逆流式热交换器的制作方法

文档序号:4569438阅读:270来源:国知局
专利名称:逆流式热交换器的制作方法
技术领域
本发明涉及一种逆流式气-气热交换器,并且也涉及一种在装备有这种热交换器连带有水份蒸发器的蒸发冷却器。
对于本申请人来说,已知有多种板式热交换器可适用于以气-气形式进行热量和质量转换。例如,能作为参考文献的发明人为Rose的PCT申请PCT/AU 94/57097(PCT/GB 93/02633)。但是,申请人通过对采用相似原理的热交换器所作试验表明,其以瓦/平方米·开为单位的传热系数大概在30-40的范围内。由于要实现理想的热量交换及对质量转移必然会导致装置的实际尺寸和费用过大,所以这些数据对于与蒸发冷却器一同使用时的热交换器来说是太低了。
申请人所知道的其它相关现有技术包括发明人以英国工商大臣为名的PCT申请PCTGB 90/00675(WO90/13784)。就与这一发明有关的主题而言,所涉及的更相关的热交换器有发明人为Pfeiffer(代理人Schmidt)的美国专利US4781248。但是,由于后两种热交换器都具有能形成高紊流度的表面,因此这两种热交换器看来都会遇到压力下降的问题。高紊流度虽然可能会提供很高的传热系数,但是对于被用于蒸发冷却器时的热交换器却没有丝毫价值,因为在那里能量消耗才是我们所关心的问题。
对于回流气体加湿方面其它相关的现有技术有发明人为Munters的美国专利US4002040,及发明人为Hood的美国专利US4380910。涉及加热器中偏气流的现有技术包括以上所提到的、发明人为Pfeiffer的美国专利4781248,发明人为Fletcher的美国专利US5050671及发明人为Bosne的美国专利US4631213。发明人为Fischer的PCT申请NO WO88/01722看来也是相关的现有技术,但其相关程度可能低于前面所提到的现有技术参考资料。
技术人员已完全懂得紊流加大,传热系数将会提高,层流会显著降低传热系数。我们也知道传热系数会与速率有关并伴随流速(的增加)而增加。但是,用过大的紊流来扰动层流需要大量的能量输入,并会导致以上所确定的效率的下降。与这一特性相关的是气流方向的改变,并且它也需要额外的能量输入。
因此,本发明的主要目的在于提供一种简单有效的逆流式气-气热交换器,其特征在于该装置具有足够的紊流性以产生相对较高的传热系数,但是其压降仍被维持在很低从而无需过大的能量输入。
通过申请人所作的一系列实验以及对计算机模型的研究表明利用堆积式板状热交换器可获得最高可能的效率。由申请人测定,已在现有技术中实现的最高效率存在于这样的堆积板式加热器中,即其板设有肋条或导槽以形成总体为U形且以逆流结构设置的许多通道。在1米/秒的速度下,利用这样的热交换器可获得79瓦/平方米·开的效率,在这种存在间距的U形通道的结构会产生一定的缺陷,即不同通道中气流速度不一样,且通过热交换器的气流方向会不断地变化。
本发明的主要目的在于设计一种热交换器,其特征在于其效率可被增至高于以前所能获得的效率,并且在本发明实施例中利用了一系列堆积式板(这些板可具有相同的形状)。每一块板均被加工成瓦垅板以使其能与相邻的板构成通道,但每一块板均以小角度倾斜于相邻的板,每一组板件均具有两个进气口和两个与所述进气口相邻的出气口。在下文中可以看到,装置这样设计为的是虽然在有限的紊流条件下但仍能得到高传热系数。
虽然由于气流从瓦垅隆起部分间通过时距离的加大而使在导管方向交叉的小角度限制紊流,但是利用本装置却仍可获得足够的紊流以提供良好的传热系数。在每一板上的通道在大部分长度上应大致平行,并通过与交线成的小角度大大地限制气流方向的变化程度。
本发明的另一特点是利用了由瓦垅限定的高的气流通道的深度与宽度之比。通过利用一高的比值(大于1.8但不超过3),在存在最小“死角”的情况下,可实现流体与热交换表面的良好接触。
如果瓦垅板间相互倾斜,那么“死角”会在进气管和排气管的末端加大,所以本发明的另一方面在于将能改变气流阻力的装置引入气流进气端的通道内并且可增强通过“死角”的气流。
本发明的计算机模型已表明在伸进气流中的面积上可能够获得大于150(与申请人所了解的现有技术所揭示的其它较小的传热系数相比较)的传热系数,且第一样机获得了大约100的传热系数。这一点可通过计算机模型来预测。这因而也使将比较小型的热交换器用在给定容量的空气冷却器上成为可能。
我们已知道在蒸发冷却器蒸发水份之前应预先冷却空气,并且我们还知道在回流气体被排出之前可利用回流气体来进行预冷。在本发明的最佳实施例中,热交换器连带有蒸发器,且该热交换器被分为两部分,这两部分相互间呈镜像位置排列并被中心分隔壁隔开,每一部分均具有能提供交错的新鲜空气主气流和回流气体主气体的瓦垅,每一吸气流均通过蒸发器(如所销售的商标为CELDEK蒸发器)。因此,本申请提供了一种用于获得能使气体冷却达到理想程度的非常紧凑和高效的结构形式。
下面,结合附图对本发明的实施例加以进一步描述和说明

图1为说明本发明原理的平面示图;图2为通过图1中标号2-2所示的图1中错开平面的剖面图,图中左侧表示用于新鲜气体和回流气体的瓦垅板间流过的主气流,其右侧表示瓦垅的形状和倾斜,和图3为由图1中线3-3所示的局部剖面图,它表示了在相邻瓦垅板之间的气流通道的横截面结构。
在图1中,热交换器10包括两部分11和12,这两部分呈相互镜像位置排列。中心分隔壁13将这两部分隔开。进气管14装有风扇15且回风管16装有风扇17,并且该热交换器还装有两个冷风管18和19以及两个排气管20和21。尾端支管可采用现有技术制造,这里就不再加以说明。
在每一部分11和12中,均有一组瓦垅板24,这些板上带有被弯曲成瓦垅的深槽,它们仅在板的部分长度上延伸并在板的平面部分25终止,如图2中部分11所示,除瓦垅端部在26处逐渐变细直到其平端外,每一瓦垅均具有大致恒定的横截面形状。在图1中,所述瓦垅仅在部分12绘出。部分11表示了两股主气流,其中气流27为新鲜气流,气流28为排出气流。它们用不同的线表示以示区别。所述槽的形状应保证具有足够紊流的良好传热系数和低气流阻抗。
图2示出了瓦垅尺寸如何向其末端方向减小以分别在热交换器进气端和排气端形成垂直的较小新鲜气体进气口和垂直的较小排出气体的出口,当然反之在回流气体的进气端及冷新鲜空气导管末端也一样。两个小进气管并排设置并在每一端结合形成一侧面有排气管的大的进气管,在进入面25垂线的任一侧,瓦垅通常以10°角倾斜,且倾斜角不应超过30°,否则会使紊流过大。
气流被认为在任两瓦垅板之间都具有两个部分,主气流沿着在新鲜空气进气管14和冷风管18间延伸的瓦垅流动,例如图1中的左侧所示。但是,从图3中可以看到,由于倾斜的瓦垅24边缘相交部分的距离而使另一股副气流与主气流混合,从而保证了气体在瓦垅外部区域不发生滞流。在图2和图3中,包含圆圈“O”的路线表示新鲜空气向读者方向流动,那些十字“+”表示向后排出回流气体。
从图1的左侧我们可清楚地看到,在每一热交换叠层的每个端的瓦垅之间未相交的地方存在两个标记为“D”的“死角”,虽然如图2所示,在每个“死角”D中仍存在热交换面,为了向那些区域中引入更多的空气,在进气口附近设置了插入式叶片2a以便在分隔壁13附近的气流上游端对气流予以稍微地阻挡,因此这样会产生更加平缓的气流速度从而会使更多的气流通过“死角”D。利用申请人所制造的第一样机,通过在进气端对流过分隔壁附近管道中的气流进行阻挡能够使传热系数提高大约16%。在需要阻挡气流的地方也可以用带孔的板或膜来替代叶片,如上所述,本发明最佳实施例适用于蒸发空气冷却器,并且在图1中说明了应用的方法。在瓦垅叠层和冷风管18和19之间设置了一可用已知技术将其打湿的可湿性蒸发器30,到达蒸发器30之前,在叠层间流动的新鲜空气应由流经多对交错瓦垅薄板间的回流气体对其进行自身冷却,由此就产生有效的热交换。所以,在未进入蒸发器30之前,新鲜空气在未进行任何质量转移的情况下被预先冷却,随后进一步进行蒸发作用使进入冷风管18中的空气进一步冷却。当然,最后必须利用回流风扇17将该气体通过瓦垅板叠层返回以排出气流28。这样,在蒸发发生之前,可抑制引入气体的显热(sensible heat),以便达到利用最少的水份添加量就可实现冷却的目的。由于从热交换器进入蒸发器30的气体具有比外界温度低的湿球(web bulb)温度,因此它能通过蒸发器30被冷却至更低的温度。空气湿度图上的“起点”是在下限感觉温度点上,并且空气湿度图的冷却部分与质量转移有关且很可能是在空气温温度适宜区内。
图表中所示的每一板上仅有少量且长度很短的瓦垅。在本发明的实施例中可有许多瓦垅和多块及长得多的板。
假如瓦垅的倾斜度超出了图中所示的范围,假定超出了5°,那么紊流度及压降就会过大。
假如槽的宽高比大大超过了3,那么瓦垅的内端便会失去作用。
计算机模型表明虽然在本发明的热交换器中只有很小的压降,但是却显示出非常高的传热系数,大约在150瓦/平方米·升左右。因此,该装置具有简单,紧凑及价廉的特点。
申请人已制出了作了为第一样机的测试模型,并且这一模型实质上已说明了计算机模型的准确性,虽然对于申请人来说,很明显其在尺寸上还存在待进一步改进之处。
以下的检测结果是在初步试验中从第一样机上得到的瓦垅深度…… 12mm瓦垅宽度…… 5mm宽高比…… 2.4瓦垅壁角度……2 °夹角(近似值)瓦垅交叉角度……10 °夹角(近似值)进口速度…… 1米/秒压力梯度…… 217帕斯卡/米传热系数…… 93W/m2K°以上结果表明在工业化生产过程中,150瓦/平方米·开的计算机模型结果是能够实现的。
权利要求
1.一种逆流式热交换器包括一组具有深槽状瓦垅的薄板组件,这些瓦垅位于进气端和出气端之间以形成气流通道,相邻瓦垅构成的所述气流通道以不超过30°角相互倾斜并通常在它们相交处呈直线状;所述槽在其相交处的深度和宽度之比在1.8与3之间。
2.如权利要求1所述的逆流式热交换器,其特征在于通过器壁在所述热交换器一端来形成第一气流进气管和第二气流排气管,以及在热交换器另一端的第一气流排气管和第二气流进气管。
3.如权利要求2所述的逆流式热交换器,其特征在于每一所述薄板上的瓦垅的高宽比均向各自所述薄板的末端方向递减,并且在各自所述的端部形成大体平直的形状。
4.如权利要求2所述的逆流式热交换器,它包括并排设置的两组所述薄板组件和用于分隔所述薄板组件的分隔壁,每一组所述薄板与另一组所述薄板均以镜像位置设置,使在这些所述板组的一端使各自板组的气流通道进气端相互靠近,并且在所述板组的另一端也使各自板组的另一气流进入端相互靠近。
5.一种蒸发冷却器包括并排设置的一对热交换器和用于分隔所述热交换器的分隔壁,每一所述热交换器包括一组板组件,每一薄板组件在其平直端面之间具有深槽状弯曲的瓦垅,在每一所述热交换器的各自端部有进气管和排气管,所述进气管并排设置且所述排气管位于所述进气管的侧面,可湿式渗透性蒸发器沿所述冷却器的一端延伸设置,以在湿润时对与所述蒸发器中水份发生热量和质量交换的第一和第二气流进行截流,因此设置了这样一种结构,在该结构中从被冷却区发出的回流气流由于所述蒸发器产生的水份蒸发作用被加湿和冷却并在新鲜进入气体被加温和进一步冷却之前和进入所述被冷却区之前,对其进行预先冷却。
6.如权利要求5所述的蒸发冷却器,其特征在于每一对并排设置的进气管合并为一单一较大的导管,并在每一所述较大导管中还包括一相应的电动风扇。
7.如权利要求5或6所述的蒸发冷却器,其特征在于,每一所述槽的深度与宽度比值在1.8与3.0之间。
8.如权利要求5或6所述的蒸发冷却器,其特征在于每一所述板组的相邻所述板件上的槽相互间以小于30°的角度产生倾斜。
9.如权利要求6所述的蒸发冷却器还包括在每一所述风扇与相应所述热交换器板组间的上游处设有气体偏导叶片,因此能有效地提高进入气流通过所述板组的稳定性。
全文摘要
一种逆流式气—气热交换器,以及一种使用了这种热交换器的蒸发空气调节器,其中该热交换器(10)利用了一系列堆积式板(24),每一板均具有弯曲的深槽状瓦垅,用于与相邻的板形成以小角度倾斜于第一板(24)上的通道(28)的通道(27),每一组板(24)均带有两个进气管(14,16)和两个出气管(18,20)和(19,21)。
文档编号F24F1/00GK1146803SQ96190114
公开日1997年4月2日 申请日期1996年2月20日 优先权日1995年2月20日
发明者彼得·悉尼·赖特 申请人:F·F·西雷有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1