设计复合板材的方法

文档序号:4439553阅读:189来源:国知局
专利名称:设计复合板材的方法
技术领域
本发明涉及一种设计复合板材的方法,所述板材包含多个区域,各区域包含以 堆叠序列(stacking sequence)设置的多个复合材料板层,各堆叠序列中的各板层具有各自 的取向角。
背景技术
通常,复合板材通过堆叠具有不同取向的板层而构造。在板材中的任一点处都 可以定义一个“板层百分比”,指明具有指定取向的板层的百分比(或者等效的是,可 以定义体积分数,指明具有指定取向的板层的体积)。理想的是设计下述复合板材,所 述复合板材在横断该板材的方向上具有可变的层合板板层百分比。然而,以层合板厚度 /百分比设置为起点,要设计出满足总体板层连续性要求和局部堆叠序列设计规则的一组 堆叠序列和板层布局是很困难的。通常,利用堆叠序列表,由层合板厚度/百分比设置向堆叠序列设置的转化已 经能够进行。堆叠序列表描述了各不连续的层厚所对应的唯一的堆叠序列。层合板堆叠 序列表被设计为既满足针对增加/降低层合板厚度的总体板层连续性规则,又满足局部 堆叠序列设计规则。通常,堆叠序列表也被构造为具有对应于所有厚度值的恒定的层合 板板层百分比。在恒定的层合板板层百分比的最佳应用情况中,使用层合板堆叠序列表可使百 分比方案非常容易地转化为堆叠序列方案。设计板材的简化方法是最初使用厚度和层合板百分比,然后将其转化为堆叠序 列。可以通过数值法来对此进行优化。然而,对于在横断板材的方向上具有可变层合板 百分比的设计的优化,这种堆叠序列方法还不够充分。因此,需要一种能将层合板百分 比方案转化为堆叠序列方案的有效方法。最初,用于层合板堆叠序列优化的遗传算法似乎能为堆叠序列确定问题提供解 决方案。然而,要考虑到这样做必须确定用于具有约500个独立区域的板材(如机翼蒙 皮)的各堆叠序列。为获得优化设计,各区域应具有不同厚度和不同层合板百分比。进 行堆叠序列优化的常规遗传算法将优化各区域中的堆叠序列,并尽量满足区域间板层连 续性要求和局部堆叠序列规则。暂假定各区域具有10个板层。则考虑仅一个区域时可能的堆叠序列的排列的总 数即为10 ! = 3,628,800。然后要考虑设计仅两个相邻区域的问题。考虑两个相邻区域 中的各堆叠序列时,设计排列数现为(10 ! )Λ2 = 13,168,189,440,000。现在,想象一下 将此推广至考虑500个区域的所有可能的设计排列,结果将是(10! )Λ500。遗传算法通过考虑不连续设计构造的总体而起作用,并且利用来自进化论的理 念通过系统调查确定所述总体。对于上述问题,显然基因算法将只能覆盖整个设计空间 的一部分。因此,带有区域间约束条件的直接遗传算法不被认为是一个可行的选择。

发明内容
本发明的第一方面提供一种设计复合板材的方法,所述板材包含多个区域,各 区域包含以堆叠序列设置的多个复合材料板层,各堆叠序列中的各板层具有各自的取向 角,所述方法包括a.关于各取向角创建N个布局矩阵,其中,NM且N为所述板材的任一区域中具有所述取向角 的板层的最高数量,并且所述布局矩阵被连续编号为1,...η,,..N,其中i.第一布局矩阵确定所述板材中含有至少一个具有所述取向角的板层的区域;ii.第η布局矩阵确定所述板材中含有至少η个具有所述取向角的板层的区域;iii.第N布局矩阵确定所述板材中含有至少N个具有所述取向角的板层的区域;b.以多个候选序列设置所述布局矩阵;c.利用选择标准选择一个或多个所述候选序列;和d.根据所选择的候选序列为所述区域指定堆叠序列。一些情形下,将布局矩阵分为若干子矩阵可能是有利的,例如当布局矩阵具有 不相连的区域的地带时,这样做可能是有利的。在此情况下,所述方法还包括将布局矩 阵中的至少一个分为两个以上的子矩阵,并以步骤b中的候选序列设置子矩阵和其它矩 阵。通常,步骤C通过遗传算法来进行,所述遗传算法例如可以根据拟合程度 (fitness measure)对候选序列的总体分级,选择高级别的总体的子集,然后更新总体以改
善其拟合程度。在作为优选实施方式给出的以下实例中,针对三个取向角(0°,士45°和 90° )创建布局矩阵,并且对于各角而言,N具有3以上的值。但是,通常板材设计会 具有任意数量的取向角。此外,一些取向角在横断板材的方向上可具有低板层数,使得 对于所述取向角仅创建了一个或两个布局矩阵。因此,一些取向角可能仅创建一个布局 矩阵,或者在极端情况下(例如非常薄的板材)每个取向角都仅创建一个布局矩阵。本发明的第二方面提供一种复合板材的制造方法,所述方法包括通过本发明 的第一方面的方法设计板材;和根据所选择的候选布局序列组合多个复合材料板层。


下面将参照附图描述本发明的实施方式,附图中图1是具有5个区域的复合板材的透视图;并且图2是显示板材的5个区域的堆叠序列的贯穿板材的截面图。
具体实施例方式堆叠序列优化/板层设计布局问题的起点是层合板厚度分布数据和层合板百分 比数据。表1 4是显示来自机翼优化研究的结果的矩阵,所述研究同时兼顾了尺寸优化 和层合板百分比优化。矩阵中的各单元格表示机翼蒙皮中的区域。表1以mm为单位确 定各区域的总厚度。表2 4分别显示0°板层、士45°板层和90°板层的体积分数。 作为确定层合板堆叠序列和板层布局设计的第一步,根据板层的数量将表1 4中所示的连续层合板优化数据转化为不连续解决方案。这涉及 步骤1 将层合板厚度/百分比转化为板层束厚度值。此任务可通过将表1 4中给出的总层合板厚度与板层百分比值的简单相乘而轻易完成。 步骤2:将连续板层束厚度数据转化为板层的整数。为完成此任务,以板层 束厚度值除以板层厚度值,然后简单地舍入为板层的整数。可以想象几种舍入方案。表 5 7显示发现的板层的数量,假定板层厚度为Imm并且使用的是简单的上舍入方案。 注意,此处所采用的简单的上舍入方案不提供用于对称设计的偶数的板层。例如,表6 显示了含有奇数的板层(即,3或5个板层)的某些区域。当表6中的区域显示偶数(E) 的板层时,在最终堆叠序列中将存在(E/2)+45°板层和(E/2)-45°板层。当表6中的 区域显示奇数的板层时,在最终堆叠序列中+45°板层和-45°板层将根据需要分配,例 如两个+45°板层和三个-45°板层。作为另外一种选择,可以使用不同的舍入方案强制 表6(可选的是以及表5和表7)仅提供偶数。 步骤3:将表5 7的板层数方案转化为板层布局矩阵。各板层布局矩阵确 定板材中的区域,对于给定板层方向,所述板材中的区域含有至少1个板层或2个板层 等等。表8 15显示了得自表5的0°板层的板层布局矩阵。此外,由表6和7中的 数据,也分别得到了 45°和90°板层的等效布局矩阵(未示出)。表8 15中所示的 布局矩阵在下文中也被描述为“布局卡”,因为它们可以有效地“洗牌”以实现优化设 计。注意,表5 7的板层数转变为八个0°板层的布局卡,六个+/-45°板层的布局卡 和三个90°板层的布局卡。然而,对于其它设计,可能存在具有较低板层数的一些板层 方向,所述较低板层数转变为仅一个或两个布局卡。确定了这些板层布局矩阵之后,设计堆叠序列表就成为确定布局矩阵的堆叠序 列这样的简单任务。使用布局矩阵可自动保证板层的总体连续性。仍需检查的是满足了 局部堆叠序列规则。必须对各区域执行该检查。简单的排列遗传算法(permutation GA) 能够确定布局矩阵的优化堆叠序列。暂认为板材具有500个独立区域,各区域具有10个板层。使用带有板材间连续 性约束条件的常规遗传算法则必须在具有(4Λ10)Λ500种可能设计的设计空间内进行优化 (假定存在四个候选板层取向)。通过将该问题转化为发现针对有限数量的板层布局矩阵 的优化堆叠序列的问题,设计空间降低至包含在10 !种设计的数量级内。同时,必须应 对任何区域间板层连续性约束条件。显然,这表示复杂性的显著降低,并使得可以通过 遗传算法进行优化。表16显示了一个简单实例的布局矩阵具有如图1所示以直线设置的2 6这 5个区域的9层0° /士45° /90°层合板板材1。通过选择布局矩阵的给定序列(其在表 16中被标记为卡#1、卡#2等),板层布局矩阵所包括的五个区域的各区域的堆叠序列得 到限定。表17显示了卡序列的一组堆叠序列#5#6#1#8#7#4#2#9#3。图2显示了如何将表17的候选序列用于制造复合板材1。板材1包含2 6这5 个区域,如图2所示,这些区域通过将九个板层的预浸料布置在布局台7上而形成。即, 第一板层8为跨越2、3两个区域的0°板层(即,碳纤维的走向平行于板材1的轴);第 二板层9为跨越3、4两个区域的90°板层,以此类推,直至顶部板层10,所述顶部板层 10为跨越2 4区域的+45°板层(即,碳纤维走向与板材1的轴成+45° )。
使用排列遗传算法以多个候选序列设置布局卡。例如,一种候选序列可以具有 如表17中所示的布局卡,另一种候选序列可以使布局卡以如#6#5#1#8#2#4#7#3#9等另一 种序列设置,等等。然后用遗传算法针对确定各候选序列的“拟合度”的各种选择标准 来检验候选序列的总体。这些选择标准可以包括例如下述局部堆叠序列规则1)外部板层应为士45°板层2)不超过χ个某一方向的板层可以直接相邻3)板层应该分布为可避免混合/扭曲耦合效应4)其它和/或如“最大化板材的刚性”等结构规则。遗传算法通过下述过程来寻求改善的序列研究候选布局矩阵序列的总体,根 据“拟合度”将它们分级,然后使用系统方法更新总体并改善总体“拟合度”。排列遗 传算法通过交换现有板层来进行此优化,只有这样才不会引入任何新板层。术语“拟合 度”是所提出的设计规则被满足得有多好的程度。通常,要求遗传算法能使某种目标函 数(objective function)达到最低。所述目标函数可以是对布局优化问题中所考虑的各区域 中违反设计规则的总数的某种衡量。虽然上文中已参照一个以上优选实施方式描述了本发明,但是应该理解,可以 进行各种改变或修改,而不脱离如所附权利要求中所限定的本发明的范围。表1-每一区域的层合板厚度
权利要求
1. 一种设计复合板材的方法,所述板材包含多个区域,各区域包含以堆叠序列设置 的多个复合材料板层,各堆叠序列中的各板层具有各自的取向角,所述方法包括a.关于各取向角创建N个布局矩阵,其中,NM且N为所述板材的任一区域中具有所述取向角的板 层的最高数量,并且所述布局矩阵被连续编号为1,...η, ...N,其中1.第一布局矩阵确定所述板材中含有至少一个具有所述取向角的板层的区域;ii.第η布局矩阵确定所述板材中含有至少η个具有所述取向角的板层的区域;iii.第N布局矩阵确定所述板材中含有至少N个具有所述取向角的板层的区域;b.以多个候选序列设置所述布局矩阵;C.利用选择标准选择一个或多个所述候选序列;和 d.根据所选择的候选序列为所述区域指定堆叠序列。
2.如权利要求1所述的方法,其中,所述步骤c通过遗传算法来进行。
3.如权利要求2所述的方法,其中,所述遗传算法根据拟合程度对候选序列的总体分 级,选择高级别的所述总体的子集,然后更新所述总体以提高其拟合程度。
4.如前述权利要求中的任一项所述的方法,其中,所述选择标准包括局部堆叠序列 规则。
5.如前述权利要求中的任一项所述的方法,所述方法还包括将所述布局矩阵中的 至少一个分为两个以上子矩阵,并以步骤b中的所述候选序列设置所述子矩阵和其它矩阵。
6.如权利要求5所述的方法,其中,所述子矩阵确定不相连的区域的地带。
7.—种制造复合板材的方法,所述方法包括通过前述权利要求中任一项所述的方法 设计所述板材;和根据所述选择的候选序列组合多个复合材料板层。
8.如权利要求7所述的方法,其中,所述板材包含多个区域,各区域包含以堆叠序列 设置的多个复合材料板层,各堆叠序列中的各板层具有增强纤维,所述增强纤维沿确定 所述板层的所述取向角的方向延伸。
全文摘要
一种设计复合板材的方法,所述板材包含多个区域,各区域包含以堆叠序列设置的多个复合材料板层,各堆叠序列中的各板层具有各自的取向角。对于各取向角,创建第一布局矩阵,所述第一布局矩阵确定板材中含有至少一个具有所述取向角的板层的区域。还创建第二布局矩阵,所述第二布局矩阵确定板材中含有至少两个具有所述取向角的板层的区域,以此类推至第N取向矩阵,所述第N取向矩阵确定板材中含有至少N个具有所述取向角的板层的区域。布局矩阵以多个候选序列设置。然后,利用选择标准选择一个或多个候选序列,并根据所选择的候选序列对区域指定堆叠序列。
文档编号B29C70/30GK102015266SQ200980114595
公开日2011年4月13日 申请日期2009年4月14日 优先权日2008年4月28日
发明者拉尔斯·克罗格 申请人:空中客车操作有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1