利要求2的可固化粘合剂组合物,其中m+n≥2。
4.权利要求1的可固化组合物,其包含20-71wt%组分(A1)和80-29wt%组分(A2)。
5.权利要求1的可固化组合物,其包含28-小于71wt%组分(A1)和29-72wt%组分(A2)。
6.权利要求1的可固化组合物,其包含28-42wt%组分(A1)和58-72wt%组分(A2)。
7.权利要求1的可固化组合物,其包含30wt%或更少的组分(B)。
8.权利要求1的可固化组合物,其包含20wt%或更少的组分(B)。
9.权利要求1的可固化组合物,其包含10wt%或更少的组分(B)。
10.权利要求1的可固化组合物,其不含组分(B)。
11.权利要求1的可固化粘合剂组合物,其中所述至少一种二丙烯酸酯单体(A1)具有8-12(cal/cm3)1/2的计算溶解度参数。
12.权利要求1的可固化粘合剂组合物,其中所述至少一种二丙烯酸酯单体(A1)具有8.5-11.5(cal/cm3)1/2的计算溶解度参数。
13.权利要求1的可固化粘合剂组合物,其中所述至少一种二丙烯酸酯单体(A1)具有<500的分子量。
14.权利要求1的可固化粘合剂组合物,其中所述至少一种二丙烯酸酯单体(A1)具有≤350的分子量。
15.权利要求1的可固化粘合剂组合物,其中所述至少一种单体(A1)是低折射指数单体。
16.权利要求1的可固化粘合剂组合物,其中所述单体(A1)是非芳族单体。
17.权利要求1的可固化粘合剂组合物,其中单体(A1)选自二甘醇二丙烯酸酯、三甘醇二丙烯酸酯、四甘醇二丙烯酸酯、新戊二醇二丙烯酸酯和1,6-己二醇二丙烯酸酯。
18.权利要求1的可固化粘合剂组合物,其进一步包含至少一种光引发剂。
19.权利要求18的可固化粘合剂组合物,其中对于100重量份该可聚合单体和/或低聚物来说,光引发剂为0.1-5重量份。
20.权利要求1的可固化粘合剂组合物,其中在固化之后,该粘合剂组合物具有1.53-1.65的折射指数nD25。
21.将涂层从载体转移到聚合物材料基材的表面上的方法,该方法包括-提供具有至少一个主表面的聚合物材料基材;-提供具有内表面和外表面的载体,该内表面带有涂层;-基于该组合物的可聚合单体和/或低聚物的总重量,在该基材的所述主表面上或在所述涂层上沉积预定量的可固化粘合剂组合物;-彼此相对地移动该基材和该载体以使该涂层与可固化粘合剂组合物接触或使该可固化粘合剂组合物与该基材的主表面接触;-向该载体的外表面施加足够的压力使得在该可固化粘合剂组合物固化后最终粘合剂层的厚度小于100μm;-将粘合剂组合物层固化;和-取下该载体以回收涂层粘附于其主表面上的基材,其中该可固化粘合剂组合物是如权利要求1限定的可固化粘合剂组合物。
22.权利要求21的方法,其中该基材聚合物材料是热塑性材料。
23.权利要求21的方法,其中该基材的热塑性材料是聚碳酸酯。
24.权利要求21的方法,其中该可固化粘合剂组合物包含20-71wt%组分(A1)和80-29wt%组分(A2)。
25.权利要求21的方法,其中该可固化粘合剂组合物包含28-71wt%组分(A1)和大于29-72wt%组分(A2)。
26.权利要求21的方法,其中该可固化粘合剂组合物包含28-42wt%组分(A1)和58-72wt%组分(A2)。
27.权利要求21的方法,其中该可固化粘合剂组合物包含30wt%或更少的组分(B)。
28.权利要求21的方法,其中该可固化粘合剂组合物包含20wt%或更少的组分(B)。
29.权利要求21的方法,其中该可固化粘合剂组合物包含10wt%或更少的组分(B)。
30.权利要求21的方法,其中该可固化粘合剂组合物不含组分(B)。
31.权利要求21的方法,其中所述至少一种二丙烯酸酯单体(A1)具有8-12(cal/cm3)1/2的计算溶解度参数。
32.权利要求21的方法,其中所述至少一种二丙烯酸酯单体(A1)具有8.5-11.5(cal/cm3)1/2的计算溶解度参数。
33.权利要求21的方法,其中所述至少一种二丙烯酸酯单体(A1)具有<500的分子量。
34.权利要求21的方法,其中所述至少一种二丙烯酸酯单体(A1)具有≤350的分子量。
35.权利要求21的方法,其中所述至少一种单体(A1)是低折射指数单体。
36.权利要求21的方法,其中所述二丙烯酸酯单体(A1)是非芳族二丙烯酸酯单体。
37.权利要求21的方法,其中单体(A1)二甘醇二丙烯酸酯、三甘醇二丙烯酸酯、四甘醇二丙烯酸酯、新戊二醇二丙烯酸酯和1,6-己二醇二丙烯酸酯。
38.权利要求21的方法,其中该至少一种多烷氧基化双酚二甲基丙烯酸酯单体(A2)选自乙氧基化双酚-A单体。
39.权利要求21的方法,其中该粘合剂组合物是进一步包括至少一种光引发剂的可光致固化粘合剂组合物。
40.权利要求39的方法,其中对于100重量份该可光致聚合单体,光引发剂为0.1-5重量份。
41.权利要求21的方法,其中该基材是透镜毛坯,并且该主表面是该透镜毛坯的几何界定的表面。
42.权利要求21的方法,其中该基材是有色基材。
43.权利要求21的方法,其中该载体是挠性载体部件,当与该透镜毛坯接触时,其内表面与该透镜毛坯的几何界定的表面相适应。
44.权利要求21的方法,其中该载体由聚碳酸酯制成。
45.权利要求42的方法,其中该载体由聚碳酸酯制成。
46.权利要求45的方法,其中该载体具有0.3-1mm的厚度。
47.权利要求21的方法,其中最终的固化粘合剂层的厚度小于80μm。
48.权利要求21的方法,其中最终的固化粘合剂层的厚度小于50μm。
49.权利要求21的方法,其中最终的固化粘合剂层具有1.53-1.65的折射指数nD25。
50.根据权利要求21的方法,其中施加的压力为5-50Psi(0.35-3.5kjf/cm3)。
51.根据权利要求21的方法,其中该涂层包括疏水性面层、抗反射涂层,抗磨损涂层、耐冲击性涂层、光致变色涂层、染色涂层、偏振涂层、印刷层或两个或更多这些涂层的叠层。
52.权利要求21的方法,其中该涂层由疏水性面层、抗反射涂层、抗磨损涂层和耐冲击性涂层构成。
53.权利要求21的方法,其中该基材的所述至少一个主表面是在该基材上形成的有色涂层的表面。
54.权利要求51的方法,其中该涂层具有50μm或更小的厚度。
55.根据权利要求21的方法,其中该基材是一面已有涂层的半成品透镜。
56.权利要求21的方法,其中该载体由热塑性材料制成。
57.权利要求56的方法,其中该基材通过注射模塑制成。
58.权利要求53的方法,其中已设置有涂层的面是该透镜的正面并且涂层转移到其上的几何界定的表面是该透镜的背面。
59.权利要求43的方法,其中通过可膨胀膜促使该挠性载体贴住该透镜毛坯。
60.一种重叠模塑方法,该方法包括-提供具有至少一个主表面的聚合物材料基材;-提供具有内表面和外表面的模型件;在该基材的主表面上或在该模型件的内表面上沉积预定量的如权利要求1所述的可固化粘合剂组合物;-彼此相对地移动该基材和该模型件以使该模型件的内表面或该基材的主表面与该可固化粘合剂组合物接触;-向该模型件的外表面施加足够的压力以让该可固化粘合剂组合物均匀地铺展并形成均匀的层,当固化时该层具有至少200μm的厚度。-将该粘合剂组合物层固化;和-将该模型件取出以回收用该可固化粘合剂组合物的固化层重叠模塑的基材。
61.权利要求60的重叠模塑方法,其中该基材的聚合物材料是热塑性材料。
62.权利要求60的重叠模塑方法,其中在沉积该可固化粘合剂组合物之前将待转移的涂层施涂于该模型件的内表面上。
63.权利要求60的重叠模塑方法,其中可固化粘合剂组合物的重叠模塑的固化层具有至少500μm的厚度。
64.一种制备层压热塑性制品的方法,该方法包括在由聚合物材料制成的第一部件的主表面上沉积预定量的可固化粘合剂组合物,使该沉积的可固化粘合剂组合物与由聚合物材料制成的第二部件的主表面接触,将该第一和第二部件彼此靠着按压以使该可固化粘合剂组合物均匀地铺展而形成均匀的薄层,以及将该薄层光致固化以获得层压制品,其中该可光致固化的粘合剂组合物在权利要求1中限定。
65.权利要求64的方法,其中第一和第二部件的聚合物材料是热塑性材料。
66.权利要求64的方法,其中该制品是眼科透镜。
全文摘要
本发明涉及可光致固化的粘合剂组合物,该组合物基于该组合物的可光致聚合单体和/或低聚物的总重量包含(A1)20-80wt%至少一种二丙烯酸酯单体或其低聚物(A1);(A2)80-20wt%至少一种二甲基丙烯酸或其低聚物;(B)0-50wt%至少一种不同于组分(A1)和(A2)的可共聚合单体;条件是该组合物不含任何硫代(甲基)丙烯酸酯(-SCOCR′=CH
文档编号B29D11/00GK1977016SQ200580022159
公开日2007年6月6日 申请日期2005年5月3日 优先权日2004年5月4日
发明者A·贾卢里 申请人:埃西勒国际通用光学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1