氢化羧酸及其衍生物的均相方法

文档序号:4977121阅读:521来源:国知局

专利名称::氢化羧酸及其衍生物的均相方法
技术领域
:本发明涉及氢化羧酸和/或其衍生物的均相方法。更具体地,涉及能在水存在下进行的均相氢化方法。
背景技术
:已知很多催化剂系统适用于羧酸、酸酐、酯或酰胺的氢化。传统上,这些反应利用非均相催化剂并常在高温高压下进行。上述非均相催化剂体系的缺点是许多非均相催化剂对酸原料不耐受,从而限制了其使用。为了克服该问题,已提出了氢化羧酸及其衍生物的基于钌/膦体系的催化剂。这些催化剂体系的例子包括描述于US5047561、US5079372、US5580991、US5077442、US5021589、US4931573、US4892955、"Hydrogenationreactionofcarboxylicanhydridescatalyzedbyanewandhighlyactivecationicrutheniumcomplex",Y-Hara等人ChemLett(1991)553、US3957827、US4485245和US4480U5中的催化剂体系,上述文献在此引入作为参考。但是,虽然这些文献中所述的体系可提供通常足以使氢化反应进行的方法,但是它们具有…-些缺点和不足。特别是,它们需要氢化反应在无水的条件下进行,因为人们相信任何水的存在会抑制催化剂或显著降低反应速率。例如,在US5047561中使用了有机溶剂并阐述应控制存在的水量并应使其不高于1%重量。在"Hydrogenationreactionofcarbonylcompoundscatalyzedbycationicrutheniumcomplexes",H-Inagaki等人,ScienceandTechnologyofCatalysis(1994)327中解释到水的存在会延缓在三烷基膦钌复合物和促进剂存在下的琥珀酸酐的氢化反应,从而必须除去气流中氢化作用产生的水。并且在US3957827和US4485245中使用了清除剂以除去反应中产生的任何水,帮助增加产率和产量。许多已知的催化剂体系还需要存在促进剂以增加钌催化剂的选择性和活性。其例子包括在US5079372和US4931573中,其中在有机溶剂和作为促进剂的选自第IVA、VA和III族的金属存在下进行反应。在US5077442中可发现另一个使用促进剂的例子。在该情况下,含磷化合物被用于促进选择性和转化率。该文献教导了在认为水的存在会降低选择性和转化率时,反应中产生的任何水被从反应区中除去。其它描述的适宜的促进剂是酸的共轭碱,相关的参考文献是US5021589和US4892955。在后一专利中指出催化剂体系中的组分在反应条件下易于水解并且为了除去反应期间产生的水需要氢气吹洗。
发明内容虽然这些方法对提供适宜的催化剂体系有一些用处,但仍需要具有良好转化率和对所需产物具有良好选择性的有效氢化羧酸和/或其衍生物的替代方法。令人吃惊的是,现在我们已证实水的存在不仅不是缺点,而的确能产生积极的有益作用。因而,根据本发明我们提供了一种在催化剂存在下氢化羧酸和/或其衍生物的均相方法,该催化剂包含(a)钌、铑、铁、锇或钯;禾口(b)有机膦;其中在大于1%重量的水存在下进行氢化。"均相方法"是指催化剂溶于反应溶液中并且必须至少一些存在的水和至少一些羧酸和/或其衍生物与催化剂在同一相中。当存在过量的水和/或羧酸和/或其衍生物时,过量的物质可与含催化剂的相形成分离相。另外或另选地,产物可形成分离相。对于羧酸和/或其衍生物,是指含有羧酸官能团的任何分子,例如羧酸、二羧酸、多羧酸、羟基羧酸、芳香羧酸、酸酐、酰胺、酯、二羧酸单酯及其混合物。当羧酸和/或其衍生物是水溶的,水可作为反应的溶剂存在。另选地,可使用溶剂。当使用溶剂时,水可作为添加剂存在于溶剂中或在原位产生。在另一替代方案中,酸或其衍生物或反应产物可以是溶剂。当羧酸和/或其衍生物不是水溶的,例如含碳量较高的羧酸和酯,反应物和产物可以是反应的溶剂或者可使用有机溶剂,并且水作为添加剂存在。在该情况下,溶剂中可存在水的量为约1%至溶剂中水的溶解极限。额外的水可存在于分离的水相中。在一替代方案中,水可作为氢化的副产物在原位产生。当水在原位产生时,如果要达到最大的益处,水应在反应的最初几个循环中产生。水将在原位产生时,反应初始可加入一定量的水以满足体系的需要直到己产生出充足的水。因此应理解的是,本发明方法比现有技术方案具有实质上的优势,因为在反应开始之前不必从任何反应物中除去水并且水甚至可作为溶剂。另外,反应中产生的任何水不必从反应器中除去。由此,简化了己知的方法,这将暗示成本减少。另外,我们已经发现水的存在对于催化剂的稳定性有利。己注意到在现有技术体系中,会出现脱羰作用,例如产物醇或中间体醛出现脱羰作用,而形成的一氧化碳会强烈抑制催化剂。为了克服它,在现有技术方案中通常除去一氧化碳,并且在设备中包括有甲烷化元件以处理排出气体返回反应器的循环。但是,这不是本发明方法必须的。不用结合任何原理,一般认为水的存在使氢化反应器中发生副反应,其中产生的任何一氧化碳与水通过水煤气转换反应而反应形成二氧化碳和氢气。二氧化碳和氢气可进一步反应形成甲烷。这些气体易于从反应体系中除去,从而减少了氢化方法的成本。因此,该体系不仅能提供节省成本的氢化方法,并且不必需要在排出气体的循环体系中具有单独的甲烷化元件。本发明的另一个优点是,如上所述的一氧化碳的除去可使催化剂有效的再生。因而,本方法延长了催化剂的寿命,这反过来促进了该反应的经济性。需要热量启动水煤气转换反应。当羧酸和/或其衍生物或氢化产物对该启动温度热不稳定时,本发明方法可这样进行让催化剂被存在的产生的一氧化碳抑制,移走热不稳定的部分并随后在氢气存在下加热,从而可进行水煤气转换反应,以活化催化剂进行进一步反应。由此,本方法可应用于大范围的酸并具有延长的催化剂寿命。本发明的再一个优点是不需要加入在现有技术中用于稳定催化剂的缓冲盐,并且一般不需要促进剂并且甚至在一些情况下促进剂是有害的。优选地,该反应在无卤化物的条件下进行。如上所述,当羧酸和/或其衍生物在水中是可溶的,水可作为溶剂。但是,本发明方法可在无溶剂的情况下进行,即起始原料或反应产物可以是反应的溶剂。但是,如果使用了溶剂,可选择任何适合的溶剂,并且适合溶剂的例子包括但不限于乙醚、四氢呋喃、乙二醇二甲醚、二氧杂环己烷、2-丙醇、2-丁醇、仲醇、叔醇或甲苯,特别优选四氢呋喃和其它醚。本发明优选的催化剂是钌/膦催化剂。提供的钌通常为钌盐,虽然不优选其卤化物。适合的盐是那些在反应条件下能转化为活性物质的盐,包括硝酸盐、硫酸盐、羧酸盐、卩-二酮和羰基合物。还可使用氧化钌、钌酸羰基合物和钌复合物,包括氢膦钌复合物。具体的例子包括但不局限于硝酸钌、二氧化钌、四氧化钌、二氢氧化钌、乙酰丙酮钌、乙酸钌、马来酸钌、琥珀酸钌、三(乙酰丙酮)钌、戊羰基钌、二钾四羰基钌、环戊二烯基二羰基三钌、四氢十羰基四钌、四苯基膦、二氧化钌、四氧化钌、二氢氧化钌、二(三正丁基膦)三羰基钌、十二羰基三钌、四氢十羰基四钌、四苯基膦、十一羰基氢三钌酸。钌化合物可以任何适合的量存在。但是,优选每升反应溶液中钌存在的量是0,0001-1OOmol,优选0.005-5mol。可使用任何适合的膦。可使用提供三配体、二配体和单配体的化合物。当金属是钌时,特别优选三膦配体。适合的膦化合物的例子包括三烷基膦、二垸基膦、单烷基膦、三芳基膦、二芳基膦、单芳基膦、二芳基单烷基膦和二烷基单芳基膦。具体的例子包括但不局限于三-l,1,1-(二苯基膦甲基)甲垸、三-l,l,l-(二苯基膦甲基)-乙垸、三-l,l,l-(二苯基膦甲基)丙烷、三-l,l,l-(二苯基膦甲基)丁烷、三-U,l-(二苯基膦甲基)2-乙烷-丁烷、三-l,l,H二苯基膦甲基)2,2-二甲基丙烷、三-l,3,5-(二苯基膦甲基)环己垸、三-l,l,l-(二环己基膦甲基)乙烷、三-l,l,l-(二甲基膦甲基)乙烷、三-l,l,l-(二乙基膦甲基)乙垸、1,5,9-三甲基-l,5,9-三磷杂环十二烷、1,5,9-三苯基-1,5,9-三磷杂环十二烷、二(2-联苯(biphyle)膦乙基)苯基膦、二-1,2-(联苯基膦)乙烷、二-l,3-(联苯基膦)丙烷、二-1,4-(联苯基膦)丁烷、二-1,2-(二甲基膦)乙烷、二-1,3-(二甲基膦)丙垸、二-1,4-(二环己基膦)丁烷、三环己基膦、三辛基膦、三甲基膦、三吡啶基膦、三苯基膦,特别优选三-l,l,l-(二苯基膦甲基)-乙烷。膦化合物可以任何适合的量存在。但是,优选相对每升反应溶液中钌,其存在的量是0.0001-lOOmol,优选O.005-5mol。可采用任何适合的反应温度。但是,在本发明方法中,如果在约150°C-350"C的温度范围内进行氢化,那么可注意到出现特别的益处。反应压力可以是在约250psig-约2000psig之间任何适合压力,优选800psig-1200psig,并最优选1000psig。该方法可以在间歇系统或连续系统中进行。但是应理解的是,本发明方法特别适于用于连续系统,因为催化剂不会被一氧化碳毒化或者如果发生了中毒,催化剂可通过与水的反应而再生。当从反应器中排出催化剂,例如随产品迁移流排出时,可通过任何适合的方式将其回收回反应器中。应理解的是,本发明中涉及催化剂再生的方法可应用于传统方法的工艺过程中被抑制的催化剂,上述传统方法例如为在现有技术中,特别是在上述文献中描述的方法。因而,本发明的第二方面是提供了一种再生催化剂的方法,该催化剂包含(a)钌、铑、铁、锇或钯;和(b)有机膦;其中在氢气和水存在下进行再生,优选通过水煤气转换反应进行。可在任何适合的温度下进行再生,优选温度为约150°C-350°C。现在将参考下述实施例介绍本发明,这些实施例不是对发明范围的限制。实施方式实施例1说明了马来酸可在水存在下被成功地氢化。将乙酰丙酮钌(m)(0.46mmol,0.181g)和l,l,l-三(二苯基膦甲基)乙烷(triphos)(6.1mmol,0.38g),水(71g)和马来酸(来自Fluka,20.2g)转移到300ml的HastelloyParr高压釜中。在用氢气加压到700psig之前,高压釜被密封并用氢气吹洗,并加热到24rc。一旦达到24rc,则将反应器装满氢气以达到1000psig,并且通过质量流量计使整个反应维持此压力,质量流量计记录了加入氢气的量。在反应结束时断开氢气供应并冷却反应器。在放气前,用Pye-Unicam精炼气分析仪在室温下分析顶部气体。从反应器中排出产物并称重(91.42g)。通过用0.1M的氢氧化钠滴定液体产物测定马来酸的转化率(>99.9%)。用配备了微量TCD的HP气相色谱进行水和有机物分析,测得(wt%):水(86.52)、丙醇(0.84)、四氢呋喃(7.02)、丙酸(0.14)、y-丁内酯(2.47)和丁二醇(2.83);得出对四氢呋喃的总摩尔选择性是51.1°/。,对Y-丁内酯是15.1%,和对丁二醇是16.5°/。,其它是17.3°/。。比较实施例1说明了不充足的水对维持反应活性的影响。除了水和马来酸被丙酸甲酯(64g)代替和反应在164"C下进行之外,重复实施例l。15小时后,在反应结束时,回收得到59.4g产物,其为带有少量黄色固体的黄色溶液。分析该溶液并发现(wt%):甲醇(7.15)、水(2.10)、丙醇(8.46)、丙酸甲酯(75.62)、丙酸(0.25)和丙酸丙酯(4.99);得出对丙醇的选择性为75.2mol。/。和对丙酸丙酯为23.0mol。/。。摩尔转化率为16.9%。因此,可以看出由于缺乏添加的水,使得在酯初始氢化时产生的水不充足,从而不能使反应持续到结束。分析反应中的固体成分,发现了[Ru(triphos)(CO)(H)2],由此推断催化剂已被一氧化碳毒化。比较实施例2证实了在无水的情况下,分离的固体对还原作用没有活性,特别是在缺乏添加水的情况下,失活的催化齐i」[Ru(triphos)(CO)(H)2]实际上没有活性。按照比较实施例1的方式进行许多反应,并且收集固体产物[Ru(triphos)(CO)(H)2],洗涤并干燥(0.2263g),然后送回装有新鲜原料丙酸甲酯(17.7g)和异丙醇G8.6g)的反应器中。然后加热反应器到164。C反应15小时,在结束时冷却反应器,并回收得到52.2g产物。分析液相产物,发现甲醇(1.04)、异丙醇(73.02)、水(0.62)、丙醇(1.23)、丙酸甲酯(23.53)和丙酸丙酯(0.08);得出对丙醇的摩尔选择性为92.5%和对丙酸丙酯为3.1%,并且摩尔转化率为7.3%。实施例2和3证实了在水存在下的酯氢化反应。这些实施例证实了在水存在下,酯氢化以有效的100%转化率进行。在实施例2中,用48.64g水和23.26g马来酸二甲酯作为原料重复实施例1。反应在19rC下进行。53小时后,冷却液体和气体产物,并用气相色谱分析液体产物,发现废气(md°/o):氢气(98,9)、一氧化碳(0.08)、甲烷(0.01)和二氧化碳(0.113),液体(wt%):甲醇(15.37)、水(67.11)、四氢呋喃(27.43)、y-丁内酯(0.333)和丁二醇(12.29),得出摩尔转化率为99.5mol%以及对所需产物的选择活性(mol%)为四氢呋喃(27.43)、?丁内酯(1.88)和丁二醇(66.24)。在实施例3中,用48.4g水和20.1g丙酸甲酯作为原料再次重复实施例1。反应在192。C下进行。15小时后,冷却反应器,并用气相色谱分析液体产物,发现甲醇(10.25)、水(70.75)、丙醇(18.27)、丙酸甲酯(<0.1)、丙酸(O.l)和丙酸丙酯(<0.1),得出摩尔选择性和转化率>99.5%。实施例4说明了通过使用水活化失活的催化剂。特别是,确定了水对失活催化剂的作用是,使得该催化剂本质上发生改变并释放出二氧化碳。将失活催化剂样品[Ru(triphos)(CO)(H)2](0.3536g)、去离子水(49.05g)和四氢呋喃(17.47g)装入前面使用的高压釜中,然后密封高压釜,氢气吹洗,用氢气加压到714psig,然后加热到193。C反应15.5小时。在结束时冷却反应器,并将顶部气体吹过C02德雷格管,该管慢慢变成淡蓝色,这提示C02的存在。用质子去耦磷NMR分析反应得到的溶液,发现与[Ru(triphos)(CO)(H)2]溶于四氢呋喃得到的图谱不同。四氢呋喃中的[Ru(triphos)(CO)(H)2]分别在25和34ppm处出现特征的双峰和三峰。当样品在氢气和水中加热后,这些信号完全消失了,代替的是其它信号的复杂排列,这说明已除去了失活的催化剂。实施例5说明了简单(丙)酸的直接氢化可在原位产生充足的水维持反应。这进一步证实了可在反应产生水的同时直接对酸进行氢化,从而原位活化催化剂。除了水和马来酸被丙酸(69.7g,98%纯度来自Aldrich)代替之外,重复实施例l的方法。在该温度反应5小时后,冷却反应器到室温,并分析废气,发现含有(mol%)二氧化碳(0.29)、甲烷(0.95)、一氧化碳(0.73)、乙烷(2.21)和丙烷(0.31)。从高压釜中回收液体产物,发现为两相,上层(有机相)为64.8g和下层(水相)为5.6g。对这两层进行分析,发现(wt%)上层有水(17.0)、丙醇(38.59)、丙酸(11.9)、丙酸丙酯(31.9);下层有水(83.66)、丙醇(11.73)、丙酸(3.47)、丙酸丙酯(0.6)。对丙醇的总摩尔选择性为64.5%,丙酸丙酯为27.0%,其自己可提供l-丙醇,转化率为79.3%。实施例6涉及富马酸的氢化并证实了其它的二酸也可被氢化。除了马来酸被富马酸(20.3g,98%)代替之外,重复实施例l的方法。在该温度反应12小时后,冷却反应器到室温。从高压釜中回收液体产物(90.1g)并分析发现(wt%):水(82.74)、丙醇(0.13)、丙酸(0.04)、四氢呋喃(6.00)、y-丁内酯(2.19)和丁二醇(8.35);得出对四氢呋喃的总摩尔选择性是40.0%,对Y-丁内酯是12.2%,和对丁二醇是44.53%。用0.0M氢氧化钠滴定得出富马酸的转化率>98%。实施例7说明了乳酸的直接氢化。这进一步证实了有机酸可被氢化。除了水和马来酸被水中的85+%乳酸溶液(93.34g,来自Aldrich)代替之外,重复实施例l的方法。在19(TC反应6小时之后,冷却反应器到室温。从高压釜中回收液体产物并发现为单一相(94.47g)。分析发现(wtQ^):水(26.25)和丙二醇(72.74),这表示转化率>99.5%。实施例8说明了在溶剂存在下的酸直接氢化。除了马来酸被琥珀酸(20.03g)代替之外重复实施例1的方法。包含1-甲基-2-吡咯烷酮(pyrrolidinine)(20.61g)作为溶剂并且减少了含有的水量(49.86g)。反应结束时,分析产物发现(wt%):水(61.43)、丙醇(0.14)、四氢呋喃(3.69)、丙酸(0.15)、Y-丁内酯(3.87)和丁二醇(5.22);得出对四氢呋喃的总摩尔选择性是30.49%,对Y-丁内酯是26.81%,和对丁二醇是34.57%,以及转化率>99%。实施例9说明了按照本发明的酸酐的直接氢化。除了将丙酸酐(39.23g)和丙酸(33.9g)用作原料之外,重复实施例5的方法。在该温度反应5小时后,冷却反应器到室温,并分析废气,发现含有(mol%)二氧化碳(0.29)、甲烷(0.95)、一氧化碳(0.73)、乙烷(2.21)和丙烷(0.31)。从高压釜中回收液体产物,发现为两相,上层(有机相)为73.2g和下层(水相)为1.8g。对这两层进行分析,发现(wt^)上层有水(15.91)、丙醇(40)、丙酸(9.54)、丙酸丙酯(33.88);下层有水(63.25)、丙醇(21.89)、丙酸(4.59)、丙酸丙酯(10.15)。对丙醇的总摩尔选择性为65.8%,丙酸丙酯为28.7%,转化率为80.87%。实施例IO说明了按照本发明的酰胺的直接氢化。它还说明了催化剂在含有诸如氨和胺类化合物的氮气存在下是稳定的。除了丙酸被丙酰胺(20.14g)、20.26g水和四氢呋喃(溶剂,44.22g)之外,在164'C重复实施例5的方法。14小时后,冷却反应器并放气,分析内容物,发现(面积%):水+氨(9.81)、丙醇(10.57)、四氢呋喃(53.76)、二丙基胺(0.57)、丙酸丙酯(1.32)、丙酰胺(15.92)和N-丙基丙酰胺(7.33)。实施例11-20证实了虽然在上述条件下三-l,U-二苯基膦甲基)乙烷为优选的膦化合物,但其它膦也是适合的。除了三-l,U-二苯基膦甲基)乙烷被各种钌:膦比例的其它膦代替之外,重复实施例5的方法,结果总结于表1中。表l<table>tableseeoriginaldocumentpage11</column></row><table><table>tableseeoriginaldocumentpage12</column></row><table>比较实施例3证实了在本发明优选的条件下,含有膦和强酸促进剂的催化剂体系是不适合的。这说明在上述条件下,添加强酸对反应是不利的并且可将强酸还原。除了加入2摩尔当量的对苯磺酸一水合物之外重复实施例14。反应结束分析产物时,检测到硫磺臭味指示有H2S,转化率降低到10.2mol%,对丙醇和丙酸丙酯的选择性为68.2%。比较实施例4证实了在本发明优选的条件下,添加强酸的钠盐对反应是不利的,减少了转化率和选择性。除了加入2摩尔当量的对苯磺酸钠之外重复实施例l。反应结束时,回收得到白色固体(琥珀酸,13.9g),并用气相色谱分析液体产物(82.5g),发现(wt%):水(95.卯)、丙醇(0.10)、四氢呋喃(0.09)、丙酸(1,478)、y-丁内酷(1.67)和丁二醇(0.38);得出对四氢呋喃的总摩尔选择性是2.43%,对y-丁内酯是38.25%,和对丁二醇是8.26%。转化率下降到33.49%。实施例21涉及催化剂循环并证实了钌-膦催化剂的可循环性。除了反应在24rC进行4小时之外,重复实施例5的方法。反应结束时,将液体产物放入旋转蒸发器中,在70-80。c和60托下浓縮到最小体积(约5毫升)。然后塔顶馏出物用于酸转化率分析。将含有催化剂的残留溶液放回高压釜中,并添加丙酸使得总重量达到70g,然后重复反应。结果总结于下表2中。在循环第7次时,未将催化剂放回高压釜中,相反仅使用70g丙酸,这证实了活性不是由于反应器壁等上的钌沉淀产生的。表2<table>tableseeoriginaldocumentpage13</column></row><table>由此,可以看出在循环期间保持了转化率。权利要求1.一种再生催化剂的方法,该催化剂包含(a)钌、铑、铁、锇或钯;和(b)有机膦;其中在氢气和水存在下进行再生。2.根据权利要求l的方法,其中再生在约15(TC-约35(TC进行。全文摘要本文描述了一种在催化剂存在下氢化羧酸和/或其衍生物的均相方法,该催化剂包含钌、铑、铁、锇或钯,和有机膦,其中在至少约1%重量的水存在下进行氢化。还描述了一种再生催化剂的方法,该催化剂包含钌、铑、铁、锇或钯,和有机膦,其中在氢气和水存在下进行再生。文档编号B01J31/24GK101254475SQ200710051078公开日2008年9月3日申请日期2003年4月29日优先权日2002年5月2日发明者德里克·文森特·泰尔斯,梅尔文·基尔纳,西蒙·彼得·克拉布特里,迈克尔·安东尼·伍德申请人:戴维加工技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1