用于氧化脱氢的具有低金属负载的贵金属催化剂的制作方法

文档序号:4919356阅读:135来源:国知局
用于氧化脱氢的具有低金属负载的贵金属催化剂的制作方法
【专利摘要】本发明涉及一种生产催化剂的方法,所述催化剂包含0.05-0.25重量%贵金属,优选用于烯属不饱和醇的氧化脱氢,所述方法包括如下步骤:a)产生直流等离子体,b)将金属和载体材料引入等离子体中,c)在等离子体中汽化金属和载体材料或在等离子体中“击碎”金属和载体材料的固体和使颗粒反应,d)冷却,得到非常小的复合材料颗粒,和e)将复合材料施加至实际催化剂载体。本发明进一步涉及相应生产的催化剂及其用途。
【专利说明】用于氧化脱氢的具有低金属负载的贵金属催化剂
[0001]本专利申请中引用的所有文献整体上引入本公开作为参考。
[0002]本发明涉及负载型含贵金属催化剂在通过氧化脱氢由烯属不饱和醇制备烯属不饱和羰基化合物中的用途,以及相应的负载型含贵金属催化剂及其生产。
现有技术:
[0003]通过在合适催化剂上氧化脱氢制备α,β -不饱和羰基化合物是本领域熟练技术人员所已知的,且已通常描述于文献中。
[0004]因此,DE-B-2020865描述了一种制备α,β -不饱和羰基化合物的方法,根据其描述,其中可将合金和金属化合物,具体是过渡元素的一些金属氧化物用作脱氢催化剂。此夕卜,该文献声称所述催化剂可以纯净形式和以混合催化剂形式两者使用,其中使用或不使用载体物质。指出氧化锌、氧化镉和氧化锰以及包含金属CiuAg和/或Zn的混合催化剂是特别合适的。在该文献中没有给出与催化剂制备有关的进一步的信息。
[0005]ΕΡ-Α0881206描述了一种在管壳式反应器中连续工业化制备不饱和脂族醛的方法。作为用于该方法的优选催化剂,提及负载型银催化剂,其包含涂覆有基于载体的量为
0.1-20重量%的呈光滑、耐磨的壳形式的金属银层的惰性载体材料球。此外,应优选保持涂覆的催化剂球最大直径与反应管内径的特定比例。
[0006]DE-A2715209公开了一种制备3-烷基丁烯-1-醛的方法,其中使用具有5-35mm的总层厚和2层或更多层的银和/或铜晶体的催化剂。具有多层贵金属的催化剂的制备较为复杂。
[0007]EP A0357292公开了一种制备环氧乙烷的方法。该方法中所用的催化剂为银催化齐U,其中将银施加至具有通过BET法测定的特定比表面积的多孔耐热载体上。根据该文献中的信息,可将银以处于液体介质如水中的银或氧化银悬浮液形式施加至载体上,或者通过用银化合物的溶液浸溃载体而施加。随后将该银化合物通过热处理还原成元素银。该文献没有指出以此方式制备的含银负载型催化剂在制备烯属不饱和羰基化合物中的可能用途。
[0008]EP-A0619142公开了用于将乙烯氧化成环氧乙烷的银催化剂,其通过用银盐的水(胶体)溶液浸溃而获得。
[0009]此外,德国专利申请DE102008014910.1(其并非在先公开文献)公开了含贵金属催化剂,其通过将络合的微溶性贵金属化合物由悬浮液或溶液施加至载体并随后热处理而获得。
[0010]由现有技术已知用于异戍烯醇(isoprenol)氧化脱氢成异戍烯醒(prenal)的负载型银催化剂(约6重量%),其使用火焰喷涂法生产(参见DE102008014910.1中实施例1)。
[0011]在火焰喷涂法中,在乙炔火焰中进行金属的“熔化”,然后将液化金属“喷涂”至催化剂载体上(随后固化载体表面上的金属)。
[0012]目的:[0013]3-甲基丁-2-烯-1-醛(俗名异戊烯醛)是柠檬醛的重要前体,而柠檬醛又是许多化学合成的重要产物。在制备异戊烯醛(3-甲基丁-2-烯-1-醛)的文献中所描述的催化剂仍包含较大量贵金属,基本上是银,由此较昂贵。
[0014]因此,本发明目的为提供用于氧化脱氢,特别是用于由异戊烯醇(3-甲基丁-3-烯-1-醇)合成异戊烯醛的含贵金属负载型催化剂,其在类似性能数据(活性和选择性)下包含较小量贵金属并由此更廉价。
[0015]本发明目的同样为提供生产该类廉价催化剂的方法。
[0016]本发明另一目的为提供本发明催化剂或根据本发明生产的催化剂在氧化脱氢,特别是在由异戊烯醇(3-甲基丁-3-烯-1-醇)合成异戊烯醛中的用途。
[0017]目的实现:
[0018]该目的通过一种生产催化剂的方法实现,所述催化剂优选包含0.05-0.25重量%贵金属,优选用于烯属不饱和醇的氧化脱氢,所述方法包括如下步骤:
[0019]a)产生DC等离子体,导致产生极高温度,
[0020]b)将金属和载体材料引入等离子体中,
[0021]c)汽化金属和载体材料或“击碎”固体和使颗粒反应,
[0022]d)冷却,得到非常小的复合材料颗粒,
[0023]e)将复合材料施加至实际催化剂载体。
[0024]此外,该目的通过使用以该方式生产的催化剂实现,所述催化剂优选包含
0.05-0.25重量%贵金属,用于通过氧化脱氢由烯属不饱和醇制备烯属不饱和羰基化合物。
[0025]最后,优选包含0.05-0.25重量%贵金属且已通过上述方法生产的催化剂(优选用于烯属不饱和醇的氧化脱氢)有助于实现本发明目的。
[0026]术语定SI:
[0027]就本发明而言,除非另有说明,所有量均基于重量。
[0028]就本发明而言,术语“室温”是指20°C的温度。除非另有说明,所述温度以摄氏度(V )表示。
[0029]除非另有说明,所述反应和工艺步骤均在大气压下,即在1013毫巴下进行。
[0030]就本发明而言,球状意指所述初级粒子为球形且在透射电子显微镜(TEM)下不表现出任何优先方向或优先边缘,与理想球体相当。
[0031]就本发明而言,所有粒度借助SEM(扫描电子显微镜)测定。
[0032]详细说明:
[0033]本发明提供一种生产催化剂的方法,所述催化剂优选用于烯属不饱和醇的氧化脱氢,所述方法包括如下步骤:
[0034]a)产生DC等离子体(“离子化气体”),导致产生极高温度(显著高于乙炔火焰中温度),
[0035]b)将金属和载体材料引入等离子体中,
[0036]c)汽化金属和载体材料或“击碎”固体和使颗粒反应,
[0037]d)冷却,得到非常小的复合材料颗粒,
[0038]e)将复合材料施加至实际催化剂载体,所述催化剂载体优选包含滑石,特别优选具有约2mm直径的滑石球。[0039]本发明进一步提供以此方式生产的催化剂在通过氧化脱氢由烯属不饱和醇制备烯属不饱和羰基化合物中的用途。
[0040]最后,本发明提供一种通过上述方法生产的催化剂,其优选用于烯属不饱和醇的
氧化脱氢。
[0041]在本发明的优选变型中,在本发明方法的情况下以及在本发明用途和本发明催化剂本身的情况下,催化剂在每种情况下都包含0.05-0.25重量%贵金属。
[0042]在本发明工艺步骤a)_d)中,得到贵金属和载体材料的复合物,在复合物中具有贵金属颗粒,优选银颗粒,其具有<10nm的平均粒度。
[0043]贵金属的比例基于复合材料为约30重量%。
[0044]在本发明方法的步骤d)中,由此获得包含30重量%银和作为剩余部分的载体材料的复合材料。这可在图3中扫描电子显微图像中看到。
[0045]在本发明的变型中,复合材料具有例如0.5-100 μ m,优选2-80 μ m的粒度范围。在本发明的变型中,复合材料具有例如5-30 μ m,优选10-20 μ m的平均直径。
[0046]然后在步骤e)中将该复合材料施加至实际载体,其优选具有1.8-2.2mm的尺寸,其中作为载体优选使用滑石,特别是呈球形的滑石。
[0047]步骤b)和e)中的载体材料可相同或不同。优选步骤b)和e)中的载体材料相同。
[0048]相比于现有技术的明显区别特征由此为催化剂的生产和催化剂本身。最重要的特征为:
[0049]-滑石基质内银颗粒为纳米级,优选l_50nm,特别优选l_20nm,特别是1-1Onm,
[0050]-这些催化剂的高活性,尽管非常低的银含量,
[0051 ]-存在包含银和载体材料的复合物,其施加至实际载体。
[0052]这与在根据现有技术的催化剂中以宏观形式存在的银形成对比(参见图4)。
[0053]此外,本发明描述了具有低金属负载且借助本发明生产方法获得的贵金属催化剂的用途,特别是用于氧化脱氢。
[0054]相比于在常规催化剂情况下显著更高的金属负载,借助本发明方法生产的本发明催化剂上低金属负载惊人地足够进行氧化脱氢。
[0055]就本发明而言,这通过催化剂上负载贵金属的高度分散而实现;特别地,催化剂上负载贵金属的高度分散通过借助所述方法生产的催化剂实现。
[0056]相比于常规催化剂,本发明催化剂的贵金属负载显著降低导致原料成本的显著节省,这代表了巨大的经济优势(贵金属增加了成本)。
[0057]就本发明而言,已发现具有低比例贵金属且可优选用于将3-甲基丁-3-烯-1-醇(MBE,异戊烯醇)氧化脱氢成3-甲基丁 -2-烯-1-醛(MBA,异戊烯醛)的负载型贵金属催化剂。
[0058]本发明催化剂包含负载于惰性载体(非常优选滑石)上的0.05-0.25重量%贵金属,且相比于标准催化剂(负载于滑石上的6重量%Ag)惊人地在显著更低成本下实现类似的性能数据(特别是就活性和选择性而言)。
[0059]优选使用Cu、Au、Ag、Pd、Pt、Rh、Ru、Ir或Os和任选W或其混合物作为贵金属。特别优选使用Cu和Ag或其混合物作为贵金属。非常特别优选使用Ag。
[0060]当使用混合物时,混合比不受任何特殊限制。[0061]就本发明而言,在一个变型中,可在催化剂中加入适于作为助催化剂的其他添加剂。仅仅通过实例,此时可提及碱金属、碱土金属或过渡金属(例如L1、Rb、Cs、Ca、Mg、V、Co、N1、Ir 或 Re)。
[0062]可根据本发明用于催化剂的合适载体材料本身是本领域熟练技术人员已知的且已描述于文献中,此处作为其他细节的参考。
[0063]在本发明的优选实施方案中,载体材料具有非常低的孔隙率且具有不大于0.1m2/g的BET表面积。
[0064]在本发明的优选实施方案中,载体材料为球状且具有1.3-2.5mm,优选1.8-2.2mm
的平均直径。
[0065]优选的载体材料为滑石、氧化铝或硅铝酸盐。
[0066]在一些情况下,已发现水滑石也是合适的。
[0067]水滑石通常应理解为具有化学式[MaDhMailUOHhPlA^r^mHW的层状材料。此处,M(II)为二价金属,M(III)为三价金属,A为掺入晶格中的阴离子,m为掺入的水分子的数量,且X为摩尔比M(II)/[M(II)+M(III)]。x通常为0.2-0.33,这对应于M(II)/M(III)的摩尔比为2-4。作为二价金属,此处可提及例如Mg、Fe、N1、Co、Zn和Mn;作为三价金属,可提及Al、Ga、In、Co和Mn。可能同时存在各种摩尔比的多种二价或三价金属提高了合适水滑石的结构多样性。
[0068]作为水滑石类的 矿物,此处仅作为实例可提及水碳铝镁石、菱水碳铁镁石、水碳铁镁石、菱水碳铬镁石、水碳铬镁石、羟碳锰镁石、羟镁铝石或水铝镍石,其描述于文献中且具有本领域熟练技术人员已知的组成。优选的水滑石具有Mg6Al2 (CO3) (OH) 16*4H20的组成。
[0069]特别优选的载体材料为滑石,即基于天然原料的陶瓷材料,包含皂石(Mg(Si4Oltl)(OH)2)、天然硅酸镁作为主要组分。此外也可包含粘土和长石或碳酸钡的添加物。
[0070]根据本发明,特别优选在步骤b)和步骤e)中都使用滑石。
[0071]合适的滑石是本领域熟练技术人员已知的且可市购,例如由CeramTec或Saint-Gobain NorPro 市购。
[0072]就本发明而言,本发明催化剂的贵金属含量(以重量%测量且基于载体材料)为
0.05-0.25重量%,优选0.08-0.2重量%,特别优选0.09-0.12重量%,在每种情况下基于催化剂颗粒的总重量。
[0073]就本发明而言,所实现的优势主要为在更低量的贵金属下实现相同的性能数据(活性和选择性),使得导致就贵金属催化剂而言的原料成本得以节省。
[0074]在电弧等离子体中生产复合材料的原理方法例如描述于US6, 689,192B1和US5, 989,648 中。
[0075]由粉末合成和分离构成的相应方法例如描述于W02006/042109中。
[0076]在本发明的优选变型中,本发明复合材料,即包含载体材料和贵金属的本发明催化剂依附于如下参数生产。
[0077]产生等离子体和合成载体上贵金属(特别是滑石上的银)的复合材料可在常用于该目的的设备中进行。
[0078]因此,例如微波等离子体或电弧等离子体可用于产生DC等离子体。
[0079]在优选实施方案中,等离子体喷枪用于产生等离子体。这由充当阳极的壳体和其中在中心设置的水冷却铜阴极构成,其中电弧在阴极和壳体之间具有高能量密度燃烧。供入的等离子体气体离子化以形成等离子体并在例如15000-20000开尔文的温度下以高速(例如约300-700m/s)离开喷枪。
[0080]为了处理,将原料贵金属和载体,特别是银和滑石直接引入该等离子流中,在那里汽化,随后通过冷却转化回固相。1-100 μ m范围内的粒度适用于该目的,特别优选1-10 μ m范围内的窄粒度分布。
[0081]气体或气体混合物用于等离子体产生。这里,在实际等离子体气体、用于引入原料的载气和所用包封气体(包封实际处理区例如以避免壁上沉积物的气流)之间存在区别。等离子体气体、包封气体和载气三者均可具有相同组成,所述气体中两种可具有相同组成,或三者均可具有不同组成。
[0082]引入等离子体中的功率通常为几kW至数100kW。更高功率的等离子体源原则上也可用于处理。
[0083]作为气体类型,可使用本领域熟练技术人员已知的常用气体,优选使用稀有气体,特别优选氩气。
[0084]在等离子体气体中处理期间,纳米颗粒状初级粒子首先在成核之后形成,其通过聚沉和聚结过程而经受进一步的粒子生长。粒子形成和生长发生在整个处理区且可也在离开处理区之后继续直到快速冷却。
[0085]在贵金属和载体(特别是银和滑石)的混合物的处理中,形成纳米颗粒状产物混合物。粒子形成过程不仅可经由原料的组成和浓度控制,而且可借助处理产物的类型和冷却时间点控制。
[0086]就本发明而言,比例可在宽范围内改变,优选将5-35重量%贵金属和95-65重量%载体材料引入等离子体中。
[0087]在本发明的优选变型中,将28-32重量%贵金属和72_68重量%载体材料,特别优选30重量%贵金属和70重量%载体材料引入等离子体中。
[0088]根据本发明,在等离子体条件下的处理优选在600-25000°C的温度下进行。
[0089]就本发明而言,产物混合物在反应区中的停留时间通常为0.002-2秒,优选0.005-0.2 秒。
[0090]就本发明而言,在等离子体气体中处理产物材料之后,借助常规方法将所得处理产物冷却,优选快速冷却。在本发明的变型中,处理产物借助惰性气体流(例如N2)骤冷。这里优选至少104K/min的骤冷速率。负载颗粒的气体的最后温度应为约80°C,不大于100°C。该冷却可为直接或间接的(或由两者的组合构成)。
[0091]通过过滤将所需复合物与冷却的产物流(气体/固体)分离。
[0092]用在等离子体中合成的复合物粉末涂覆载体材料可使用本领域熟练技术人员已知的方法进行。这里例如可提及粉末涂覆。在该情况下,载体材料在转盘上用液体润湿并将待施加粉末理想地缓慢分布在移动载体颗粒上,同时润湿。合适的润湿液体例如为纯水或包含助剂如粘度影响介质的水。这些介质具有乳化和润湿作用且尤其称为表面活性剂。醇、胺或酰胺和酸的乙氧基化物(例如Lutensol)可提及作为该类介质的实例。此外,纤维素和纤维素衍生物(例如羟乙基纤维素)或甘油是合适的。水中助剂的比例(既然需要)适当地为1-25重量%,优选2-20重量%,特别优选3-10重量%。转盘以20_60rpm (转数/分钟),优选30-50rpm,特别优选30_45rpm的旋转速度操作。
[0093]润湿液体以非常精细形式喷雾至载体上。两液喷嘴适用于该目的,其例如借助气体如空气或氮气作为推进剂操作。待施加固体可小心地散布其上,但装置如振动流槽是更合适的。添加速率需要被调节,使得旋转的载体材料不粘附。待添加的液体和固体量取决于待施加涂覆材料的质量。
[0094]本发明催化剂可例如借助透射电子显微镜分析。显微图像例如仅显示出复合材料(即在施加至载体球之前),在这些显微图像上可看到在本发明催化剂情况下,非常细的贵金属颗粒(在图1中Ag)嵌入滑石基质中。
[0095]因此,本发明催化剂中贵金属颗粒不作为呈载体上光滑、耐磨的壳形式的层存在,而是作为嵌在载体表面上的分散颗粒存在。
[0096]本发明催化剂的贵金属颗粒在载体颗粒上以平均尺寸〈10nm的颗粒形式存在。
[0097]本发明优势在于特别高的表面积并且与此相关地借助催化剂上负载贵金属的高度分散或贵金属颗粒嵌入载体基质中而实现提高的催化剂活性。
[0098]在本发明的变型中,不像使用无孔载体材料的在先现有技术,催化剂载体为多孔的,使得贵金属颗粒更好地嵌入载体基质中。
[0099]在本发明中,有利效果在于贵金属颗粒相比于在根据在先现有技术的催化剂情况下更加耐烧结,因为它们嵌入载体基质中。
[0100]根据本发明,可通过上述方法获得的负载型含贵金属催化剂可特别有利地用于由
3-甲基丁 -3-烯-1-醇制备3-甲基丁 -2-烯-1-醛。该产物的俗名称为异戊烯醛,而原料的俗名称为异戊烯醇。
[0101]在该特别优选的用途中,所述反应优选在管壳式反应器中进行,例如如EP-A881206所述。此处,反应器几何形状的进一步细节可明确参考EP-A881206和EP-A244632。
[0102]含贵金属负载型催化剂的本发明用途或本发明含贵金属负载型催化剂使得能以良好的产率和良好的选择性,在温和的温度条件下由异戊烯醇获得异戊烯醛。异戊烯醇借助本发明催化剂的反应形成包含3-甲基丁 -3-烯-1-醛和3-甲基丁 -2-烯-1-醛的反应混合物。然后,前面所称异构体在随后步骤中在碱性催化剂存在下异构化以形成所需3-甲基丁 -2-烯-1-醛。
[0103]在所述反应混合物的后处理中,在第一步中通过蒸馏从未反应的原料中分离出所需反应产物。为了能使该蒸馏以经济上有利的方式实施,有利地使用包含70%3-甲基丁-3-烯-1-醛和30%3_甲基丁-2-烯-1-醛的共沸物。后者如上所述为热力学上有利的产物。
[0104]可如上文所述获得的负载型含贵金属催化剂的本发明用途能在较低温度下以良好的产率且以良好的选择性由异戊烯醇制备异戊烯醛。
[0105]本发明的各实施方案,例如不仅仅各从属权利要求保护的那些,可以任何方式彼此组合。
[0106]现在参照下文非限制性附图和实施例对本发明进行阐述。
【专利附图】

【附图说明】:[0107]图1示出根据实施例B),根据本发明方法步骤d),在施加至滑石载体之前(!),根据本发明生产的催化剂颗粒的透射电子显微图像。暗斑代表银粒子(直径至多10nm,平均直径约6nm),其嵌入滑石基质(灰色阴影区)中。
[0108]图2以图表示出在实施例B)和C)的两种本发明催化剂和根据对比例A)的现有技术催化剂上的相应选择性和转化率。
[0109]图3示出在施加至滑石载体之前(!)根据本发明方法步骤d)的复合材料。银以浅色斑示出,而暗区可指定给滑石基质。
[0110]图4示出通过火焰喷涂法生产的现有技术催化剂(在2mm滑石球上的6%Ag)的示意性扫描电子显微图像。可看出,存在相比于本发明颗粒完全不同的银形态。
实施例:
[0111]实施例1:牛产根据本发明B和C的催化剂
[0112]借助等离子体方法合成Ag/滑石复合材料。
[0113]以30重量%银和70重量%滑石的混合比提供粒度级为1-1Oym的原料银和滑石。混合粉末经由喷嘴以10g/min的计量速率引入N2载气流中并供入DC等离子体(电弧等离子体、等离子体气体和包封气体氩气,来自Sulzer的装置)中。将功率调节至80kW。固体在等离子体中的停留时间通过调节载气流而设定为约10毫秒。离开等离子体的产物气体借助室温下氮气流而骤冷至约80°C。在骤冷过程中形成的复合物颗粒借助合适过滤器与气流分离。
[0114]用复合物颗粒涂覆滑石球
`[0115]将1000g尺寸为1.8-2.2mm的滑石球(来自CeramTec)引入转盘中;这借助ErwekaAR401马达在40rpm旋转速度下驱动。
[0116]将5重量%甘油和95重量%水的混合物借助来自Spraying Systems Co的两液喷嘴喷雾至转球上。空气用作润湿液体的推进剂。在添加液体的同时,将3.4g(实施例B)或7.8g(实施例C)通过等离子体方法获得的复合物粉末借助来自Retsch的振动流槽喷淋在旋转滑石球上。这里,调节液体的添加(约5-10g),使得球不粘附。
[0117]煅烧催化剂
[0118]将由此获得的催化剂在预热的煅烧炉中在360°C下在空气中处理I小时,随后取出并在干燥器中冷却。
[0119]对于实施例A)、B)和C),在每种情况下将IOmL所述催化剂的床引入熔融石英反应器中。然后通过借助薄膜式蒸发器在50L/h空气中汽化110g/h MBE而进行反应(由3-甲基丁 -3-烯-1-醇制备3-甲基丁 -2-烯-1-醛)。
[0120]结果示于表1中。
[0121]实施例A)-对比例:
[0122]已通过火焰喷涂法生产的标准催化剂(参见DE102008014910.1中实施例1)用于该实施例。该催化剂在滑石载体上具有6重量%银负载。
[0123]实施例B)-根据本发明:
[0124]根据本发明生产且在滑石载体上具有0.1重量%银负载的催化剂用于该实施例。
[0125]实施例C)-根据本发明:[0126]根据本发明生产且在滑石载体上具有0.23重量%银负载的催化剂用于该实施例。
[0127]在所有实施例中,尺寸为1.8-2.2mm的相同滑石球用作滑石载体。
[0128]
【权利要求】
1.一种生产催化剂的方法,所述催化剂优选用于烯属不饱和醇的氧化脱氢,所述方法包括如下步骤: a)产生DC等离子体, b)将金属和载体材料引入等离子体中, c)在等离子体中汽化金属和载体材料或“击碎”金属和载体材料的固体和使颗粒反应, d)冷却,得到非常小的复合材料颗粒, e)将复合材料施加至实际催化剂载体。
2.根据权利要求1的方法,其中选自Cu、Au、Ag、Pd、Pt、Rh、Ru、Ii^POs及其混合物的贵金属用作贵金属。
3.根据权利要求1或2的方法,其中碱性、酸性或中性载体材料用作载体材料。
4.根据权利要求3的方法,其中滑石、氧化铝、硅铝酸盐或其混合物,优选滑石用作载体材料。
5.根据权利要求1-4中任一项的方法,其中载体材料在步骤b)和e)中相同。
6.根据权利要求1-5中任一项的方法,其中催化剂包含0.05-0.25重量%贵金属。
7.负载型含贵金属催化 剂在通过氧化脱氢由烯属不饱和醇制备烯属不饱和羰基化合物中的用途,其中催化剂已通过根据权利要求1-6中任一项的方法生产。
8.根据权利要求7的用途,其中催化剂包含0.05-0.25重量%贵金属。
9.根据权利要求8的用途,其中选自&1、41138、?(1、?丨、他、1?11、11'和08及其混合物的贵金属用作贵金属。
10.根据权利要求7-9中任一项的用途,其中由3-甲基丁-3-烯-1-醇制备3-甲基丁-2-烯-1-醛。
11.一种负载型含贵金属催化剂,其通过根据权利要求1-6中任一项的方法生产。
12.根据权利要求11的负载型含贵金属催化剂,其中其具有0.05-0.25重量%贵金属的贵金属负载。
13.根据权利要求11或12的负载型含贵金属催化剂,其中贵金属,优选银在催化剂载体上以平均粒度<10nm的颗粒形式存在。
【文档编号】B01J37/34GK103501895SQ201280020648
【公开日】2014年1月8日 申请日期:2012年3月13日 优先权日:2011年4月28日
【发明者】G·希贝尔, D·格罗斯施密特, T·莫伊雷尔, C·巴尔特斯 申请人:巴斯夫欧洲公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1