加热高温气流的装置和处理废物的设备的制作方法

文档序号:4559694阅读:434来源:国知局
专利名称:加热高温气流的装置和处理废物的设备的制作方法
技术领域
本发明涉及从高温气体中回收热能。更具体地说,本发明涉及一种能够通过与热流的热交换回收燃烧高温废气中的热能从而有效地利用所回收的热能的加热高温气流的装置,所述的高温废气是在城市垃圾焚烧炉和工业焚烧炉焚烧废物(包括可燃的一般废物,例如从家庭和办公室清扫出的城市垃圾,也包括可燃的工业废物、例如废弃的塑料、破碎的车辆碎片、废弃的办公设备、废弃的电子设备、废弃的化妆品容器等)的过程中产生的。本发明还涉及设置有上述的加热装置的处理废物的设备。
已有城市垃圾焚烧炉和工业垃圾焚烧炉配备了加热高温气流的装置,以便回收和利用在焚烧那些废物时产生的高温燃气中的热能。这种加热高温气流的装置的结构是使气流流过一种金属制的传热管道,随即在与高温燃气的热交换中加热该气流,从而回收高温燃气中的热能。这样回收的热能可用作热解废物的设备中、发电设备中以及其他系统中的热源。
在图49中,示出一种普通的加热高温气流的装置,在燃烧熔化炉53的上游设置一个燃熔区49,在熔化炉53的下游设置一个加热高温气流的装置1。在燃熔区49内,将用于燃烧的气体和空气供入燃烧器56中,以便使废物中的可燃组分在高达1300℃左右的高温下燃烧,这样就产生了熔浆53f和燃烧废气G。燃烧废气G通常含有粉尘(残渣),并构成一种含有腐蚀性物质例如氯气和氯化氢的高腐蚀性气体(这取决于燃烧的废物种类)。在上述焚烧炉中,燃烧废气的温度为1000~1100℃,流速约为2~3m/s。加热高温气流的装置1实际上是由用来回收上述高温燃烧废气G中的热能的传热管道9构成的。为了使加热高温气体的装置1能够容纳大量的被加热的气流,将传热管道9做成长形,并且通常以多个平行组合的方式安装。
因此,要求上述的置于焚烧炉内并与高温高腐蚀性气氛相接触的传热管道在材料和结构方面对于上述的高温腐蚀性气体应具有足够的耐久性。据认为,作为改善加热高温气流的装置的耐腐蚀性能的手段,可在金属制成的传热管道上,焊上一种柱螺栓销,然后将可浇注成形的耐火材料浇到上述柱螺栓销的周围,也可将大致为长方体形的耐火砖沿它们的纵向和横向相连接地排列。这些结构可使上述耐火材料对于腐蚀性气相中的对流和相互扩散起到物理壁垒的作用,从而稍微减轻传热管道的腐蚀。
但是,上述各种结构的耐火材料都会发生开裂,最终导致腐蚀并损坏固定耐火材料的夹具,或者由于耐火材料与金属传热管道之间不同材料的组合产生了热膨胀的差异而导致耐火材料本身的损伤和分离,从而出现金属传热管道腐蚀损坏的严重腐蚀现象,并产生如下的问题,即加热高温气流的装置的工作寿命缩短,并由于工作效率降低,而使热交换时回收热能的效率降低。
而且,由于传热管道是相当细长的,因此容易发生热变形和弯曲。再一个问题是,由于是多外传热管道互相平行排列的,故废气中所含的灰尘容易沉积在这些管道之间,从而降低通过热交换回收热能的效率。
本发明的一个目的是,延长加热高温气流的装置的使用寿命,并使该装置高效地工作,从而提高通过热交换回收热能的效率。本发明的另一目的是提供一种热变形较小且不易积聚灰尘的加热高温气流的装置,本发明还提供一种装有上述加热装置的处理废物的设备。
为了实现上述目的,本发明采用如下所述的结构。
在权利要求1规定的本发明中,提供了一种加热高温气流的装置,其特征在于,该装置安装在含有高温气体的环境中,并具有用于通过与高温气体的热交换而加热流过传热管道中的待加热气流的传热管道,该传热管道含有一个供待加热气流流过的传热管和一个用耐火材料制成的并同轴地套在上述传热管之外的耐火保护管,在上述传热管与保护管之间形成一个间隙。
按照本发明,由于有了上述间隙,上述的传热管(通常用金属制成)和耐火材料制的耐火保护管不易因制造这两种管的不同材料的不同热膨胀而相互影响,这就可减少由于热膨胀变化造成的耐火材料的损坏和分离。
在权利要求2规定的本发明中,提供了一种加热高温气流的装置,其特征在于,该装置安装在含有高温气体的环境的,并具有用来通过与高温气体的热交换而加热流过传热管道中的待加热气流的传热管道,该传热管道含有一个用金属制的且其顶端敞开的内传热管和一个用耐火材料制的并同轴地套在上述的内传热管之外的外传热管,在上述内传热管与外传热管之间形成一个间隙,待加热气流在流过内金属传热管之后,从上述内管的开口端流入内管与外管之间的间隙时被高温气体所加热。
在本发明中,由于有了上述的间隙,同样可以减少因上述热膨胀的差异而引起的耐火材料的损坏和开裂。
权利要求3规定的本发明与权利要求1或2类似,其特征在于,其耐火保护管或者外耐火传热管的结构是具有横截面为多角形的面,多个传热管道以相邻耐火保护管或者传热管的多角形面互相面对面地接触而排列固定。
按照本发明,耐火保护管或者外耐火传热管做成其横截面为四边形等的多角形,多个传热管道以相邻保护管或传热管面对面地接触而排列固定。因此,这种结构的加热高温气流的装置可提高结构刚性,从而显著地减小上述的热分解。而且,这种面对面的排列使得装置的整个表面平直,因此,与具有凹面和凸面的结构相比,表面更不易沉积灰尘,从而可在长时期内保持高的传热效率。
权利要求4规定的本发明与权利要求1或3类似,其特征在于,其传热管道的传热管含有一个金属制的内传热管和一个金属制的并套在上述内金属传热管之外的外传热管,在上述内、外管之间形成一个间隙。待加热气流流过内、外管之间的间隙时被高温气体加热。耐火保护管套在上述的外金属传热管之外并与该传热管同轴地安装,在上述保护管与外传热管之间形成一个间隙。
权利要求5规定的本发明与权利要求1或3类似,其特征在于,其传热管道的传热管包含一个金属制的外传热管和一个与上述外管的一端连通的内管,在上述内管与外管之间形成一个间隙,上述的内管做成一种导热性比金属小的隔热结构,当待加热气流流过外金属传热管与内隔热管之间形成的间隙时便沿外金属传热管的外壁被高温气体所加热。
按照上述本发明,待加热气流仅在流过外金属传热管与内隔热管之间形成的间隙时被加热,而流过内隔热管的气流不与前一种气流一起被加热,也就是说,流过内管的气流是隔热的,从而使内管中的待加热气流的温度变化保持在可接受的小范围内。因此,可提高传热效率并简化温度控制。
更具体地说,采用上述结构的传热管道回收高温气体热能的方法是使待加热气流流过外金属传热管与内传热管之间形成的间隙,然后使加热过的气流从其与外传热管连通的一端流过内传热管而排出,从而回收高温气体中的热能,或者,采用上述结构的传热管道,并使气流沿相反方向流动而实现热能回收,此时,气流流入上述外管与内管之间的间隙并沿外管的金属壁回收高温气体的热能,在这种情况下,回收的热能沿内传热管的金属壁传输,直到气流流过该内传热管为止。因此,常规的实践便有这样的问题,即流过内传热管的气流的温度会发生明显的变化,而且待加热气流流出时其温度也是可变的,这样,传热效率便难以达到理想的程度。为了达到理想的传热效率,要求处于内传热管之外的外传热管中的气流的温度不必更高。这就造成高温气体与外传热管中的气流之间的温差小。结果便需要较大的传热面积,从而迫使常规作业要采用大尺寸的装置。本发明的结构可使高温气体的热量仅仅传给流过外金属传热管与内隔热管之间的间隙的待加热的气流。这就是说,可以防止上述气体的热量传至内管的内壁,因此可达到理想的传热效率。
权利要求6规定的本发明与权利要求5类似,其特征在于,上述内管做成导热性比金属低的隔热件。权利要求7所述的本发明的特征在于,上述的内管做成在金属管间夹着隔热材料的隔热结构。权利要求8所述的本发明的特征在于,上述的内管是用金属制成的并以双管抽真空方式构成隔热结构。在权利要求9中所述的本发明中,隔热材料选用陶瓷。按照该权利要求,内管本身选用高隔热性材料例如陶瓷制造,使结构简化。
权利要求10所述的本发明与权利要求4~9中任一项所述的相似,其特征在于,使待加热气流沿着与高温气体流相反的方向流过构成传热管道的内管与外管之间的间隙,从而提高了传热效率。
权利要求11所述的本发明与权利要求1,3~9中任一项所述的相似,其特征在于,多个支承件牢牢地安置在传热管外面,以支承耐火保护管。
上述的支承件使传热管与耐火保护管之间的间隙沿其全长大致均匀。由于采用了上述支承件,即使传热管道和传热管是长的,也不用担心它们会彼此局部接触。另外,沉重的耐火保护管可以相对于传热管牢牢地被固定,结果,耐火保护管不会不稳定。
权利要求12所述的本发明与权利要求4~11中任一项所述的相似,其特征在于,通过外金属传热管壁上形成的通孔使上述间隙与待加热气流的流道相通。
上述结构使上述间隙相对于外界气氛呈正压,因此减少了高温气体从外面侵入耐火保护管的可能性。因此,可以可靠地防止外金属传热管的腐蚀损坏。
权利要求13所述的本发明与权利要求1~12中任一项所述的相似,其特征在于,在传热管的顶端与耐火保护管或者耐火传热管的顶端相对的区域形成一个隔开的间隙,将待加热气流引入管端处的上述的隔开的间隙内。利用这种隔开的间隙也可获得像权利要求12那样的好处。
权利要求14所述的本发明与权利要求4~11中任一项所述的相似,其特征在于,设置了一种用于将外加气流引入耐火保护管与外金属传热管之间的间隙内的机构。
在上述的本发明中,由于将外加气流引入耐火保护管与外金属传热管之间的间隙,便可完全避免腐蚀性气体向待加热气流的反向扩散并与之互相混合(这种情况在通过将待加热气流泄放到传热管壁上的开口之外的办法来清除腐蚀性气体时可能会遇到)。这表明可提高有关装置的耐蚀性并提高其可靠性。
权利要求15所述的本发明与权利要求14相类似,其特征在于,在外金属传热管的顶端对着耐火保护管的顶端之处形成一个隔开的间隙,将外加气流引入上述管的顶端处隔开的间隙内。采用这种隔开的间隙也可获得权利要求14所述的同样的好处。
权利要求16所述的本发明与权利要求1~15中任一项所述的相似,其特征在于,耐火保护管或外耐火传热管的顶端做成凸出形状,以减小对高温气流的阻力。
在上述的本发明中,上述的凸出顶端具有减缓因耐火保护管或外耐火传热管与高温气流接触而产生的热应力集中等的热影响的作用,从而减少上述各管端部的磨损和开裂损坏。
权利要求17所述的本发明与权利要求16所述的类似,其特征在于,上述的端部凸出形是半球形,这种半球形可使在顶端产生的热效应均匀分布,从而进一步减少顶端的损坏。
另外,上述的凸出形可以是权利要求18所述的圆锥形和权利要求19所述的凸出的多边形。上面所述的圆锥形包括顶端倒圆的圆锥形,上面所述的凸出多边形是指具有多面体(例如多角锥体、多面体等)形状的凸面体。简单地说,所述的凸出端部可以是权利要求20所述那样的由平面或曲面构成或者由平面和曲面构成的凸面体,并且对上述的凸出形状不应有特殊的限制。也可以包括凸出的流道形。
权利要求21所述的本发明与权利要求16~20中任一项所述的相似,其特征在于,传热管道的耐火保护管或者外耐火传热管做成像一种其外横截面为圆形的柱子,上述各管从其凸出的顶端至其基部做成圆滑过渡。权利要求22所的本发明与权利要求16~20中任一项所述的相似,其特征在于,传热管道的耐火保护管或者外耐火传热管做成像一种其外截面为四面体的柱子,上述各管从其凸出顶端至其基部做成圆滑过渡,这里所说的圆滑过渡结构可以是倒角形成的结构,这种结构可以避免从顶端至基部容易形成的台阶部分或者说带角部分,从而减轻了上述管子由于与高温高速流动的气体相接触而造成的磨蚀和损坏的问题。
权利要求23所述的本发明与权利要求1~15中任一项所述的相似,其特征在于上述的耐火保护管或者外耐火传热管的顶端做成一个可折卸的耐火盖子。
因此,即使上述盖子的中部由于受高速流动的高温燃烧废气的冲刷而磨蚀或损坏。也很容易更换一个新盖子。
在待加热气流流过的外金属传热管带有套在它外面并在两种管之间形成间隙的耐火保护管的实施例中,上述的耐火盖子是螺纹固定的,并在保护管的顶端与传热管的顶端相对的区域形成一个间隙,而在外金属传热管带有用来使流过它的气流部分地流入上述间隙的通孔的实施例中,上述的盖子也是拧紧的,也就是说,是螺纹固定的。因此,上述盖子通过螺线接触而固定。这就意味着,即使温度在室温到高温变化(热循环),也不存在特殊的应力集中,盖子就不大会发生开裂和损坏。而且,由于上述间隙做成其内部具有正压,故可防止高温气体从外部侵入耐火保护管和耐火盖子内。从这一点来看,也可减轻耐火材料部件的损坏,从而可延长更换周期。
为了将盖子做成螺纹拧紧型,在多个传热管道彼此平行且相互间不留间隙地排列的情况下以及在耐火保护管或者外耐火传热管沿着平行于气流的方向纵向设置的情况下,盖子的外径必须设计成两个相邻传热管道的盖子在其转动过程中不会互相碰撞。
权利要求24所述的本发明与权利要求23所述的相似,其特征在于,其盖子做成一种凸出形状,以便减少对高温气流的阻力。由于采用了这种凸形盖子,可减轻高温气流带来的冲击,从而防止盖子本身发生磨蚀和损坏,也就延长更换盖子的周期。
权利要求25所述的本发明与权利要23或24所述的相似,其特征在于,上述盖子通过螺纹拧在传热管的顶端上,并在相对的顶端处形成一个间隙;拧紧螺纹后带有局部间隙;传热管的顶端带有一个通孔,用于使流过传热管的待加热气流部分地流入上述间隙内。由于螺纹部分处的间隙做成其内部相对于外部气氛是正压的,故可防止高温气体从外部侵入耐火盖子内进而与螺纹部分的金属传热管相接触。
权利要求26所述的本发明与权利要求23~25中任一项所述的相似,其特征在于,传热管道的耐火保护管或外耐火传热管的形状做成像一种其外截面为圆形的柱子,而上述盖子与这种管子以外部圆滑过渡的方式互相连接。权利要求27所述的本发明与权利要求23~25中任一项所述的相似,其特征在于,传热管道的耐火保护管或外耐火传热管做成像一种外截面是四边形的柱子,上述的盖子与这种管子以外部圆滑过渡的方式互相连接。这里所说的外部圆滑过渡的形状可通过将盖子和管子做成外径相同,或者当它们的外径不同时通过将盖子或管子端部倒角而得到。
权利要求28所述的本发明与权利要求1~27中任一项所述的相似,其特征在于,加热高温气流的装置含有一个设置在高温气流通道之上游的第一气流加热器,和一个设置在上述通道之下游的第二气流加热器,将待加热气流供入第二气流加热器中并在此加热,然后将加热过的气流送到第一气流加热器内并在此加热。
权利要求29所述的本发明与权利要求28所述的相似,其特征在于,加热高温气流的装置会有一个设置在高温气流通道之上游的第一气流加热器和一个设置在上述气流通道之下游的第二气流加热器,将待加热气流分别供入第一气流加热器的第二气流加热器,并在各加热器内加热,然后将两股加热过的气流合并在一起,向外流出。
在权利要求28或29所述的加热高温气流的装置中,可将传热管道的长度缩短、重量减轻。这就使相关的悬挂支承结构的重量较轻,而且在维修设备的过程中从高温气流通道拆下传热管道的操作简单。也就是说,本发明能够采用气流来回收高温气体的热能,而使用该热能来加热高温气流的装置不仅能有利地缩短每一根传热管道的长度和简化支承结构及维修操作,而且从空间和精度来说可简化设备安装并减少由于热应变产生的变形,从而提高传热效率。
在权利要求28所述的加热高温气流的装置中,将待加热的低温气流供入第二气流加热器中并在此加热。构成第二气流加热器的外传热管和内传热管在各管的一个端部(具体说是在各管的下端)互相连通,待加热的低温气流可选用下面两种系统中的一种进行加热一种是将上述气流通过内管供入外管并在外管中加热,另一种是将上述气流通过外管供入内管并在内管中加热,从热效率的观点来说,前一种系统较好。
待加热的气流按上述在第二气流加热器中加热至规定的温度后,再在下列两种系统中的任一种系统中加热一种系统是,上述气流通过构成第一气流加热器的外传热管供入内管并在内管中加热,另一种系统是,上述气流通过内管供入外管并在外管中加热。最好采用后一种系统。
另一方面,在权利要求29所述的加热高温气流的装置中,待加热的低温气流分别供入第一气流加热器和第二气流加热器,并分别在这两个加热器中加热。采用这种结构的加热高温气流的装置,待加热气流的流道面积大于高温气流的流道面积,结果可减少待加热气流的压力损失。在这种实施例中,选择下列两种系统中的任一种系统来加热待加热的低温气流一种系统是上述气流通过构成第二气流加热器的内管供入外传热管并在外传热管中加热,另一种系统,是上述气流通过外传热管供入内管并在内管中加热,如果考虑热效率,前一种系统更佳。如同在第二气流加热器那样,送入第一气流加热器的待加热气流选择下列两种系统中的任一种系统来加热一种系统是上述气流通过内管供入外传热管并在外传热管中加热,另一种系统是上述的气流通过外传热管供入内管并在内管中加热。上述两种系统中,后一种系统易使高温气体出口处的气流温度升高,从而使管壁和耐火材料的温度提高,因此,从耐久性看,选用前一种系统更合适。
权利要求30所述的本发明与权利要求29所述的相似,其特征在于,待加热气流的一部分通过构成第一气流加热器的传热管(或者说外管和内管)中之一供入内管或者外管中之一并在此加热,而其余的部分则通过构成第二加热器的传热管(或者说外管和内管)中之一供入内管或外管中之一并在此加热。
权利要求31所述的本发明涉及一种用于热交换器中的隔板结构,所述隔板用来隔开气流通道与废气通道,其特征在于,所述隔板含有一个其一侧面与气流通道相接触的金属板和一个其一侧面与高温气流通道相接触的耐火材料板,在上述金属板的另一侧面与耐火材料板的另一侧面之间形成一种第一间隙,该间隙与金属板上的通孔相连通,从而使含有腐蚀性组分和灰尘的燃烧废气流入废气通道,在上述金属板的另一侧面上牢牢固定多个支承件,以使支承上述的耐火材料板。权利要求32所述的本发明与权利要求31相似,其特征在于,在上述支承件与耐火材料板之间形成一种第二间隙,该第二间隙与上述的第一间隙相通。
采用上述的支承件,使金属板与耐火材料板之间的间隙沿其全长大致均匀,沉重的耐火材料板也可相对于金属板牢牢地固定,不必担心耐火材料板会不稳定。而且,由于气流通过通孔既进入第一间隙又进入第二间隙,故可防止高温气体侵入这些间隙,从而可靠地避免金属板和支承件发生腐蚀,因此显著地延长金属板等部件的工作寿命。另外,金属板即使在高温下也很少受腐蚀,故可在高温下通过与比常规设备中更大量的热气进行热交换来加热气流。因此可从总体上提高所制成的装置的能量效率。
在权利要求33所述的本发明中,提出一种制造用于热交换器中隔开气流通道与废气通道的隔板的制造工艺,所述隔板包含一个其一侧面与气流通道相接触的金属板和一个其一侧面与废气通道相接触的耐火材料板,在金属板的另一侧面与耐火材料板的另一侧面之间形成一种第一间隙,该间隙与金属板上的通孔相连通,从而使含有腐蚀性组分和灰尘的燃烧废气流入废气通道,有多个支承件牢牢地固定在金属板的另一侧面上,用于支承耐火材料板,其特征在于,上述的制造隔板的工艺包含如下步骤在金属板的上述另一侧面上覆盖一层乙烯薄板或纸带,或者涂上一层沥青或涂料,制成一层层间材料,然后在该层间材料上涂上或喷涂一层预定厚度的可浇注成形的含水材料,而后加热该材料使之干燥和焙烧。而形成耐火材料板并从中去除上述的层间材料,结果便在去除了层间材料处形成耐火材料板上的第一间隙。
权利要求34所述的本发明与权利要求33所述的相似,涉及制造上述隔板的工艺,其中在支承件与耐火材料板之间形成一种第二间隙,并使该间隙与第一间隙相连通,其特征在于,上述的工艺包含下列步骤在支承件焊到金属板之前或者之后,将一种聚氯乙烯绝缘带缠绕到支承件上,或套上一段切短的乙烯管,或涂敷含水涂料,或者将支承件浸渍在含水涂料的标准溶液中而制成一种层间材料;在该层间材料上涂敷或者喷涂一定厚度的可浇注成形的含水材料;然后对该材料进行加热使之干燥和焙烧成耐火材料板并从中除去上述的层间材料,结果便在除去了层间材料之处形成了支承件上的第二间隙。
采用上述工艺,可以制成本发明所要求的热交换器。
权利要求35所述的本发明提供一种处理废物的设备,该设备带有一个对废物进行热分解而产生热分解气体和热分解残渣的热分解反应器,一个将热分解残渣分开成可燃组分和不可燃组分的分离器,一个使热分解气体和可燃组分在可熔化粉尘的温度下燃烧而排出熔浆状的不可燃物质的燃烧熔化炉,和一个加热高温气流的装置,在该装置中通过与气流的热交换回收高温气体中的热能,其特征在于,上述的加热高温气流的装置是权利要求1~30中任一项所述的装置。上述的处理废物的设备由于提高了加热高温气流的装置的工作效率而提高了其工作效率。
下面结合


本发明,附图中图1是本发明的一种加热高温气流的装置的重要部件的纵剖视图;图2是本发明的一种加热高温气流的装置的重要部件的水平剖视图;图3是本发明的一种加热高温气流的装置的纵剖视简图;图4是本发明的另一种加热高温气流的装置的重要部件的纵剖视图;图5是本发明的又一种加热高温气流的装置的重要部件的纵剖视图;图6是一种比较实例装置的传热管中的气流温度的分析结果的曲线图;图7是本发明的传热管道中的气流温度的分析结果曲线图;图8是本发明的又一种加热高温气流的装置的上部重要部件的纵剖视图;图9是本发明的又一种加热高温气流的装置的顶部重要部件的纵剖视图;图10是本发明的加热高温气流的装置的另一种传热管道的透视图;图11是本发明的加热高温气流的装置的又一种传热管道的透视图;图12是本发明的另一种加热高温气流的装置的顶端部件的纵剖视图;图13是本发明的又一种加热高温气流的装置的顶端部件的纵剖视图14是本发明的传热管道的传热管的重要部件的透视图;图15是本发明的加热高温气流的装置的又一种传热管道的透视图;图16是本发明的加热高温气流的装置的又一种传热管道的重要部件的透视图;图17是本发明的加热高温气流的装置的又一种传热管道的重要部件的透视图;图18是本发明的加热高温气流的装置的又一种传热管道的重要部件的透视图;图19是本发明的一种加热高温气流的装置的透视图;图20是本发明的另一种加热高温气流的装置的透视图;图21是本发明的再一种加热高温气流的装置的重要顶端部件的纵剖视图;图22是本发明的加热高温气流的装置的又一种传热管道的透视图;图23是本发明的加热高温气流的装置的又一种传热管道的透视图;图24是本发明的加热高温气流的装置的又一种传热管道的重要部件的透视图;图25是本发明的又一种加热高温气流的装置的重要顶端部件的纵剖视图;图26是本发明的加热高温气流的装置的又一种传热管道的透视图;图27是本发明的加热高温气流的装置的又一种传热管道的透视图;图28是本发明的加热高温气流的装置的又一种传热管道的透视图;图29是本发明的又一种加热高温气流的装置的重要顶端部件的纵剖视图;图30是本发明的加热高温气流的装置的又一种传热管道的透视图;图31是本发明的又一种加热高温气流的装置的重要顶端部件的纵剖视图;图32是本发明的又一种加热高温气流的装置的重要顶端部件的纵剖视图;图33是本发明的又一种加热高温气流的装置的重要顶端部件的纵剖视图;图34是本发明的又一种加热高温气流的装置的重要顶端部件的纵剖视图;图35是本发明的另一种加热高温气流的装置的纵剖视简图;图36是本发明的又一种加热高温气流的装置的纵剖视简图;图37是本发明的又一种加热高温气流的装置的纵剖视简图;图38是本发明的又一种加热高温气流的装置的纵剖视简图;图39是本发明的一种处理废物的设备的示意简图;图40是本发明的又一种加热高温气流的装置的重要部件的纵剖视图;图41是图40的热交换器的纵剖视图;图42是沿图41的ⅠⅣ-ⅠⅣ线的水平剖视图;图43是图40的热交换器的局部放大剖视图;图44是沿图43是ⅣⅣ-ⅣⅣ线的水平剖视图;图45是金属薄板的部分表面的前视图;图46是关于图40的热交换器的试验的重要部件的剖视图;图47是类似于图42的水平剖视图;图48是图47的局部放大的剖视图;图49是现有技术的加热高温气流的装置的剖视简图。
实施例1下面参看

本发明的加热高温气流的装置的某些具体实施例。
图1是本发明的一种加热高温气流的装置的垂直纵剖视图,图2是本发明的一种加热高温气流的装置的水平横向剖视图,也是沿下面要说到的图3中的Ⅱ-Ⅱ线的剖视图。图3是表示安装本发明的加热高温气流的装置的方式的简略侧视图。
在上述各图所示的实施例中,加热高温气流的装置1具有一条由一根其端部敞开的内金属传热管2与一根其端部封闭的外金属传热管4构成的传热管通5,在上述内、外传热管之间形成间隙3。一个其端部封闭并由耐火材料制成的耐火保护管6与传热管道5同轴地设置并套住传热管道5,在保护管6与传热管道5的外管4之间形成间隙7。
用于制造传热管道5的金属最好用SVS310等钢,这种材料具有优良的耐热和耐腐蚀性能。另外,从强度、寿命和重量等方面考虑,传热管道5的内管2和外管4的壁厚,最好约为4~6mm。作为气流通道的内管2的内径最好为30~70mm,上述外管4与内管2之间的宽度(外管的内径与内管的外径之差的一半)最好为10~30mm。若在外传热管4的外表面上形成一层抗腐蚀薄膜则更为理想。适用于形成这种抗腐蚀薄膜的材料是单一的氧化物例如氧化铝、氧化硅等,或者复杂的氧化物例如莫来石、光晶石等。薄膜的厚度可根据所要求的抗腐蚀性、耐热性等性能选择,以便使外管4具有更可靠的耐腐蚀性能。
用于制造耐火保护管6的耐火材料最好选用即使在与废物焚烧产生的灰尘中所含的组元起反应的情况下也不形成低熔点化合物的耐火材料。例如,高纯氧化铝耐火材料、氧化铬耐火材料、碳化硅耐火材料等都是适用的。保护管6的壁厚最好为20~30mm,以便获得高的传热效率和抗腐蚀性能。此外,保护管6与外传热管4之间的间隙7(保护管6的内径与外管4的外径之差的一半)最好约为1~2mm。这个间隙太大可能降低传热效率,而且会增大加热高温气流的装置1的尺寸。反之,如果该间隙太小,便不足于防止由于热膨胀之差造成的损伤。
对上述耐火材料进行填隙处理可显著减少容易扩散透过保护管6的气体的量,并可提高耐火材料本身的抗腐蚀性能。所述的填隙处理是这样进行的将耐火保护管6浸入一种可填塞耐火材料孔隙的液体例如氧化铝溶胶、氧化铝浆料等内,然后对浸渍过的保护管进行干燥和焙烧。通过上述的填隙处理,可以例如将处理前的平均孔隙直径10μm减至5μm或更小。
加热高温气流的装置1安装成使传热管道5和耐火保护管6放置成轴向垂直。保护管6在其密封端区6A的内表面上做出两个倒三角形孔6a、6b,而外管4在其密封端区4A的外表面上设置两个棘瓜形凸块4a、4b,这些凸块与保护管6的孔6a、6b互相接合。通过孔6a、6b与凸块4a、4b的互相接合保持保护管6相对于传热管5的固定位置。在图1所示实施例中,保护管6仅通过互相接合的孔6a、6b和凸块4a、4b由传热管道5来支承,而不设置支持该保护管6的重量的其它支承件。
在本实施例中,用于加热高温气流的装置1垂直安装在一种煅烧炉中的高温高腐蚀性气流(见箭头G)中。待加热的气流8通过内传热管2下降,然后从内管2的开口端2A上升(见箭头)通过内管2与外管4之间形成的间隔3。在此过程中,待加热的气流8受到高温和高腐蚀性的外部气流G的加热。
在传热管5的基端(上端),设置有导引待加热气流8的装置和排出热气流的装置(这二者均未示出)。因此,回收的热能可被有利地使用。
在加热高温气流的装置1中,耐火保护管6套在传热管5的外面,因此,可防止该管5与高温、高腐蚀性气体相接触而受腐蚀,从而使它具有长的使用寿命。而且,即使在制造外传热管4的金属与制造耐火保护管6的耐火材料之间产生热膨胀差异的情况下,由于外管4与保护管6之间存在间隙7,故热膨胀引起的尺寸变化不易使它们互相影响。因此可防止保护管6发生损坏、脱层、开裂等。另外,耐火保护管6与外传热管4之间的支承结构简单,耐火保护管6的耐火材料的连接比小,故可防止外传热管4受到削弱。
另外,如图2和3所示,将多个由上述的传热管5和耐火保护管6构成的传热管道9呈方形截面地并且以相邻的管道9和保护管6互相面对面接触地固定和串联起来。这就是说,除了两个最外边的管道9以外,所有管道9都安置成其左侧和右侧都与邻接的管道9面对面地接触。这些管道9用连接机构(未示出)互相固定,所以它们具有高的刚性,可完全抵御热分解,每个传热管道9排列成其外表面共同扩张而且是平坦的(如图2所示),这种共同扩张的平面有利于减少灰尘的沉积。
由于加热高温气流的装置1按照本发明以上述的面对面接触方式串联固定,故使其具有高的刚性,是以完全抵御热分解。因此,可以显著地减小在高温气氛中,尤其是在可燃残渣(例如粉尘等)经高温(1200℃或更高)焚烧成熔渣后立即流出的燃烧废气的通道中的上述热分解。
实施例2下面参看图4说明本发明的第二实施例。加热高温气流的装置的传热管道9安装在含有来自焙烧炉(未示出)的高温腐蚀性气体G的气氛中,如图4所示。待加热的流过金属传热管5的气流8通过与高温气体G的热交换而被加热,上述的传热管5由耐火保护管6罩住。上述传热管5由一个一端用密封材料10密封的外金属传热管4和一个插入该传热管4并通过该管之开口端部2A与传热管4连通的内传热管2构成。在外传热管4与耐火保护管6之间形成间隙7,气流8在内管2和作为气流通道的外管4与内管2之间的间隙3内沿着与高温气流G相反的方向流动。在本发明中,内管2用导热性比金属低的材料做成一种隔热结构。内管2在基端(未示出)与待加热气流的入口相连通。
更具体地说,图4所示实施例的内管2做成双层管的形式,并且也是一种在两层管中夹入和填塞有隔热材料11的隔热结构,或者将内管2做成两层管之间抽真空的隔热结构(未示出)。此外,内管2还可做成整个由陶瓷制成的隔热结构(如图5所示)。
采用上述的隔热结构,仅加热流过间隙3的待加热气流8,而处于内管2中的气流8不同时加热。因此,内管2中的待加热气流8的温度变化保持小到可接受的程度。
为了使待加热气流8在间隙3中逆高温气体G的流动方向而流动,可使待加热气流8沿两个不同于高温气体G流动方向的方向流动。这就是说,当高温气体G沿图中所示箭头Gd方向流动时,待加热气流8沿箭头8d流动并加热,即通过与间隙3连接的供气管12引入气流8并在间隙3中被加热,再在内管2的顶端折回进入内管2,然后向外流出。作为另一种流动方式,高温气体G沿着与箭头Gd相反的方向流动,此时,待加热气流8首先流入内管2,然后在其顶端折回,进入外传热管4的间隙3,沿与箭头8d相反的方向流动。此时,气流8将高温气体的热能回收,然后向外排出。在上述两种流动方式中,仅流过间隙3的气流回收高温气体G的热能,而流过内管2的气流则处于隔热状态。
外传热管4由耐火保护管6罩住。二者之间形成间隙7。在高温使用时,耐火保护管6的顶端做成可像一个风箱(未示出)一样向传热管道5的下方移动,以便补偿外管4与保护管6之间不同的热膨胀系数。由于用间隙7使传热管道5与耐热保护管6在室温和高温下相对移动,故可防止传热管道5和耐火保护管6由于高温下各自的热膨胀不同而互相损伤。例如,最好将外来气流引入间隙7内,从而防止高温腐蚀性气体侵入耐火保护管6的壁内并随后与传热管道5相接触。耐火保护管的顶端固定在端部的耐火保护板13上,该保护板13盖住密封板10。在耐火保护管6与外传热管4的外表面之间形成间隙7,在端部保护板13与密封板10之间也形成间隙7,该间隙7与上面所述的间隙7是隔开的。
在本实施例中,外传热管4的外表面也被耐火保护管6罩住,从而可保护外管4不受高温和高腐蚀性气体的侵蚀,因此,工作寿命长。而且,由于在外传热管4与耐火保护管6之间设有间隙7,所以因热膨胀所造成的两管的尺寸变化不会互相影响,即使制造外传热管4的金属与制造耐火保护管6的耐火材料之间存在热膨胀差异的情况下也是如此。因此,可防止耐火保护管6发生损伤、脱层和开裂现象,此外,制造传热管的金属最好用SVS310钢或者其他具有高的耐热性能和抗腐蚀性能的钢。内管2和外管4的壁厚最好约为4~6mm,该壁厚取决于强度、寿命、重量等因素。用作待加热气流8的通道的内管2的内径最好为30~70mm,外传热管4与内传热管2之间的间隙3的宽度(外管的内径与内管的外径之差的1/2)最好为10~30mm。
下面参看图4说明本实施例的工作情况。传热管道5垂直地安装在煅烧炉的高温高腐蚀性气流(箭头Gd表示)中,将待加热气流8引入外传热管4的间隙3,并在该间隙3内下降,然后通过内管2的开口端部2A在内管2中上升(如箭头8d所示。在此过程中,上述气流8由外部的高温气流G通过耐火保护管6和外传热管4的壁进行加热,在本实施例中,通过间隙3的待加热气流8仅由高温气流G加热,而通过隔热的内管2的待加热气流8则不受加热。也就是说,由于处于内管2中的气流是隔热的,故在内管2内的待加热气流8的温度变化保持在可接受的小范围内。因此可达到高的传热效率。
图6和7示出关于传热管道5中传热管的长度与气流温度之间关系的分析结果,在该两图中。La指内管;Lb指间隙;Lc指高温气体。图6示出一个比较实例,示出用一种通用的碳钢制的金属内传热管(但没有绝热结构)获得的分析结果。结果表明,待加热气流在流到传热管的顶端折回时温度达到最高值;而在该管的基端部(排出口)气流温度则急剧下降。与此相反,在内管工具有绝热结构的情况下,如图7所示,内管中的待加热气流从传热管的顶端至底端之间的温度下降小。对图6和图7进行比较发现,带有隔热结构的内管使待加热气流在该管内的温度变化保持在可以接受的小范围内。
实施例3下面参看图8和9说明本发明的第3实施例。
如图8和9所示,加热高温气流的装置的结构是,其传热管道9即被耐火保护管6罩住的金属传热管5用来加热待加热气流8,该气流在传热管5中流动时与高温气体G发生热交换。传热管5由外传热管4和固定在该管上的内管2构成,该内管2在其端部敞开并与两管之间形成的用作待加热气流8的流道的间隙3相通。一个上入口14以保持气密密封性的方式固定在外传热管4的上部的外表面上。
在外传热管4与耐火保护管6之间形成间隙7,在该间隙7中设置一种装置16(引气管)用来将外加气流引入其中,以便清除高温腐蚀气体G。这就是说,将外加气流17引入外传热管4与耐火保护管6之间的间隙7中,这种外加气流17与待加热气流8是完全隔开的,所以,即使在高温腐蚀气体穿过耐火保护管6的壁而进入间隙7时,也可防止该高温气体发生向待加热气流8的反向扩散或与之互相混合。这就使得传热管在高温腐蚀性条件下经久耐用。
传热管的上出口14的下表面固定在风箱18的上端面上,该风箱18的下端面固定在耐火加压器19的上端面上。这些连接是通过焊接方法实现的,以便形成气密密封。耐火保护管6的一端固定在耐火加压器19的下端面上。在高温下使用时,由于外传热管4与耐热保护管6之间热膨胀的差异使风箱18动作而使耐火保护管6的上端相对于传热管5而向下移动。由于使用了风箱18,便可在高温下引入外加气流17,同时使外传热管4和耐火保护管6在室温和高温下发生相对地移动。外加气流17沿风箱18和耐火加压器19的内表面流动,并沿一个用于固定保护管6的固定件(未示出)的外表面流动,最后充满间隙7。
在本实施例中,耐火保护管6的顶端通过阳螺纹20和阴螺纹21与盖住外传热管4的下密封部10的耐火顶端15相连接。这就是说,阳螺纹部分20从外传热管4的下密封部分10向下凸出,与阴螺纹21在耐热顶端15内互相接合,并形成间隙7。通过阳螺纹20和阴螺纹21可使耐火保护管6的下端与耐火顶端15互相螺纹接合,并在二者之间形成间隙7。耐火顶端15内的间隙7与上面所述的间隙7由下密封部10隔开,并且在下密封部10内设有透孔23,这样,也可将外加气流17引入耐火顶端15处的间隙7内。
在本实施例中,用于制造传热管的金属材料、内传热管和外传热管的壁厚、内传热管的内径、内、外传热管之间的间隙3等最好按实施例1或2那样实施。
实施例4。
下面参看

本发明第4实施例。
图10是说明本发明的加热高温气流的装置的一种传热管道的透视图,图11是另一种传热管道的透视图。上述两个图所示的传热管道9各具有一个罩住各自的表面并且其水平截面为四方形的长耐火保护管6。上述传热管道设置在高温的燃烧废气G的流道中,所述的燃烧废气是在高达1300℃左右的温度下燃烧可燃组分(例如废物等)而产生的,因此,可从温度为1000~1100℃、流速为2~3m/s的燃烧废气G中回收热能。为了制造耐火保护管6,采用主要是氧化铝并含有氧化铬、氧化锆等组成的耐火材料。传热管道9的耐火保护管6的顶端24做成对气流的阻力较小的凸起的半球形。在本实施例中,上述的保护管6做成其上述的半球形端部24的直径大致等于上述的四方形部分的一边的长度。
做成凸起形的顶端24起到松弛热影响(例如与高温热气流接触所造成的热应力集中)的作用,因而可减少该端部24的诸如磨损、开裂之类的损坏。尤其是,由于将顶端24的凸部做成半球形,故作用于该端部24的上述热影响可以均匀分布在整个端部上,这就进一步减少顶端24的损坏。
在图10所示的传热管道9中,上述的半球形顶端24和截面为四边形的底端在其四个角上形成了台阶部分25,每个台阶部分25最好做成尽可能地小,以便防止上述的热应力集中。图11是一种考虑到上述问题的传热管道9,这种传热管道没有上述的台阶部分。就是说,传热管道9做成从其顶端24向四边形的底端圆滑过渡,这就是将图10的传热管道9的四个角的台阶部分做成倒角26。
图12是沿图11的Ⅻ-Ⅻ线剖切的传热管道9顶端的剖视图。如图12所示,制成的传热管道9通过使用金属制成的并被耐火保护管6罩住的外传热管4使流过外传热管4的待加热气流8与高温气体G发生热交换而被加热。耐火保护管6在其顶端24的内表面上具有倒三角形的孔24a,外传热管4则在其顶端的外表面上具有棘爪型的凸部4a,通过上述的孔24a和上述凸部4a的互相接合使耐火保护管6与外传热管4彼此成为一个整体。
传热管2插在其一端用密封件4A封闭的外传热管4内,使传热管2通过其开口顶端2A与外管4相通。在外传热管4与耐火保护管6之间形成间隙7,待加热气流8沿着与高温气流G相反的方向流动。内传热管2的基端(未示出)与待加热气流8的供气源相连通。
由于在外传热管4与耐火保护管6之间形成了间隙7,故两种管由于热膨胀差异造成的尺寸变化不会互相影响,即使制造外管4的金属与制造保护管6的耐火材料之间发生热膨胀的差异时也是如此,因此可以防止耐火保护管6逐渐损伤、脱层或开裂。另外,在外传热管4上设有多个细的透孔27,流入外管4的一部分待加热气流8通过该细孔流入间隙7内。因此,由于间隙7相对于周围气氛(高温气体G的通道)具有正压力,故高温气体G就不大可能透过耐火保护管6而侵入保护管内。由于上述的凸出的顶端24和上述的阻止高温气体G的入侵所带来的两个好处可以进一步减缓耐火保护管6顶端24的损坏等。同时,高温气体G不会透过耐火保护管6并随之与金属制的外传热管4相接触,因此,能可靠地防止外管4发生腐蚀损坏。
图13所示的传热管道9由一个顶端敞开的内金属传热管2与一个与管2同轴设置的外耐火传热管29构成,外管29套在内管2之外并在两管子之间形成间隙通道28。待加热气流8流过内金属传热管2后,通过内管2的开口端2A流过内管2与外管29之间的间隙通道28时由高温气体G加热。在这种结构的加热高温气流的装置中,外耐火传热管29的顶端24也做成与图12所示一样的凸起形。图14是说明内传热管2的顶端的棘爪状凸部2a的透视图。
图15是本发明的另一种传热管道的透视图。上面图10所示的传热管道9的水平截面是四方形的,而本实施例所述的传热管道9则做成截面为圆形,这就是说,耐火保护管6是一个圆形截面的长形部件。在本实施例中,凸起端部的直径做成大致等于其基部的直径,因此,不会产生上面谈到的台阶部分的问题。其他的结构细节与图10所示的一样。
传热管道9的顶端24的凸起形状可以是圆锥形(见图16),或者是一个多圆锥凸部(见图17)。图16的圆锥形是在其顶端斜削成形的。多圆锥凸部的形状也不限于图17所示的只具有两个锥面的形状,而是可做成一种多锥体(例如四面锥体等)以及如图18所示的多面凸起的多角形。简言之,上述顶端24的凸起形状可以做成由平面或曲面构成的或者由平面和曲面构成的凸部,并且并不限于任何具体的形状。
图19和20分别是本发明的加热高温气流的装置的重要部件的透视图。在图19中,4个图10所示的传热管道9彼此紧密接触地排列成一个组件,并将这样排列的传热管道呈三排按悬挂的方式安置在高温气体的环境中。在图20中,将4个图11所示的传热管道9互相紧密接触地排列成一个组件,并将这样排列的传热管道呈3排按悬挂的方式设置在高温气体环境中。在上述的每种情况下,多个四面柱形的传热管道9彼此无间隙地依序相连接,与图15所示的圆柱形传热管道串联排列的结构相比较,可以减少沉积在耐火保护管6上的灰尘。
在本实施例中,正如上面所述,加热高温气流的装置的耐火保护管的顶端做成凸出的形状,这对于高温气流的阻力较小,因此,可以减小由于接触高温气流而造成的诸如热应力集中之类的热影响,从而可缓和耐火保护管的顶端发生磨损、开裂之类的损伤。
实施例5下面参看

本发明的实施例5。
图21是本发明的加热高温气流的装置的一种传热管道的重要部件的剖视图,图22是说明传热管道的外观的透视图。图22所示的传热管道9具有位于其表面周围的耐火保护管6,该保护管6是水平截面为四边形的长形件。这种管道被安放在高达1300℃左右的高温下焚烧可燃组分例如废物等时形成的高温燃烧废气G的流道中,从而实现以2~3m/秒的流速流动的高温(1000~1100℃)燃烧废气G的热能回收。制造耐火保护管6可采用以氧化铝为主,再加上一定量的氧化铬、氧化锆等组成的耐火材料。
更具体地说,如图21所示,采用这种由金属制成的外传热管4并套上耐火保护管6的传热管道9的结构可使流过外传热管4的待加热气流8在与高温气流G进行热交换时被加热。内金属传热管2插入一端由密封件10密封的外传热管4中,使内管2通过其敞开的顶端2A与外管4相连通。待加热的气流8以与高温气流G相反的方向流过外管4与内管2之间的间隙3并流入内管2。此外,在外传热管4与耐火保护管6之间形成了间隙7。内传热管2的基端(未示出)与待加热的气流8的供气源相连通。
图22所示的本实施例的耐火保护管6的顶端带有耐火盖子30,该盖子30的形状和外径基本上与保护管6相同,并且可随意拆卸。如图21所示,盖子30由螺纹旋到外传热管4的与顶端相对的密封件10上,使间隙7与其它间隙隔开。这就是说,盖子30旋入并固定在密封件10上形成的阳螺纹部分31上。在盖子上要与阳螺纹部分31相接合的部位做出阴螺纹部分32。图中标号33表示为了在固定盖子30时保持与外部大气的气密密封而设置的耐火胶泥。
在上述的结构中,当盖子30受到部分严重的磨损和损伤时,可以拆下并换上一个新盖子。因此,换盖子是十分容易的。另外,盖子30由螺纹固定,故由螺线接触支承,这样,即使温度在室温和高温之间变动,也不会出现特殊的应力集中,并且不易产生分层和损伤。
而且,在外传热管4与耐火保护管6或盖子30之间形成间隙7。在本实施例中,即使用于制造外传热管4的金属与用于制造耐火保护管6或盖子30的耐火材料之间存在热膨胀差异,由热膨胀引起的尺寸变化也不会彼此影响。因此,可防止耐火保护管6或盖子30出现损伤、脱层或开裂。
此外,在本实施例中,如图21所示,在外传热管4中设有细小的通孔27,可使要加热并在传热管4中流动的部分气流8流入间隙7中。因此,由于间隙7相对于周围大气(高温气流G的通道)是正压,故高温气体不易渗透耐火保护管6或耐火盖子30而进入保护管6或耐火盖子30中。由于防止高温气体渗入而产生的有利作用,进一步减缓了对盖子的损伤等。与此同时,高温气体不会渗入耐火保护管6或盖子30并随后与外金属传热管4相接触,从而能可靠地防止外管4的腐蚀损伤。
图23是本发明的又一种传热管道的外观的透视图。尽管上面图22所示的传热管道的水平剖面是四边形的,但本实施例所示的传热管道的横截面则是圆形的。也就是说,耐火保护管6是一种截面为圆形的长形件。从外面看,盖子30与耐火保护管6互相连接的部位是圆滑过渡的。
图24是本发明的又一种传热管道的外观的透视图。截面为四边形的盖子30的外径小于耐火保护管6的外径。这样设计的理由是当横截面不是圆形而是例如四边形的盖子要做成由旋转螺纹而拧紧时,盖子的外径必须保证在多个传热管道9安装成它们之间不留间隙(下面将要说明)的情况下,转动盖子而与传热管道G相连接时不致使盖子之间互相碰击。
图25是说明本发明的又一种传热管道的重要部件的剖视图。该图与图21的不同之处在于盖子30的形状是凸形的(在本实施例中,盖子30做成半球形状),这对气流的阻力较小。上述半球形盖子的直径基本上与上述四边形的一个边的长度相等。本实施例的其它结构细节与图21相同,用相同标号表示相同的部件,不再进行说明。
通过设置凸形盖子30,可减轻由于与高温气流接触而引起的那些热效应,例如热应力集中等,从而延缓盖子的磨损,开裂等。具体地说,将盖子设计成半球形可使盖子30整个顶端的热效应均匀分布,从而进一步减轻盖子本身的损伤等。
图26是说明图25的传热管道的外观的透视图而图25是沿图26的ⅩⅩⅤ-ⅩⅩⅤ线的剖视图。图27是表示图25的另一种形式的传热管道的外观的透视图,而图25也是沿图27的ⅩⅩⅤ-ⅩⅩⅤ线的剖视图。在图26的传热管道9中,顶盖30在其基端处的截面为四边形的四角上形成了台阶部分25。为了防止上述的热应力,台阶部分25最好尽可能地做得小些。图27所示的传热管道9的结构考虑了上述情况,该管道没有上述的台阶部分。也就是说,将图26的传热管道9在四角的台阶部分的26处倒圆,使传热管道9从盖子30到基端圆滑过渡。
图28是说明本发明的又一种传热管道的外观的透视图。尽管图26所示的传热管道的水平截面是四边形的,但本实施例的传热管道的横截面则是圆形的。也就是说,耐火保护管6是一种截面为圆形的长形件。半球形盖子30与耐火保护管6互相连接的部位的直径相同,并且是圆滑过渡的。因此,不存在形成台阶部位的问题。
图29是说明本发明的又一种传热管道的重要部件的剖视图。盖子30拧紧在外传热管4的密封件10的阳螺纹部分31上,并且在螺纹部分上形成了气密密封的间隙34、35。图中所示的间隙35是一种在上述的螺纹部分中局部形成的间隙。在设置阳螺纹31的部分上做出了细小通孔36,该通孔36允许一部分待加热的气流8流入间隙34、35中。本实施例的结构可使部分待加热的气流8通过间隙34、35流入上述顶端的间隙7中。其它的结构细节与图25相同,相同的部件以同样的标号表示,不作进一步的说明。
因此,由于盖子螺纹部分的间隙34、35相对于周围的大气呈正压,故可防止外部的高温气体G渗入耐火盖子30中。因此,也可防止盖子本身受到损伤等。
图30是说明本发明的加热高温气流的装置的重要部件的透视图。在该图中,将4个图27所示的单一的传热管道互相紧密接触地排列在一起作为一个组件,然后将这种组合的管道结构呈三排并以悬挂的方式置于高温气氛中。多个四方柱形的传热管道9以串联的方式纵向排列,管道彼此间不留间隙,并与高温气流的方向相平行,从而可减少灰尘在耐火保护管6上的沉积。
在上述的实施例中,已说明凸形盖子是半球形的,但本发明不限于这种形状,例如,多面凸形(例如锥形,棱锥形、多面体等)也很适用。也可选用各种结构来代替上述的螺纹结构将盖子30固定到耐火保护管6上和从保护管6上拆下盖子。在一种其它的结构中,在盖子30上做出一个挡块并将其插入到耐火保护管6的孔内,将它们连接起来。
图31是另一种实施例,其中,顶部密封件10用焊接法固定到外传热管4的顶端上,并且,在密封件10中做出一个阴螺纹孔37。在耐火盖子30中设有一个三角形凹孔38,在凹孔38的三角形底部嵌入一个支承螺栓39。支承螺栓39的螺杆部分拧入阴螺纹孔37中。在密封件10和支承螺栓39中分别做出通孔36和40,通孔36和40互相对准接通,以便引入部分待加热的气流,这样便可保护支承螺栓39的表面。
在图32所示的实施例中,在传热管道4的端部表面部分做出阴螺孔41,支承螺栓39的杆部分拧入阴螺孔41中。在支承螺栓39之上放入一个环状的耐火材料支承器42,并由该支承器42支承耐火保护管6。在支承螺栓39中做出一个孔43,通过该孔43,将待加热的气流8引出通孔40。其它的结构细节与图31相同。在图31和32所示的结构中,耐火保护管6由支承螺栓牢牢地固定住。
在图33所示的实施例中,将图31所示的盖子固定到由内金属传热管2与外耐火传热管29组成的传热管道9的顶端,如图13所示。在图34所示的实施例中,将图32所示的盖子固定到由内金属传热管2与外耐火传热管29组成的传热管道9的顶端(如图13所示)。
实施例6下面参看图35~38说明本发明的加热高温气流的装置的实施例6。在这些图中,相同的标号表示相同的部件。
图35所示的加热高温气流的装置1由位于高温气体流道44之上游的第一气流加热器45与位于该流道下游的第二气流加热器46组成。更具体地说,第一气流加热器45和第二气流加热器46分别具有图25所示实施例的传热管道9。也就是说,这些加热器具有由套有耐火保护管6的外传热管401、402和与外传热管401、402同轴设置的内传热管201、202组成的传热管道501、502。用于构成第一气流加热器45的内传热管201与待加热的气流流道L1相连接,而用于构成第二气流加热器46的内传热管202与待加热的气流流道L1’相连接。此外,第一气流加热器45的外传热管401与第二气流加热器46的外传热管402通过连接管47互相连接起来。
在上述结构的加热高温气流的装置1中,从与第二气流加热器46相连接的待加热的气流流道L1′中供入的低温气流8g′在流过内传热管202而进入外传热管402时,便被高温燃烧废气G加热,被加热过的待加热气流8g1再通过连接管47进入第一气流加热器45的外传热管401中,这样,来自内传热管202和已加热气流流道L1的气流便变成温度更高的气流8g而可用作其它的热源。
图36示出又一个实施例,已在第二气流加热器46中加热过的高温气流8g1通过连接通道47供入第一气流加热器45中的内传热管201和外传热管401中,并在该加热器中加热成可用作其它热源的较高温的气流8g,并从已加热气流的通道L1流出。
在上述的各实施例中所述的加热高温气流的装置1是将低温的待加热气流8g′首先供入第二气流加热器46的内传热管202中的。如果需要的话,低温气流8g′也可供入第二气流加热器46的外传热管402中。
图37和38示出加热高温气流的装置1的又一个实施例。在图37所示的加热高温气流的装置1中,待加热的低温气流8g′一部分从支管L′1a供入第一气流加热器45的外传热管401并在其中加热,而其余部分的待加热气流则从支管L′1b供入第二气流加热器46的内传热管202并在其中加热。已在第一气流加热器45和第二气流加热器46中加热过的温度较高的气流8g则通过已加热气流通道L1流到其它的装置中。
在图38所示的加热高温气流的装置1中,一部分待加热的低温气流8g′从支管L′1a供入第一气流加热器45的内传热管201,并在其中加热。由此加热过的温度较高的气流8g通过已加热的气流通道L1流到其它装置中。在上述图示的每一实施例中,待加热的低温气流8g′一部分从支管L′1a供入第一气流加热器45的外传热管401或内传热管201,并在其中加热,其余部分的待加热的低温气流则从支管L′1b供入第二气流加热器的内传热管202,并在其中加热。需要的话,供入第二气流加热器46中的其余部分的待加热的低温气流8g′可以供入外传热管402中。因此,待加热的气流8g′可以选择性地供入第一气流加热器45和第二气流加热器46中。具体地说,在气流供入第一气流加热器45的实施例中,气流是供入内传热管201的。在这种实施例中,将温度较低的待加热气流8g′引入高温部分的下端以防止该部分的气流、管壁和耐火材料的温度升高,从而使加热高温气流的装置具有长的使用寿命。
按照本实施例所示的加热高温气流的装置,通过上述的第一气流加热器和第二气流加热器引入一定量的待加热气流,从而使加热装置的长度小且可减少用于悬挂该装置的支承结构的总重量。还有一个优点是可以很简单地使加热装置中的高温气体的流道自动保持向上的状态。此外,可使待加热的气流的流道面积相对于高温气流的流道面积比足够大,故在引入一定量的待加热的气流时可减小流速从而有效地降低压力的损失。
下面说明一种采用本发明的加热高温气流的装置的废物处理设备的一种实施例。图39示出一种废物处理设备的简图。
在本实施例的废物处理设备中,废物50a(例如城市垃圾等)由例如双轴剪切破碎机破碎成150mm或更小的碎片,再由传送带送入加料室50中。投入加料器50中的废物50a由螺旋供料器送入热分解反应室52。本实施例的热分解反应器52采用水平旋转圆筒,并由一种密封机构(未示出)保持该圆筒处于低氧气氛中。
废物50a在热分解反应器52中进行热分解,其热源是由加热高温气流的装置1加热过的并由已加热的气流通道L1供入的热气流8g(加热介质),上述的装置1是一种位于燃烧熔化炉53(下面将要说明)之后面的热交换器。
通过引入热空气8g,使热分解反应器52保持在300~600℃,通常是450℃左右。
此外,由热气流8g加热的废物50a被热分解成热分解气体G1和主要由不挥发组分组成的热分解残渣54,上述气体和残渣一起送入排料室55,在排料室55中使气体G1与残渣54分开。在排料室55中被分离出来的热分解气体G1通过热分解气体通道L2进入燃烧熔化炉53的燃烧器56中。从排料室55流出的热分解残渣54温度较高,比如说达540℃左右,因此,由冷却器57冷却至80℃左右,再供入由例如磁选型、涡流型、离心型或风选型分离器(上述各型的分离器均是通用型)中的单种或多种机器综合组成的分离器58中。在该分离器58中,残渣被分离成细的可燃组分58d(包括灰分)和粗的不可燃组分58c,不可燃组分58c被回收在容器59中以备再用。
再将可燃组分58d用粉碎机60粉碎至例如1mm或更小,再由可燃组分通道L3供入燃烧熔化炉53的燃烧器56中,并在1300℃的高温区与从热分解气体通道L2送来的热分解气体G1和由鼓风机61吹入的用于燃烧的空气61e一起燃烧。此时所产生的灰分由于燃烧热而转变成熔浆53f,这些熔浆沉积在燃烧熔化炉53的内表面并沿其内表面进一步向下流动,再从底部出口62滴落入水池63中,并由于受冷而变成固体。
通常称为熔化炉的燃烧熔化炉可使可燃组分58d例如炭等在约1300℃的高温下燃烧并使含有灰分的不可燃组分熔化而产生熔浆53f和高温的燃烧废气G2。熔浆53f滴落在水池63中而固化,而燃烧废气G2则作为一种温度为1000~1100℃、流速为2~3米/秒的气流由位于燃烧熔化炉后面的加热高温气流的装置1进行热回收。
本实施例的加热高温气流的装置1可以仅用一个高温气流加热器或者是上述的若干个这样的加热器适当组合而成。在图25所示的实施例中,加热高温气流的装置由一对传热管和一个顶端带有可拆卸的盖子30的耐火保护管组成。这就是说,正如上面所述,即使盖子30的中部由于与高温气流接触而磨损或损伤,也只要简单地更换一个新盖子则可。一部分通过加热高温气流的装置1的燃烧废气G2通过废热锅炉64的废气管L5进行热回收,并在灰尘收集器65中除尘,然后在废气清洁器66中除掉有害组分,再作为清洁的废气G3由感应鼓风机并通过烟囱68排到大气中。从废热锅炉64中得到的蒸气流可通过带有蒸汽涡轮的发电机69进行发电。一部分清洁的废气G3由风扇70通过冷气管道L6送到冷却器57中。
按照本实施例所述的废物处理设备,加热高温气流的装置总体上具有长的寿命,因此,可提高废物处理设备的工作效率。
实施例7图40是本发明的实施例7的局部剖视图。
热交换器100设置在用于隔开高温废气通道与外部大气的高温废气G的通道壁上,而加热高温气流的装置1与热交换器100同轴地安装,并位于由热交换器包围的废气通道内。上述加热高温气流的装置1具有一个由内金属传热管2和外金属传热管4以及耐火保护管6构成的传热管道9,上述的外金属传热管4之顶端封闭,并作为一种金属壁同轴地套住内传热管2,在内、外管之间形成一个间隙3作为气流通道,上述耐火保护管6顶端封闭,并安装成同轴地套住外传热管4。
其内表面与作为气流通道的间隙3相连通的外传热管4与其外表面与废气通道44连通的耐火保护管6一起形成隔开气流通道与废气通道的隔壁71。
在外传热管4的外表面与耐火保护管6的内表面之间形成第一间隙7,外传热管4具有多个与上述第一间隙7连通的通孔。
耐火保护管6的封闭顶端6A的内表面上设有蚂蚁状孔6a和6b,而外传热管4的封闭顶端4A的外表面上则设有用来分别与上述蚂蚁状孔6a、6b互相接合的蚂蚁状凸块4a、4b,通过上述的孔6a、6b与凸块4a、4b的互相接合,耐火保护管6的外部分便相对于外传热管4定位。
将多个支撑件72通过焊接固定在外传热管4的外表面上,该支撑件72用于支承耐火保护管6,以便使外传热管4与耐火保护管6之间形成的第一狭窄间隙7沿其全长基本均匀。通过支撑件72,使沉重的耐火保护管6相对于外传热管4牢牢固定并保持第一间隙7均匀。在支撑件72与耐火保护管6之间还形成第二间隙73,该间隙73与第一间隙7相通。
下面参看图40来说明热交换器100的结构。该热交换器设置在环绕加热高温气流的装置1的废气通道壁上。热交换器100固定在燃烧熔化炉的废气出口处的炉壁上。在该热交换器100中,设置一个隔板101将含有腐蚀性组分例如氯化氢等和灰尘的高温低压(例如气体进口温度T大约为800~1500℃、气体进口压力P1大约为-100~-4900Pa)的废气与温度比燃烧废气低、压力比燃烧废气高的气流105的通道102隔开,气流105的进口温度T3为例如300℃左右,其进口压力P3为例如大约1000~10000Pa。这样,燃烧废气G的热能便可传输给气流105。
由热交换器冷却至温度为T2(例如大约500°~1300℃)的压力为P2的燃烧废气G再由废热锅炉进一步回收热能,然后送至装有吸风机的废气处理站。在该废气处理站中对上述燃烧废气进行处理,以收集灰分,去除毒性物质,去除烟雾,再通过烟囱将经过处理的废气排入大气。
下面较详细地说明热交换器100。
图41是上述热交换器100的纵剖视图,图42是沿图41的ⅣⅠ-ⅣⅠ线的水平剖视图。如图41和42所示,截面为矩形的废气通道44总体上占据了矩形截面的热交换器100的大部分中心部分,气流通道102由隔板101隔开,其截面为矩形并包围着废气通道44。
隔板101带有多个设在预定区域中的通孔103(见图40,或下面要说明的图43和44)。此外,该隔板101的一侧(即外表面)上具有一个用作与气流105相接触的具有良好导热性的金属壁的金属板106,上述隔板101的位于整个金属板的另一侧(内表面107)上还具有一层用作表面与燃烧废气相接触的耐火壁的多孔耐火陶瓷层109,并在金属板与陶瓷层之间形成第一间隙108(见图40,或下面要说明的图43和44)。
作为陶瓷层109,最好是整体地涂敷在或喷涂在金属板106的内表面107上的厚度约为10~50mm的高导热性和高耐热性的可浇注成形的耐火材料例如碳化硅(sic)。富氧化铝的耐火材料和氧化铬耐火材料也可用于制作陶瓷层109。
陶瓷层109内含有许多可让气体通过该层的空隙(即孔)。由于陶瓷层109设置在金属板106的内表面107上,故含有腐蚀组分的高温燃烧废气G不会与金属板106直接接触,从而可防止金属板发生严重腐蚀。
在金属板106与位于金属板外边并与金属板保持一定间隙的外壁板110之间形成气流通道102。
气流通道102的下端部111做成与下气室112相连通,以平衡供入的气流105的压力并使气流完全平稳地流过气流通道102。气流通道102的上端部113做成与上气室115相连通,以平衡热交换后的高温气流114的压力,使之完全平稳地从气流通道102排出。
下面参看图43~45说明热交换器100的通道壁的结构。图43是热交换器100的局部放大剖视图,图44是沿图43的ⅣⅣ-ⅣⅣ线的水平剖视图,图45是图43的金属板106的表面的局部前视图。
如图43~45所示,与气流105的通道102相接触的金属板106具有多个设置在规定部位的通孔103,而在其内表面107上则设置有陶瓷层109,该陶瓷层109的一面(即前侧面116)与燃烧废气G的通道44相接触。
热交换器100工作时,在金属板106的整个内表面107与陶瓷层109的整个另一面(后侧面117)之间存在一个给定尺寸(最好为1~3mm)的第一间隙108,该间隙108与通孔103连通。内部带有通孔103的金属板106呈上述的板状结构,但也可以是具有网状结构的板或其他形式,只要这种板具有通孔一样的开口即可。
有许多个支撑件118定位固定在金属板106的内表面107上,这些支撑件118用作支承陶瓷层109的支承件但保持第一间隙108。构成隔板的支撑件118是铁制品,呈V形棒状结构,通过焊接将其底部固定在金属板上,其本体则埋入陶瓷层109内。因此,这种支撑件可牢牢保持陶瓷层109就位。
在热交换器工作时,在每个支撑件118的整个表面与陶瓷层109之间存在一定尺寸(最好为1~3mm)的第二间隙119,并与第一间隙108相连通。在某些情况下,可以不留第二间隙119。
为了形成上述的第一间隙108和第二间隙119,首先通过缠上乙烯树脂例如乙烯薄板、乙烯带或乙烯管,或缠上纸带,或者涂上沥青或涂料而制成一种层间材料。
更具体地说,在制成陶瓷层109之前,将金属板106的内表面107整个地盖上聚氯乙烯薄板,或者整个地涂上含水涂料。
同时,在每个支撑件118焊到金属板106上之前或之后,分别缠上聚氯乙烯制的隔热带,或套上市场可购到的自来水用的切短的乙烯管,或者涂上含水涂料。也可以将支撑件118浸入含水涂料的标准溶液中。
然后,在覆盖在金属板106的上述乙烯薄板等(即层间材料)的整个表面上涂敷或喷涂一种可浇注成形的含水碳化硅(或富氧化铝的或氧化铬的)材料,再将该材料加热到例如大约500~600℃使之干燥和焙烧,从而得到陶瓷层109。
在上述加热过程中,上述的乙烯薄板等在大约150~200℃或更高的温度下熔融并挥发,最终消除之。
应当注意,支撑件118的热膨胀系数比陶瓷层109的大,在此情况下,可在室温(例如20℃)下预先使支撑件118与陶瓷层109之间形成间隙119,这样,即使热交换器100在使用中处于高温下而使支撑件118发生比陶瓷层大得多的膨胀,间隙119也能抵消热膨胀系数差异造成的影响。
因此,制成的结构不会出现因构件加热和冷却时热膨胀的差异而极易产生的应力。因而可防止陶瓷层109的开裂或断裂。
除了上面所述的要注意热膨胀系数之差异之外,第二间隙119最好做成在室温下具有较大的尺寸,这样在热交换器使用时该间隙便可具有理想的尺寸。
在此情况下,即使热交换器100在高温加热的状态下工作,也能抵消热膨胀系数差异的影响,使支撑件118的整个表面与陶瓷层109之间总是存在第二间隙119。因此,第二间隙119和第一间隙108总是互相连通。
由于废气通道44与气流通道102由隔板101隔开,故在流过气流通道102的气流105与流过废气通道44的燃烧废气G的量相当时,前者的压力便大于后者。
因此,在气流通道102中流动的高压气流105在上述压力差的作用下,通过通孔103和第一间隙108,而进入陶瓷层109中,而支撑件118周围具有第二间隙119的情况下,则还可通过间隙119而进入陶瓷层109。
然后,气流105通过陶瓷层109的空隙流向废气通道44(如箭头120所指),并在到达陶瓷层109的表面时,进入废气通道44内,并与燃烧废气G相混合。
在本实施例中,利用许多的支撑件118使相对于金属板106设置的沉重的陶瓷层109可靠地保持定位,并在该陶瓷层与金属板之间形成第一间隙108。因此,可以极为牢固地且足够稳定地支承陶瓷层109,从而使小尺寸(例如1~3mm)的间隙108总是保持其均匀性。
另外,由于气流沿整个陶瓷层109流向废气通道44,所以,即使在燃烧废气G企图侵入陶瓷层109并流向金属板106和支撑件118时,也可将该气体推回。
因此,燃烧废气几乎不会侵入陶瓷层109,也不会与金属板106和支撑件118相接触。从而保护金属板106和支撑件118免受燃烧废气G中所含的腐蚀性组分的腐蚀。这就显著地延长金属板106和支撑件118的使用寿命。
在本实施例中,为了使燃烧废气G不致于进入陶瓷层109内,将陶瓷层109的表面116做成不会沉积燃烧废气G中所含的灰尘,所以表面116必定是保持清洁的。因此,金属板106不会发生由于灰尘沉积造成的腐蚀,也就避免了传热效率的降低。更具体地说,本实施例中由于延长了金属板106和支撑件118的使用寿命而明显提高了热交换器100的工作寿命。
此外,由于设置了第一间隙108,在相邻的通孔103之间及它们之中不会出现陶瓷层109中没有气流的部分。另外,即使陶瓷层109中的孔隙是不规则的,也不会发生燃烧废气G反向流动并最终接触金属板106的情况。
因此,可以根据直径d(孔径)来设定每个通孔103的间距,使之大于现有技术(日本实用新型(公开)No.6-40668)的热交换器中的间距,从而减少要打的通孔103的数目,这就减少了钻出孔103的工作量,简化了热交换器100的制造。
图46示出本实施例的热交换器的试验结果。如图所示,在金属板201上钻出多个通孔202,在金属板201与耐火材料板203(例如,可浇注成形的碳化硅之类的耐火材料)之间形成给定尺寸(例如n=2~3mm)的间隙204,该间隙204与通孔202相连通。
因此,当气流206供入位于金属板201后面的气室205时,流过通孔202的气流206便在作为加压室的间隙204内大致均匀地加压,然后向上流过耐火材料板203,这一点已由涂在耐火材料板203的一个表面上的肥皂水均匀产生的遍布该表面的肥皂泡207所证实。
图47和48示出本发明的又一种热交换器100。图47是类似于图42的水平剖视图,图48是图47的局部放大剖视图,这种形式的热交换器100的纵剖面与图41的结构基本相同。
在上述的类似于图42的热交换器100中,设置一种隔板101,将含有腐蚀性组分和灰尘的高温的和低温的燃烧废气流过的燃烧废气通道44与温度低于和高于燃烧废气的气流105流过的气流通道102隔开以便将废气的热能传输给气流105。
隔板101具有多个设置在规定部位的通孔103;多个分别在其一个表面(内表面104)做成与气流105接触的金属壁的金属管106;一个位于金属管106的另一面(外表面107)上的多孔性陶瓷层109,该陶瓷层109的一个面(前表面116)具有与燃烧废气G相接触的耐火材料壁;和多个用作支承陶瓷层109的支承件的支撑件118。
当热交换器100工作时,在金属管106的整个外表面107与陶瓷层109的另一整个面(背面117)之间形成第一间隙108,该间隙108与通孔103连通。
如图47所示,热交换器100的整个截面做成与图42类似的大致为矩形,并且废气通道44占据热交换器100中央的绝大部分。
用作金属壁的多个金属管106各自的内部用作气流通道102,并且围绕热交换器100的废气通道44垂直地安装。各金属管分别固定在连接板121上。
上述金属管106具有一定数目的在预定部位钻出的通孔103。例如,可以使全部金属管106都带有多个通孔103,但是,也可以是带有通孔103的金属管106和不带通孔103的金属管106交替地排列,如图48所示。这就可减少带有通孔103的金属管的数目,节省钻出孔103的工时和费用。
在陶瓷层109与金属管106之间以及陶瓷层109与连接板121之间存在着第一间隙108,该间隙与通孔103相连通。
上述陶瓷层109的材料与上一个实施例(图41)相同。通过多个支撑件118沿废气通道44支持陶瓷层109,上述的支撑件118作为支承件分别固定在金属管106和连接板121中的一种或两种的规定部位上,上述的支撑件118通常是铁制的平板状,但也可制成V形棒状。
在本实施例中,每个支撑件118的底部被焊到金属管106的外表面上,而其本体部位则埋入陶瓷层109中。因此,陶瓷层109可牢牢地保持与金属管106的相对位置,而且,第一间隙108总是保持其给定尺寸(例如1~3mm)。在使用热交换器100时,在每个支撑件118的整个表面与陶瓷层109之间也形成给定尺寸(例如1~3mm)的第二间隙119,该间隙与第一间隙108相通。
本实施例中的第一间隙108和第二间隙119按照图41所示实施例中的第一和第二间隙108、119相同的方式形成。
由于处于加热状态的热交换器100带有上述的第二间隙119,故可以如上述那样,即使热交换器在使用中处于高温状态下也可以消除支撑件118和陶瓷层109之间的热膨胀差异造成的影响。而且,由于在每个支撑件118的整个表面与陶瓷层109之间总是存有间隙,所以第二间隙119与第一间隙108保持连续的连通。
气流通道102中的气流105在压力差的作用下流过通孔103和第一间隙108,进而进入陶瓷层109。气流105的一部分从第一间隙108流到环绕支撑件118的第二间隙119中,然后进入陶瓷层109。该气流105继续沿箭头122所示方向向着废气通道44流过散布在陶瓷层109内的孔穴,最后进入废气通道44。
如上所述,陶瓷层109中含有易于向着废气通道44流动的气流,因此,即使燃烧废气G被迫进入陶瓷层109并向金属管106和连接板121流动也会被沿箭头122方向流动的气流所推回。
因此,燃烧废气几乎不会侵入陶瓷层109,也不会与金属管106、连接板121和支撑件118相接触,这就可保护金属管106、连接板121和支撑件118免受燃烧废气中所含的腐蚀性组分的腐蚀,从而显著延长这些零件106、121、118的使用寿命。
由于设置了第一和第二间隙108、119,故可得到如图41的实施例所得到的同样好处。上述陶瓷层109由支撑件118坚固地支承。
在此之前,支撑件118在与侵入陶瓷层109的燃烧废气相接触时会受到严重的腐蚀,因此现有技术用可铸的防腐蚀材料将这些支撑件覆盖起来。
在本实施例中,与现有技术不同,有部分气流从第二间隙向着废气通道44流过陶瓷层109。因此可以阻止燃烧废气侵入陶瓷层109且随后与支撑件118相接触。这就可省去上述的用于提高抗腐蚀性的可铸材料,从而使热交换器结构简单,容易制造。
在上述结构的隔板中,将多个支承件固定到金属板上,从而保持每个金属壁与耐火材料壁的相对位置。因此金属壁与耐火材料壁之间总是均匀地保持一个细小的间隙。
另外,即使在金属壁与耐火材料壁之间存在上述间隙的情况下,上述沉重的耐火材料壁也可坚固地被支承而保持与金属壁的相对位置。这就可使热交换器不仅可以垂直地安装,而且可以水平地和倾斜地安装,对热交换器的定位不会有什么限制。
而且,由于有许多用铁制的并具有高导热性的支撑件(支承件)固定在金属板等部件上,所以,在支撑件受到燃烧废气加热时,所受的热量会传输到金属板等部件上。因此改善了热交换器的传热效率。
在上面所述的各个实施例中,燃烧熔化炉中的燃烧气流借助热交换器进行燃烧。该气流并不特别限于在热交换器中进行燃烧,而且可用作热分解锅筒(未示出)中的气流或其他的气流。
虽然在上述的各实施例中采用了第一和第二间隙,但是,只设第一间隙,而省去第二间隙也是可以的。
热交换器的整个截面形状除了上述各实施例所示的矩形以外,还可以做成圆形、多角形、椭圆形等。在相关的图中,相同的或相似的部件用同样的标号表示之。
虽然上面已结合附图所示实施例极为详细地说明了本发明,但是不应认为本发明仅限于这些实施例,应该指出的是,在不脱离本发明的精神的情况下,可以进行各种改变和改进。
权利要求
1.一种加热高温气流的装置,其特征在于,该装置设置在一种含有高温气体的气氛中,并具有一个用来在与高温气体发生热交换时加热流过传热管道的待加热气流的传热管道,该传热管道含有一根或多根安装成让待加热气流流过的传热管和一个耐火材料制成的耐火保护管,该耐火保护管同轴地罩住上述传热管,并使传热管与耐火保护管之间形成一个间隙。
2.一种加热高温气流的装置,其特征在于,该装置设置在一种含有高温气体的气氛中,并具有一个用来在与高温气体发生热交换时加热流过传热管道的待加热气流的传热管道,该传热管道含有一个用金属制成的在其顶端敞开的内传热管和一个用耐火材料制成的并同轴地罩住上述内金属传热管的外传热管,在上述内传热管与外传热管之间形成一个间隙,当待加热气流流过内传热管之后,便在从内传热管的开口端流入内传热管与外传热管之间的间隙通道的同时被高温气体加热。
3.根据权利要求1或2的加热高温气流的装置,其特征在于,上述的耐火保护管或外耐火传热管的结构上具有横截面为带角形的面。设置多个上述的传热管道并且使其与相邻的耐火保护管或者外耐火传热管在其带角面上彼此面对面相接触而固定。
4.根据权利要求1或3的加热高温气流的装置,其特征在于,上述的传热管道的传热管包含一个用金属制成的内传热管和一个用金属制的并套在上述内金属传热管外面的外传热管,在上述两种传热管之间形成一个间隙,待加热气流在流过内管与外管之间的间隙时被高温气体所加热,上述的耐火保护管安装成罩住外金属传热管并与该外管同轴地设置,在上述保护管与外管之间形成一个间隙。
5.根据权利要求1或3的加热高温气流的装置,其特征在于,上述的传热管道的传热管包含一个金属制成的外传热管和一个安装成与上述外管的一端连通的内管,在该内管与外管之间形成一个间隙,上述内管做成一种导热性比金属小的隔热结构,待加热气流在流过外金属传热管与内隔热管之间的间隙时,沿外金属传热管的外壁被高温气体所加热。
6.根据权利要求5的加热高温气流的装置,其特征在于,上述的内管用一种导热性比金属低的隔热材料制成。
7.根据权利要求5的加热高温气流的装置,其特征在于,上述的内管做成一种将隔热材料填入两层金属管之间的隔热结构。
8.根据权利要求5的加热高温气流的装置,其特征在于,上述的内管做成一种由金属制成并且呈一种双管抽真空方式的隔热结构。
9.根据权利要求6或7的加热高温气流的装置,其特征在于,上述的隔热材料是陶瓷。
10.根据权利要求4~9中任一项的加热高温气流的装置,其特征在于,待加热的气流沿着与高温气体流相反的方向流过构成传热管道的内管与外管之间的间隙。
11.根据权利要求1,3~9中任一项的加热高温气流的装置,其特征在于,有多个支承件牢牢地置于传热管下面,以支承上述的耐火保护管。
12.根据权利要求4~11中任一项的加热高温气流的装置,其特征在于,在上述的外金属传热管的壁上设有通孔使上述的间隙与待加热气流的流道相连通。
13.根据权利要求1~12中任一项的加热高温气流的装置,其特征在于,在传热管的顶端与耐火保护管或耐火传热管的顶端相对的区域形成一个隔开的空间,待加热气流被引进该两管顶端的相隔的空间内。
14.根据权利要求4~11中任一项的加热高温气流的装置,其特征在于,设置一种装置将外加气流引入上述的耐火保护管与外金属传热管之间的间隙内。
15.根据权利要求14的加热高温气流的装置,其特征在于,在外金属传热管的顶端与耐火保护管顶端相对的区域形成一个隔开的空间,将外加气流引入该两管顶端相隔开的空间内。
16.根据权利要求1~15中任一项的加热高温气流的装置,其特征在于,上述的耐火保护管或外耐火传热管的顶端做成凸出状,以便减小对高温气体流的阻力。
17.根据权利要求16的加热高温气流的装置,其特征在于,所述的凸出状是半球形的。
18.根据权利要求16的加热高温气流的装置,其特征在于,所述的凸出状是圆锥形的。
19.根据权利要求16的加热高温气流的装置,其特征在于,所述的凸出状是一种凸出的多面体形。
20.根据权利要求16的加热高温气流的装置,其特征在于,所述的凸出状是由平面或曲面构成的或者由平面和曲面构成的凸出形状。
21.根据权利要求16~20中任一项的加热高温气流的装置,其特征在于,传热管道的耐火保护管或外耐火传热管做成其截面为圆形的柱子状,并且,每根管从其凸出的顶端至其基端做成圆滑过渡。
22.根据权利要求16~20中任一项的加热高温气流的装置,其特征在于,上述传热管道的耐火保护管或外耐火传热管做成其截面为四边形的柱子状,每个管从其凸出的顶端至其基端做成圆滑过渡。
23.根据权利要求1~15中任一项的加热高温气流的装置,其特征在于,上述的耐火保护管或外耐火传热管的顶端做成一种可拆卸的耐火盖子。
24.根据权利要求23的加热高温气流的装置,其特征在于,所述的耐火盖子做成凸出状,以便减小对高温气流的阻力。
25.根据权利要求23的加热高温气流的装置,其特征在于,上述的耐火盖子与传热管的顶端是螺纹连接的,并在实现螺纹连接后使顶端相对处形成一个局部间隙,而且,传热管的顶端设有一个通孔,使通过的待加热气流部分地流入上述间隙中。
26.根据权利要求23~25中任一项的加热高温气流的装置,其特征在于,上述传热管道的耐火保护管或外耐火传热管做成其截面为圆形的柱子状,上述的盖子与任一根管以外部圆滑过渡的方式互相连接。
27.根据权利要求23~25中任一项的加热高温气流的装置,其特征在于,上述传热管道的耐火保护管或外耐火传热管做成其截面为四边形的柱子状,上述的盖子与任一根管子以外部圆滑过渡的方式互相连接。
28.根据权利要求1~27中任一项的加热高温气流的装置,其特征在于,该装置含有一个置于高温气体流道之上游处的第一气流加热器,和一个置于高温气体流道之下游处的第二气流加热器,待加热的气流供入第二气流加热器并在此加热,然后将加热后的气流传送到上述的第一气流加热器中。
29.根据权利要求1~27中任一项的加热高温气流的装置,其特征在于,该装置含有一个置于高温气体流道之上游处的第一气流加热器和一个置于上述流道之下游的第二气流加热器,待加热气流分别供入第一加热器和第二加热器进行加热,两股已加热的气流合并在一起,然后向外流出。
30.根据权利要求29的加热高温气流的装置,其特征在于,一部分待加热的气流供入构成第一气流加热器的传热管(或者说外管和内管)中的任一个并在其中加热,其余部分的待加热气流供入构成第二气流加热器的传热管,或者外管和内管中的任一个,并在其中加热。
31.一种用于热交换器中隔开气流通道与废气通道的隔板,其特征在于,该隔板含有一个其一面与气体通道相接触的金属板,在该金属板的外侧与耐火材料板的另一侧之间形成第一间隙,该间隙与设置在金属板上的透孔连通,从而使燃烧过的含有腐蚀性组分和灰尘的废气流入废气通道中,有多个支承件牢牢地固定在金属板的另一面上以便支承耐火材料板。
32.根据权利要求31的用于热交换器中的隔板,其特征在于,在上述支承件与耐火材料板之间形成一种第二间隙,该间隙与上述的第一间隙相通。
33.一种用于制造热交换器中用来隔开气流通道与废气通道的隔板的方法,所述隔板含有一个其一个侧面与气流通道相接触的金属板和一个其一个侧面与废气通道相接触的耐火材料板,在金属板的另一侧面与耐火材料板的另一侧面之间形成一种第一间隙,该间隙与设在金属板上的透孔相连通,从而使燃烧过的含有腐蚀性组分和灰分的废气流入废气通道,有多个支承件牢牢地固定在金属板的另一面上,以支承耐火材料板,其特征在于,上述的工艺包含如下步骤在金属板的另一侧面上覆盖乙烯薄板或纸带,或者在该侧面上涂上沥青或涂料,制成一种上述金属板侧面的层间材料,然后在该层间材料上涂敷或喷涂一种可浇注成形的含水材料,再加热使其干燥和焙烧,而形成耐热材料板并除去上述的层间材料,结果,在除去层间材料处便形成耐火材料板的第一间隙。
34.一种制造热交换器中用的隔板的方法,其中,在支承件与耐火材料板之间形成一种第二间隙,并与第一间隙连通,其特征在于,上述的工艺包含如下步骤在支承件焊到金属板上之前或者之后,在支承件上缠绕聚氯乙烯绝缘带,或套上一段切短的乙烯管,制成一种支承件的层间材料,然后在该层间材料上涂敷或喷涂一种可浇注成形的含水材料,再进行加热使之干燥和焙烧而形成耐热材料板并除去上述的层间材料,结果,在除去层间材料处便形成了支承件上的第二间隙。
35.一种废物处理设备,它带有一个使废物热分解而产生热分解气体和热分解残渣的热分解反应器;一个将热分解残渣分开成可燃组分和不可燃组分的分离器;一个可使上述热分解气体和可燃组分在可熔化粉尘的温度下燃烧而排出熔浆状的不可燃物质的燃烧熔化炉,和一个加热高温气流的装置,在该装置中,通过与气流的热交换而回收高温气体的热能,其特征在于,上述的加热高温气流的装置是权利要求1~30中任一项所述的装置。
全文摘要
本发明可延长通过热交换作用回收废物处理设备中产生的高温废气中的热能的高温气流加热装置的使用寿命,提高该加热装置的工作速率和热交换的热能回收效率,并使该高温气流加热装置不易变形,减少灰尘沉积量。其解决措施是:在高温气体环境中设置一种高温气流加热装置,使在传热管道内流动的待加热气流与高温气体进行热交换而被加热。上述的传热管道包含一种供待加热气流流通的传热管和一种耐火材料制成的耐火保护管。该耐火保护管与上述传热管同轴地安装并套住传热管,且在它们之间形成一个间隙。耐火保护管的横截面是多角形的,将多个传热管道安装在一起使相邻的传热管道以多角形截面的一面互相接触而固定之。
文档编号F23G5/46GK1215468SQ9719352
公开日1999年4月28日 申请日期1997年3月31日 优先权日1996年3月29日
发明者难波政雄, 三浦健藏, 木内英洋, 里山辉夫, 友保纯直, 原田裕昭, 嶋村和郎, 手塚则雄 申请人:三井造船株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1