一种TiO2-Pd-PPy复合光催化剂及其制备方法和应用与流程

文档序号:16909610发布日期:2019-02-19 18:33阅读:572来源:国知局
一种TiO2-Pd-PPy复合光催化剂及其制备方法和应用与流程

本发明涉及一种新型光催化材料,特别涉及一种TiO2-Pd-PPy复合光催化剂及其制备方法和应用。



背景技术:

氢能作为一种无碳燃料,因其可以取代化石燃料以减少碳的排放而被认为是一种理想的能源。自从1972年,Fijishima和Honda报道了在n型半导体TiO2单晶电极上光致分解水产生H2和O2,光催化技术就成为直接把太阳能转化为氢能的有效策略之一。至今,已有数以千计的光催化剂被应用于光催化分解水制氢方面。其中,二氧化钛(TiO2)是研究最早且最多的光催化剂,然而,其较宽的带隙(-3.2eV)和较低的量子效率严重限制了二氧化钛的实际应用。因此,对二氧化钛进行改性以提高其光催化分解水效率将具有非常重要的战略和现实意义。

贵金属钯(Pd)和导电聚合物聚吡咯(PPy)是两种常用的改性半导体光催化剂光催化性能的物质。其中,负载于半导体光催化剂表面的Pd可以有效的捕获光生电子,从而减少光生载流子的复合效率。而导电聚合物PPy作为一种常用的光敏化材料,在拓展半导体光催化剂光吸收范围的同时,也为光生空穴的迁移提供了更为快速有效的通道。

将贵金属钯(Pd)和聚吡咯(PPy)同时负载于TiO2表面形成TiO2-Pd-PPy复合光催化剂后,一方面,拓展了TiO2的光吸收范围;另一方面,促进了光生载流子的分离,从而提高TiO2的光催化分解水的效率。

而现有技术中,TiO2-Pd-PPy复合光催化剂的制备方法除耗时较长。合成条件复杂外,还无法实现Pd和PPy的精准定位负载,制备得到的光催化剂的光催化性能也较差。



技术实现要素:

针对上述现有技术中存在的技术问题,本发明的一个目的是提供一种新型光催化剂TiO2-Pd-PPy的制备方法,该方法可以实现Pd和PPy的精准定位负载,具有较强的光催化分解水产氢效率。

本发明的第二个目的是提供上述制备方法制备得到的TiO2-Pd-PPy复合光催化剂。

本发明的第三个目的是提供上述TiO2-Pd-PPy复合光催化剂的应用。

为了解决以上技术问题,本发明的技术方案为:

一种TiO2-Pd-PPy复合光催化剂的制备方法,包括步骤如下:

将TiO2超声分散于水中,向其中加入钯源和吡咯单体,除去溶解氧后,用氙灯照射,光致氧化还原得到TiO2-Pd-PPy复合光催化剂。

优选的,所述钯源为PdCl2、(Pd(NO3)2、PdSO4或Pd(CH3COO)2。

优选的,TiO2、PdCl2和吡咯单体加入的质量比为30000:200-250:1-3。

进一步优选的,加入的PdCl2的浓度为0.03-0.08mol/L。首先,Pd的负载量很低,其次,低浓度的PdCl2可以使Pd的负载效果更加均匀。因此,选用低浓度的PdCl2。

优选的,所述氙灯的功率为300-500W,全光照射20-40min。

全光照射:不加任何滤光片,照射光的波长范围包含了紫外光和可见光波段。

优选的,除去溶解氧的方法是向其中通入氮气。

优选的,制备得到的TiO2-Pd-PPy复合光催化剂中Pd的负载量为0.5wt%,PPy的负载量为0.4-1.0wt%。

进一步优选的,所述PPy的负载量为0.6wt%。

当TiO2受到全光照射时,会吸收一个光子,产生光生电子和空穴对。产生的光生电子可以将PdCl2等钯源还原为Pd纳米颗粒;与此同时,产生的光生空穴可以将吡咯Py单体氧化为PPy纳米颗粒。通过这种方法,实现Pd和PPy的定位负载,即Pd和PPy的沉积位置刚好是光生电子和空穴的光催化反应活性位点。而现有技术制备得到的TiO2-Pd-PPy复合光催化剂,采用的是普通化学沉积法,Pd和PPy的沉积位置随机,不能合理发挥Pd和PPy有效分离光生载流子的作用。

上述制备方法制备得到的TiO2-Pd-PPy复合光催化剂。

上述TiO2-Pd-PPy复合光催化剂在光催化分解水中的应用。

本发明的优良效果如下:

1、本发明中采用的一步同时光致氧化还原沉积法可以实现Pd和PPy的精准定位负载。

2、本发明所制得的TiO2-Pd-PPy复合光催化剂中,Pd和PPy的沉积位置刚好是光生电子和空穴的光催化反应活性位点,可以有效促进光生载流子的分离。

3、本发明所制得的TiO2-Pd-PPy复合光催化剂,显示出较好的光催化活性,其中,全光下,TiO2-0.5Pd-0.6PPy光催化剂的光催化分解水产氢效率可达602μmol/h。

4、本发明中采用的合成方法简单快捷,反应条件温和,无需模板分子和牺牲剂,具有较高的商业化应用前景。

附图说明

图1为本发明中所制得样品的X射线衍射图;

图2为本发明中所制得样品TiO2-0.5Pd的SEM图;

图3为本发明中所制得样品的紫外可见光漫反射吸收图;

图4为本发明中所制得样品的全光光催化分解水产氢产量对比图;

图5为本发明中所制得样品的可见光(λ>400nm)光催化分解水产氢产量对比图;

图6为本发明中不同方法合成的TiO2-0.5Pd-0.6PPy样品的全光光催化分解水产氢产量对比图;

图7为本发明中不同方法合成的TiO2-0.5Pd-0.6PPy样品的可见光(λ>400nm)光催化分解水产氢产量对比图。

具体实施方式:

下面结合附图对本发明做进一步说明,但不限于此。

实施例中对所制备材料进行光催化活性测试的方法如下:

光催化分解水产氢测试在连接有循环冷却水(20℃)封闭的玻璃容器系统进行,真空条件为-97KPa。在顶部照射的光源选用300W氙灯。光催化分解水产氢测试前,避光磁力搅拌1h,排除剩余气体的干扰。通光后每隔20分钟进行测试,由气相色谱仪测得的峰面积值转化为氢气的产量。可见下光催化分解水产氢测试时,使用波长大于400nm的滤光片以提供可见光。

实施例1

称取TiO2(P25)300mg加入100mL去离子水中,超声5分钟,使其形成均匀的悬浊液。在不断搅拌条件下,向TiO2悬浊液中加入250μL氯化钯(PdCl2,0.0564mol/L)和1.2×10-2-3.0×10-2mg吡咯(Py)单体。其中,相对于TiO2,Pd和PPy的质量分数为0.5wt%和0.2wt%,0.4wt%,0.6wt%,0.8wt%,1.0wt%。然后,向其中通入高纯氮气30分钟以除去其中的溶解氧。最后,用300W氙灯,全光照射30分钟,将所得样品抽滤,并用去离子水和无水乙醇洗涤数次,在60℃空气气氛中干燥12小时即可得到TiO2-Pd-PPy复合光催化剂。

用甲醇替代吡咯单体,并用1.0mol/L氢氧化钠调节反应液的pH到3.0,其余步骤同上,即可得到对比样品TiO2-0.5Pd。

附图1为本实施例1所得样品的X射线衍射图,由图可知,由于复合样品中Pd和PPy的含量低于X射线衍射仪的检测限,因此,在样品的XRD图中,并没有发现Pd和PPy的特征衍射峰。所有产物的XRD衍射峰都与纯TiO2的峰位相对应,且衍射峰较强,并无杂质峰检测出,说明样品的结晶性良好且无杂质生成。附图2为本实施例1所得TiO2-0.5Pd样品的HRTEM图,由图可知,Pd以平均直径为5nm的纳米颗粒均匀沉积在TiO2表面。附图3为本实施例1所得样品的紫外可见漫反射吸收图。由图可知,相比于TiO2,TiO2-Pd-PPy复合光催化剂的光吸收得到了有效的拓展。附图4为本实施例1所得样品全光光催化分解水产氢产量对比图,附图5为本实施例1所得样品可见光(λ>400nm)光催化分解水产氢产量对比图。由图4和图5可知,无论在全光还是可见光条件下,TiO2-Pd-PPy复合光催化剂的光催化分解水产氢效率都远远高于TiO2-Pd和TiO2,当PPy的负载量达到0.6%时,TiO2-0.5Pd-0.6PPy的光解水产氢效率最高。

对比例

为了进一步说明本发明中所用合成方法的优势,我们按照已报道的方法制备出了以下三种TiO2-0.5Pd-0.6PPy光催化剂:

(1)一步法化学沉积。250uL 0.0564mol/L PdCl2和1.8×10-2mg吡咯单体加入到100mL TiO2(3mg/mL)水溶液,室温下搅拌12小时即可得到所需样品,将该样品标记为TiO2-0.5Pd-0.6PPy-RT。

(2)两步沉积法(先沉积Pd,再沉积PPy)。称取实施例1中制得的TiO2-0.5Pd样品300mg超声分散于100mL去离子水中,然后向其中加入1.8×10-2mg吡咯单体和0.44mg三氯化铁(FeCl3),于冰水浴中搅拌12小时即可,将所得样品标记为TiO2-0.5Pd-0.6PPy-T1。

(3)两步沉积法(先沉积PPy,再沉积Pd)。将300mg TiO2,1.8×10-2mg吡咯单体和0.44mg三氯化铁(FeCl3)同时加入到100mL去离子水中,于冰水浴中搅拌12小时得到TiO2-0.6PPy。然后,将干燥后的TiO2-0.6PPy重新分散于100mL去离子水中,并向其中加入250uL 0.0564mol/L PdCl2和10mL甲醇,通入氮气去除溶解氧并调节pH到3.0后,用用300W氙灯,全光照射30分钟即可,所得样品标记为TiO2-0.5Pd-0.6PPy-T2。

附图6为本实施例中不同方法合成的TiO2-0.5Pd-0.6PPy样品的全光光催化分解水产氢产量对比图;

附图7为对比例中不同方法合成的TiO2-0.5Pd-0.6PPy样品的可见光(λ>400nm)光催化分解水产氢产量对比图。与传统的两步法相比,本发明中所用到的方法能够精确定位合成Pd和PPy,其中Pd的负载位置正是电子传输的出口,PPy正是空穴传输的出口,因此其活性远高于对比例中的两步法制备的样品。

由图6和图7可知,无论在全光还是可见光条件下,本发明中所用合成方法得到的TiO2-0.5Pd-0.6PPy样品的光解水产氢效率均高于其它三种方法。说明本发明所采用的合成方法可以得到更为有效的TiO2-Pd-PPy复合光催化剂。

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1