联动式高压釜循环节能装置及其方法

文档序号:4976865阅读:149来源:国知局
专利名称:联动式高压釜循环节能装置及其方法
联动式高压釜循环节能装置及其方法 所属领域 本发明涉及一种联动式高压釜循环节能装置及其方法,尤其是适合用于太阳能电 池制造工艺中的节能降耗的高压釜。
背景技术
目前,传统的高压釜通常采用常规的电阻加热,用热循环风机达到热平衡,这种加 热循环方式基本上解决了高压釜内热量的均匀分布问题。专利号为ZL200520110038. 0的 中国专利"风循环调温高压釜",公开了一种制造夹层安全玻璃、防弹玻璃所用的高压釜,利 用空气对流原理解决了冷热空气均匀分布问题。专利号为ZL02821621. 0的中国专利"多 区域高压釜",公开了一种用于对装载物料进行热处理的高压釜,利用沿着装载物料的长度 方向间隔的多个气体循环装置,使加热气体在装料空间内循环,并且每一个气体循环装置 产生一个用于加热气体循环的区域,每个区域中的气体循环可以被独立控制,可以整体提 高的加热质量。日本专利JP2008-006730公开了一种高压釜工艺,将产品密封在抽真空袋 中,再加温加压,使两种材料层压形成复合材料。但是,传统高压釜在实际使用中存在如下 缺陷1、传统高压釜的生产周期一般为3. 5-4小时,而其有效工作时间只有2. 5小时,升温 及降温时间过长;2、传统的高压釜之间是分离独立的,在使用过程中要对单台高压釜设备 先进行升温升压,再是降温减压以便产品出炉,因此,高压釜的单位耗能高。

发明内容
本发明的目的在于解决上述现有技术中存在的问题,提供一种工作时间短、节能 降耗的联动式高压釜循环节能装置及其方法。在传统高压釜的结构上增加温度循环和压力 循环装置,以达到节能降耗的目的。 为了实现以上任务,本发明采用的技术方案是提供一种联动式高压釜循环节能 装置,包括多台具有加热和加压装置的高压釜,其特征在于至少由两台高压釜构成具有循 环节能装置的联动式高压釜,所说的循环节能装置包括由循环管道相互连接的压力循环装 置和热循环装置,高压釜之间由循环节能装置相互连接。 以上所说的循环管道包括汇流管、压力循环管和热循环管,所说的压力循环管的 一端与汇流管连接,另一端与高压釜的压力循环装置连接;所说的热循环管的一端与汇流 管连接,另一端与高压釜的热循环装置连接。 高压釜的压力循环装置包括充气阀和排气减压阀,所说的充气阀和排气减压阀并 联后与压力循环管连接。 高压釜的热循环装置包括热交换器、热循环风机和给风机提供动力的电机。
本发明的一种联动式高压釜循环节方法,包括多台具有加压和加热装置的高压 釜,其特征是将至少有两台高压釜 互连接构成具有联动工作方式的联动式高压釜,高压 釜之间由循环节能装置相互连接,控制高压釜之间的压力和热量循环,所说的循环节能装 置包括由循环管道相互连接的压力循环装置和热循环装置,循环管道向压力循环装置和热循环装置分别输送压力和热量,需要降温降压的高压釜通过循环管道将高温高压尾气排出,并输送到需要预热和/或加压的高压釜内。 以上所说的循环管道至少有两套管路,包括压力循环管和热循环管,所说的压力
循环管和热循环管分别与高压釜的压力循环装置和热循环装置连接。压力循环装置中设有控制高压釜之间的压力循环的充气阀和排气减压阀,充气阀和排气减压阀并联后与压力循
环管连接,可以利用高温高压尾气给需要升压的高压釜加压;热循环管上设有控制高压釜
之间热量交换的进气减压阀,可以利用高温高压尾气给需要预热的高压釜加热。 循环管道还包括汇流管,该汇流管上连接有多个压力循环管和热循环管,循环利
用高压釜的高温高压尾气。 高压釜内的热交换器内设有带防护隔板的冷却装置,在排气降压的过程中,可以縮短降温时间,以利产品早出炉。 本发明是在传统高压釜的结构上增加热循环装置和压力循环装置,充分利用高压釜的高温高压尾气给需要预热和/或加压的高压釜提供热量和压力,达到一定的温度和压力,如果只利用尾气的能量没有达到高压釜工作所需的温度和压力,则可以采用传统高压釜的加热装置和加压装置进一步加温加压,进行温度和压力补偿,以满足高压釜的工艺温度和压力要求。 本发明的积极效果是采用联动式高压釜循环节能装置,将两台或两台以上的高压釜连接构成循环联动工作模式,可取长补短,同时各台设备也可以根据工艺要求进行自身调整,利用高压釜之间的管路和减压装置,把需要降温的高压釜的高温高压尾气提前排气,并输送到需要预热或加压的釜,把原来降温后再排气两个工艺步骤改进为边降温边排气一个工艺步骤,有效地縮短了釜压后的降温和排气时间,减少了高压釜的生产周期时间,可以节约时间及人工成本,提高了高压釜的生产效率;只要存在温度和压力差,就会产生对流,使温度和压力趋于均匀,使高压釜相互之间实现热量循环,有效的利用了高压釜尾气的热量和压力,循环利用,具有节能降耗的功能。


图1是本发明的结构示意图。 图2是本发明三个高压釜组成的釜组结构示意图。
图3是本发明N个高压釜组成的釜组结构示意图。 1为直排减压气阀,2为充气阀,3为排气减压阀,4为预热系统进气减压阀,5为直排气管,6为釜进/排气口 , 7为预热系统排气管,8为预热系统釜进气口 , 9为预热系统的热交换器,10为热循环风机,11为釜底座,12为汇流管,13为压力循环管,14为釜门,15为热循环管,16为给热循环风机提供动力的电机。
具体实施方式
实施例1 : 联动式高压釜由至少两台高压釜构成,高压釜之间由循环节能装置相互连接,循环节能装置包括由循环管道相互连接的压力循环装置和热循环装置,需要降温降压的高压釜通过循环管道将高温高压尾气排出,并输送到需要预热和/或加压的高压釜内。
循环管道至少有两套管路,包括压力循环管和热循环管,所说的压力循环管和热循环管分别与高压釜的压力循环装置和热循环装置连接。循环管道还包括汇流管,该汇流管上连接有多个压力循环管和热循环管,循环利用高压釜的高温高压尾气。两台或两台以上的高压釜的工作方式为取长补短的联动模式,同时各台设备也可以根据工艺要求进行自身调整,借鉴"热-一 电"联供模式。尤其是采用两台或两台以上同样容积的高压釜链接配合工作,可以达到节能降耗的目的。
实施例2 : 如图l,本实施例采用2个高压釜组成釜组,高压釜以下简称釜。
工作流程( — )当釜A需要降温且釜B需要预热时,打开釜A的排气减压阀3和釜B的预热系统进气减压阀4,釜A内的高温高压尾气减压后通过釜A的压力循环管13流经汇流管12,输送至釜B的预热系统釜进气口 8,进入釜B的预热系统热交换器9,釜A尾气中的热量通过釜B的预热系统热交换器9和釜B中的低温气体进行热交换,对釜B中的低温气体进行加热,热交换后的釜A尾气通过釜B的预热系统排气管7排入大气;
(二)当釜A需要降温且釜B需要加压时,打开釜A的排气减压阀3和釜B的充气阀2,釜A内高温高压尾气适当减压或不减压后通过釜A的压力循环管13流经汇流管12,经釜B的压力循环管13输送至釜B的进/排气口 6,进入釜B内,对釜B进行加压;
(三)当釜A需要降温且釜B同时需要预热和加压时,同时打开(一)和(二)中涉及的各阀门,釜A尾气便可对釜B进行预热加压;(四)如釜B需要降温且釜A需要预热或加压,按(一 )、(二 )、(三)中釜A和釜B的排气和进气操作对应阀门开关就可以实现了。 本实施例充分利用了高压釜的高温高压尾气给需要预热和/或加压的高压釜提供热量和压力,并能达到一定的温度和压力,还可以配合使用传统高压釜的加热装置(图中未显示)和加压装置(图中未显示)进一步加温加压,以满足高压釜的工艺温度和压力要求。 实施例3 如图2,本实施例采用3个高压釜组成釜组。
工作流程( — )当釜A需要降温,且釜B和釜C都需要预热时,打开釜A排气减压阀3和釜B和釜C的釜预热系统进气减压阀4,釜A内的高温高压尾气减压后通过釜A压力循环管13流经汇流管12,经釜B和釜C的预热系统釜进气口 8分别进入釜B和釜C的预热系统热交换器9,釜A尾气中的热量通过釜B和釜C预热系统热交换器9,与低温气体进行热量交换,热交换后的釜A的尾气通过釜B和釜C的预热系统排气管7排入大气;
(二)当釜A需要降温,且釜B、釜C需要加压时,打开釜A的排气减压阀3号和釜B、釜C的充气阀2,釜A内的高温高压尾气适当减压或不减压后通过釜A的压力循环管13,流经汇流管12,输送至釜B、釜C压力循环管13,流经釜B、釜C进/排气口 6,进入釜B、釜C内,对釜B、釜C进行加压;(三)当釜A需要降温,且釜B、釜C同时需要预热和加压时,同时打开(一)和(二)中涉及的各阀门,釜A的尾气便可对釜B、釜C进行预热加压;
(四)当釜A釜压后需要降温且釜B需要预热、同时釜C需要加压时,按实施例2
中( 一 )步骤对釜B进行预热,同时按实施例2中(二 )步骤对釜C进行加压;(五)如釜A、釜B、釜C需要降温、预热、加压状态互换时,按上面(一)、(二)、
(三)、(四)中釜A、釜B和釜C的排气和进气操作对应阀门开关就可以实现了。 本实施例充分利用了高压釜的高温高压尾气给需要预热和/或加压的高压釜提
供热量和压力,并能达到一定的温度和压力,还可以配合使用传统高压釜的加热装置和加
压装置进一步加温加压,以满足高压釜的工艺温度和压力要求。 实施例4 如图3,本实施例采用N个高压釜组成釜群(N为自然数,N > 4)。
工作流程( — )当釜A需要降温,且釜B、釜C...釜N都需要预热时,打开釜A的排气减压阀3和釜B、釜C...釜N釜预热系统进气减压阀4,釜A内的高温高压尾气减压后通过釜A的压力循环管13流经汇流管12,经釜B、釜C...釜N预热系统釜进气口 8,进入釜B、釜C...釜N预热系统热交换器9,釜A的尾气中的热量通过釜B、釜C...釜N预热系统热交换器9和釜B、釜C...釜N中的低温气体进行热交换,对釜B、釜C...釜N中的低温气体进行加热,热交换后的釜A尾气通过釜B、釜C...釜N预热系统排气管7排入大气;
( 二 )当釜A釜需要降温,且釜B、釜C...釜N需要加压时,打开釜A的排气减压阀3和釜B号、釜C...釜N的充气阀2,釜A内高温高压尾气适当减压或不减压后通过釜A的压力循环管13流经汇流管12,经釜B、釜C...釜N的压力循环管13流经釜B、釜C...釜N的进/排气口 6,进入釜B、釜C...釜N内,对釜B、釜C...釜N进行加压;
(三)当釜A需要降温,且釜B、釜C...釜N同时需要预热和加压时,同时打开(一)和(二)中涉及的各阀门,釜A尾气便可对釜B、釜C...釜N进行预热和加压;
(四)当釜A釜压后需要降温且釜B...釜M需要预热、同时釜(M+l)...釜N需要加压时,按( 一 )步骤对釜B.釜M进行预热,同时按(二 )步骤对釜(M+l)...釜N进行加压(M、N为自然数,M〈 N);(五)当釜A、釜B、釜C…釜K需要降温,且釜(K+l)、釜(K+2)...釜N都需要预热时,打开釜A、釜B、釜C...釜K的排气减压阀3和釜(K+l)、釜(K+2)...釜N的预热系统进气减压阀4,釜A、釜B、釜C...釜K内的高温高压尾气减压后通过釜A、釜B、釜C...釜K的压力循环管13流经汇流管12,经釜(K+l)、釜(K+2)...釜N的预热系统进气口 8,进入釜(K+l)、釜(K+2)...釜N的预热系统热交换器9,釜A、釜B、釜C...釜K尾气中的热量通过釜(K+l)、釜(K+2)...釜N预热系统热交换器和釜(K+l)、釜(K+2)...釜N中的低温气体进行热交换,对釜(K+l)、釜(K+2)...釜N中的低温气体进行加热,热交换后的釜A、釜B、釜C...釜K的尾气通过釜(K+l)、釜(K+2)...釜N预热系统排气管7排入大气(K、N为自然数,K < N);(六)当釜A、釜B、釜C.釜K需要降温,且釜(K+l)、釜(K+2).釜N需要加压时,打开釜A、釜B、釜C...釜K的排气减压阀3和釜(K+l)、釜(K+2)...釜N的充气阀2,釜A、釜B、釜C...釜K内的高温高压尾气适当减压或不减压后通过釜A、釜B、釜C...釜K的压力循环管13流经汇流管12,经釜(K+l)、釜(K+2).釜N的压力循环管13,流经釜(K+l)、釜(K+2)...釜N进/排气口 6,进入釜(K+l)、釜(K+2)...釜N内,对釜(K+l)、釜(K+2)...釜N进行加压(K、N为自然数,K〈N);(七)当釜A、釜B、釜C...釜K需要降温,且釜(K+l)、釜(K+2)...釜N同时需要 预热和加压时,同时打开(五)和(六)中涉及的各阀门,釜A、釜B、釜C...釜K尾气便可 对釜(K+l)、釜(K+2)...釜N进行预热和加压;(八)当釜A、釜B、釜C...釜K需要降温,且釜(K+l)、釜(K+2)...釜M需要预 热、同时釜M+1...釜N需要加压时,按(五)步骤对釜(K+l)、釜(K+2)...釜M进行预热, 同时按(六)步骤对釜(M+l)、釜(M+2)...釜N进行加压(K、M、N为自然数,K〈M〈N);
(九)如釜A、釜B、釜C...釜N需要降温、预热、加压状态互换组合时,按上面 (一 )、(二 )、(三)、(四)中釜A、釜B、釜C.釜N的排气和进气操作对应阀门开关就可 以实现了。 本实施例充分利用了高压釜的高温高压尾气给需要预热和/或加压的高压釜提 供热量和压力,并能达到一定的温度和压力,还可以配合使用传统高压釜的加热装置和加 压装置进一步加温加压,以满足高压釜的工艺温度和压力要求。
实施例5 : —台高压釜从室温升到3个大气压8(TC左右再升到13(TC,保持10个大气压,产 品可以只用到6个大气压,恒温恒压时间为50分钟为有效工作时间。 若是A台设备的产品到了需要降温降压阶段,而B台设备需要辅釜13个大气压升
温到80°C ,可以通过A与B设备之间的管道上的阀门进行控制,把A设备的高温及高强向B
设备转移。达到两个釜内的压强平衡,B在升温的同时也是对设备釜内进行降温。之后必
须关闭两设备的阀门以防串气,再对A排气降温,对B进行升温度加压。 以上结合附图对本发明的实施例作了详细说明,但是本发明并不限于上述实施
例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作
出各种变化。
权利要求
一种联动式高压釜循环节能装置,包括多台具有加热和加压装置的高压釜,其特征在于至少由两台高压釜构成具有循环节能装置的联动式高压釜,所说的循环节能装置包括由循环管道相互连接的压力循环装置和热循环装置,高压釜之间由循环节能装置相互连接。
2. 根据权利要求1所述的联动式高压釜循环节能装置,其特征在于所说的循环管道包 括汇流管(12)、压力循环管(13)和热循环管(15),所说的压力循环管(13)的一端与汇流 管(12)连接,另一端与高压釜的压力循环装置连接;所说的热循环管(15)的一端与汇流管 连接,另一端与高压釜的热循环装置连接。
3. 根据权利要求2所述的联动式高压釜循环节能装置,其特征在于所说的压力循环装 置包括控制高压釜之间压力循环的充气阀(2)和排气减压阀(3),所说的充气阀(2)和排气 减压阀(3)并联后与压力循环管(13)连接。
4. 根据权利要求1所述的联动式高压釜循环节能装置,其特征在于所说的热循环装置 包括热交换器(9)、热循环风机(10)和给风机提供动力的电机(16)。
5. —种联动式高压釜循环节能方法,包括多台具有加压和加热装置的高压釜,其特征在于将至少有两台高压釜相互连接构成具有联动工作方式的联动式高压釜, 高压釜之间由循环节能装置相互连接,控制高压釜之间的压力和热量循环, 所说的循环节能装置包括由循环管道相互连接的压力循环装置和热循环装置,循环管道向压力循环装置和热循环装置分别输送压力和热量,需要降温降压的高压釜通过循环管道将高温高压尾气排出,并输送到需要预热和/或加压的高压釜内。
6. 根据权利要求5所述的联动式高压釜循环节能方法,其特征在于所说的循环管道至 少有两套管路,包括压力循环管(13)和热循环管(15),所说的压力循环管(13)和热循环管 (15)分别与高压釜的压力循环装置和热循环装置连接,循环输送压力和热量。
7. 根据权利要求5所述的联动式高压釜循环节能方法,其特征在于所说的循环管道还 包括汇流管(12),该汇流管上连接有多个压力循环管(13)和热循环管(15),循环利用高压 釜的高温高压尾气。
8. 根据权利要求6所述的联动式高压釜循环节能方法,其特征在于所说的压力循环装 置包括控制高压釜之间压力循环的充气阀(2)和排气减压阀(3),所说的充气阀(2)和排气 减压阀(3)并联后与压力循环管(13)连接。
9. 根据权利要求6所述的联动式高压釜循环节能方法,其特征在于所说的热循环管 (15)上设有控制高压釜之间热量交换的进气减压阀(4)。
全文摘要
本发明涉及一种联动式高压釜循环节能装置,包括多台具有加热和加压装置的高压釜,其特征是至少由两台高压釜构成具有循环节能装置的联动式高压釜,所说的循环节能装置包括由循环管道相互连接的压力循环装置和热循环装置,高压釜之间由循环节能装置相互连接,需要降温降压的高压釜通过循环管道将高温高压尾气排出,并输送到需要预热和/或加压的高压釜内。本发明采用联动式高压釜循环节能装置,把需要降温的高压釜的高温高压尾气提前排气,并输送到需要预热或加压的高压釜,将原来降温后再排气两个工艺步骤改进为边降温边排气一个工艺步骤,有效地缩短了降温和排气时间,缩短了高压釜的生产周期时间,提高了生产效率,具有节能降耗的效果。
文档编号B01J3/04GK101708444SQ20091010982
公开日2010年5月19日 申请日期2009年11月23日 优先权日2009年11月23日
发明者李全相, 李毅 申请人:深圳市创益科技发展有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1