一步法制备生物相容油核微囊及其应用的制作方法

文档序号:16136996发布日期:2018-12-01 01:07阅读:551来源:国知局
一步法制备生物相容油核微囊及其应用的制作方法

本发明涉及微胶囊领域,具体涉及一种一步法制备生物相容油核微囊方法及其应用。

背景技术

在化妆品、药物和食品生产中经常会加入一些天然活性成分来增加其功能性作用,如维生素、抗氧化物质等。但是这些活性成分在具有氧气的环境中容易氧化分解,从而限制了其应用。通过制备具有核壳结构的微囊能够将活性成分包裹在微囊内使其免受环境的影响,因此微囊技术被认为是一种解决这种问题的有效途径,所以制备大小可控、可规模化生产且具有高包裹率的生物相容的油核微囊具有广泛的应用前景。

传统方法制备生物相容的油核微囊是通过明胶和阿拉伯胶的凝聚作用在油滴表面形成一层薄的囊壳,但是这种方法耗时较长,且这种囊壳材料具有亲水性,不是最优的包裹材料。随着微流控技术的发展,现在已经很容易通过微流控技术以双乳为模板制备大小可控的微囊。中间相通常是一种高分子聚合物溶液,随着有机溶剂逐渐扩散到连续相中,高分子聚合物在液滴表层析出形成一层囊壳,从而形成微囊。但是有机溶剂通常是有毒性的,且以微流控双乳为模板制备微囊难以实现量产,限制了其在各个领域中的应用。

本发明提供的一步法制备生物相容油核微囊方法可以包裹多种不同的油性物质,采用一种具有疏水性的天然树脂紫胶作为包裹材料,能够很好的隔绝氧气,该方法采用微流控技术以单乳为模板制备油核微囊,简单易行、包裹效率高、粒径均一、易于量产。另外囊壳材料在中性溶液中带负电可以进行聚电解质包裹,改善囊壳的机械性能。因此该方法在化妆品,医药和食品领域具有广阔的应用前景。



技术实现要素:

针对现有技术的不足,本发明提供一种一步法制备生物相容的油核微囊及其应用,解决了传统方法耗时长,囊壳材料亲水性问题,以及在微流控双乳为模板技术中存在难以量产和有毒有机溶剂的使用,该方法简单易行、包裹效率高、粒径均一、易于量产。可广泛应用于食品、化妆品、药物递送等各个领域。

为实现上述目的,本发明提供如下解决方案:

本发明以一步法制备生物相容的油核微囊的方法包括以下步骤:

(1)将油性物质和无水乙醇混合,其中油性物质的体积分数为40%-95%,然后将紫胶溶于油性物质和无水乙醇的混合溶液;

(2)将步骤(1)所得溶液作为内相,通过注射泵注入到玻璃毛细管微流控装置的内相入口,将包含表面活性剂的水溶液作为外相,通过注射泵注入到玻璃毛细管微流控装置的外相入口,在内相玻璃毛细管出口处由于表面张力和粘滞力的共同作用,得到分散在外相中的微液滴,随着微液滴中的乙醇逐渐扩散到外相并挥发,紫胶逐渐沉淀析出,最终固化得到生物相容的包裹油性物质的油核微囊。

优选的,所述的油性物质为迷迭香、香水、薰衣草精油或维生素e中的一种或多种。

优选的,紫胶在每毫升的油性物质和无水乙醇的混合溶液中加入的质量为10-250mg。

优选的,在步骤(2)中,所述外相中表面活性剂为聚乙烯醇或十二烷基硫酸钠。

优选的,在步骤(2)中,所述外相中表面活性剂为聚乙烯醇时在水相中的质量百分比为1%-10%,表面活性剂为十二烷基硫酸钠时在水相中的质量百分比为0.5%-1%。

优选的,在步骤一中所述玻璃毛细管微流控装置制备过程如下:

(1)准备玻璃管:准备两根圆形玻璃毛细管,一根方形玻璃毛细管。超声清洗上述玻璃毛细管并干燥;

(2)拉伸玻璃管:使用拉伸仪将圆形玻璃毛细管一端处理成尖锥状;

(3)处理毛细管:通过砂纸摩擦圆形玻璃毛细管尖锥一端,使端口平整;

(4)制备器件:将两根处理过的圆形玻璃毛细管的尖锥一端分别从方形玻璃毛细管两端置入,并在方形玻璃毛细管内将两根圆形玻璃毛细管尖锥端进行对中,然后用胶水将上述所有玻璃毛细管固定在玻璃片上。

本发明还公开了所述方法制备得到生物相容的油核微囊,所述的油核微囊大小均一可控,通过调节内相和外相的流速,或通过改变内相出口和外相入口孔径大小,可以控制所述微液滴尺寸。可以包裹不同的油性物质,可以对包裹的油性物质起到缓释效果,对ph响应释放;另外囊壳材料在中性溶液中带负电,可以进行聚电解质表面修饰改善囊壳的机械性能。

本发明的有益效果如下:

(1)本发明采用微流控技术,以单乳为模板,实现一步法制备生物相容油核微囊,该方法解决了传统方法耗时长和以双乳为模板制备油核微囊难以实现规模化生产的问题。

(2)本发明所用溶剂和材料均无毒无害,所制得的微囊具有良好的生物相容性,可广泛应用于食品、化妆品、医药等行业。

(3)本发明采用微流控技术,可以根据需求,获得大小均一可控的油核微囊,该微囊可以有效地控制包裹在其内的油性物质的释放。

(4)本发明制备所得到的微囊在水溶液中带负电,可采用聚电解质表面修饰,改善囊壳的机械性能。

附图说明

图1(a)为内相在玻璃毛细管微流控芯片中乳化形成微液滴的示意图;

图1(b)为本发明实施例1中微流控芯片的实际效果图;

图1(c)为本发明实施例1中制备得到的大小均一的微液滴的光学放大图;

图1(d)为本发明实施例1中微囊形成的示意图;

图2(a)(b)(c)微囊在不同壁厚下扩散示意图;

图2(d)通过热重分析仪测得微囊在不同壁厚下的质量变化图和微囊实物图;

图3(a)为来回晃动微囊的示意图和微囊在晃动破裂前后的光学放大图;

图3(b)为微囊在调节ph后,包裹材料逐渐溶解到突然破裂的示意图;

图3(c)-(h)为微囊在调节ph值后,包裹材料逐渐溶解到突然破裂的光学放大图;

图4(a)为微囊在中性溶液中,紫胶的羧基电离之后带负电;

图4(b)为微囊表面通过正负电荷进行修饰的原理示意图;

图4(c)-(d)为未进行表面修饰的微囊电镜扫描图;

图4(e)-(f)为进行表面修饰后的微囊电镜扫描图;

图5(a)为微囊包裹维生素e的光学放大图;

图5(b)为微囊包裹维生素e的电镜扫描图;

图5(c)为微囊包裹薰衣草精油的光学放大图;

图5(d)为微囊包裹薰衣草精油的电镜扫描图。

具体实施方式

下面举实施例说明本发明,但本发明并不限于下述的实施例。

实施例1:制备大小均一、直径约为89μm的油核微囊

参照附图1,采用本发明的方法制备生物相容的油核微囊,具体步骤如下:(1)微流控装置的制作:准备两根圆形玻璃毛细管,一根方形玻璃毛细管。超声清洗上述玻璃毛细管并干燥;使用拉伸仪将圆形玻璃毛细管一端处理成尖锥状;通过砂纸摩擦圆形玻璃毛细管尖锥一端,使端口平整;将两根处理过的圆形玻璃毛细管的尖锥一端分别从方形玻璃毛细管两端置入,并在方形玻璃毛细管内将两根圆形玻璃毛细管尖锥端进行对中,然后用胶水将上述所有玻璃毛细管固定在玻璃片上。毛细玻璃管微流控装置如附图1所示,有一个内相管、一个接收管和通外相的玻璃方管。

(1)内相和外相的制备:将1ml无水乙醇和4ml香水混合,然后将100mg的紫胶溶于混合溶液中;将10mg表面活性剂聚乙烯醇溶解在990mg水中,得到外相。

(2)微液滴的制备:将步骤(2)所得的内相通过注射泵注入到毛细玻璃管微流控装置的内相入口;将步骤(2)所得的外相通过注射泵注入到微流控装置的外相入口。在内相玻璃毛细管出口处由于表面张力和粘滞力的共同作用(如附图1(a)所示),得到大小均一的微液滴(如附图1(b)所示)。

(3)微囊的制备和表征:将步骤(3)所得的微液滴收集在玻璃培养皿内,随着无水乙醇逐渐扩散到水相然后挥发,紫胶的溶解度逐渐降低,进而沉淀析出,最终固化得到生物相容的油核微囊(如附图1(d)所示)。微囊的光学显微镜图证明其具有良好的均一性,平均直径约为89μm(如附图1(c)所示)。

实施例2:包裹在油核微囊内的油性物质的扩散速率随壁厚的变化。

(1)将2ml无水乙醇和5ml薰衣草精油混合,然后将800mg的紫胶溶于混合溶液中,该溶液作为新的内相,按实施例1制备得到包裹油性物质的油核微囊;

(2)将3ml无水乙醇和5ml薰衣草精油混合,然后将1200mg的紫胶溶于混合溶液中,该溶液作为新的内相,按实施例1制备得到包裹油性物质的油核微囊;

(3)将(1)和(2)制备得到的包裹油性物质微囊用去离子水清洗三遍,然后用滤网进行过滤,除去微囊表面的水分,得到表面干燥的油核微囊(如附图2(d)中插图;

(4)通过热重分析仪测量(3)中得到的微囊中油性物质的质量百分数随时间的变化;与未包裹的油性物质的挥发速度相比,包裹在微囊内的油性物质释放速度明显下降,随着微囊的壁厚增加,油性物质的释放速度也相应减小,(如附图2所示,图中箭头长短表示扩散速率)。

实施例3:油核微囊通过晃动实现微囊的突然释放

(1)将1ml无水乙醇和5ml薰衣草精油混合,然后将100mg的紫胶溶于混合溶液中,得到内相,该溶液作为新的内相,按实施例1制备得到包裹油物质的油核微囊;

(2)按照实施例2中(1)制备油核微囊,将其用去离子水清洗三遍;

(3)将微囊分散在去离子水中,然后将其盛放在试管中,通过来回晃动实现包裹的油性物质从微囊中快速释放。

实施例4:油核微囊对ph值的响应释放

(1)将2ml无水乙醇和5ml薰衣草精油混合,然后将800mg的紫胶溶于混合溶液中,得到内相,该溶液作为新的内相,按实施例1制备得到包裹油物质的油核微囊;

(2)按照实施例2中(1)制备油核微囊,将其用去离子水清洗三遍;

(3)然后取出其中一粒油核微囊,将其浸入在10wt%的氢氧化钠水溶液中,显微镜下观察此油核微囊的变化,油核微囊的包裹材料紫胶随着时间变化逐渐从油核微囊表面脱落下来,五十分钟之后油核微囊破裂,包裹的油性物质从微囊中快速释放。(如图3(a)所示)

实施例5:通过聚电解质法对油核微囊表面进行修饰增强其机械性能

在中性水中,由于微囊表面紫胶的羧基部分电离,微囊带负电,可以吸附一层带正电的聚电解质。可以增强微囊的机械性能。(如附图4(a)所示)。

(1)将300μl无水乙醇、350μl维生素e和350μl迷迭香混合,然后将150mg的紫胶溶于混合溶液中,得到内相,该溶液作为新的内相,

(2)将在去离子水中的质量百分比分别为10%的聚乙烯醇的水溶液作为新的外相,按实施例1制备得到包裹油物质的油核微囊;

(3)将在去离子水中的质量百分比分别为5%的聚乙烯醇和壳聚糖的水溶液作为新的外相,按实施例1制备得到包裹油物质的油核微囊;

(4)将(2)和(3)中制备得到的微囊用去离子水清洗三遍,通过扫描电子显微镜可以观察到微囊表面形貌由平滑变得褶皱。(如图4所示)

实施例5:微囊包裹维生素e和薰衣草精油

(1)将1ml无水乙醇和4ml维生素e混合,然后将100mg的紫胶溶于混合溶液中,该溶液作为新的内相,按实施例1制备得到包裹维生素e的油核微囊;

(2)将2ml无水乙醇和5ml薰衣草精油混合,然后将800mg的紫胶溶于混合溶液中,该溶液作为新的内相,按实施例1制备得到包裹薰衣草精油的油核微囊;

(3)将(1)和(2)制备得到的包裹油性物质微囊分别用光学显微镜和扫描电镜进行观察,证明其是一种核壳结构且微囊大小均一。(如图5所示)

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1