一种钛酸纳米管SPME涂层及其制备方法与应用与流程

文档序号:18885051发布日期:2019-10-15 20:46阅读:596来源:国知局
一种钛酸纳米管SPME涂层及其制备方法与应用与流程

本发明涉及分析检测技术领域,具体涉及一种钛酸纳米管spme涂层及其制备方法与应用。



背景技术:

多环芳烃(polycyclicaromatichydrocarbons,pahs)是一类重要的环境污染物,具有强的致癌、致畸和致突变作用,能抑制机体免疫能力以及光致毒效应。pahs主要来自厂矿排放物、交通工具排放的尾气、垃圾焚烧及人类生活活动,广泛存在于大气、水体和土壤中。目前,pahs的检测方法主要有气相色谱火焰离子化检测器(flameionizationdetector,gc-fid)、气相色谱-质谱联用仪(gaschromatography-massspectrometer,gc-ms)、高效液相色谱仪(highperformanceliquidchromatography,hplc)、二维气相色谱-高分辨率飞行时间质谱联用仪(gc×gc-highresolutiontime-of-flightmassspectrometer,gc×gc-hrtof-ms)等。常见的pahs包括苊烯、苊、芴、菲、荧蒽、芘、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽及苯并[a]芘,其结构式如下:

pahs在环境当中存在的浓度较低(痕量、超痕量级),环境样品基体复杂,干扰物多,难以直接测定,因此,通常必须经过样品预处理后才能进行分析。目前,已报道过的前处理方法有超声波提取、超临界流体萃取、固相萃取、微波辅助萃取和固相微萃取(solid-phasemicroextraction,spme)等。其中,spme属于近年来兴起的一项新技术,该技术集萃取、浓缩和进样于一体,能更有效地将分析物与干扰组分分离,且具有操作简便、快速等多重优点。目前,相关的报道有:v.fern′andez等以聚二甲硅氧烷-二乙烯基苯(polydimethylsiloxane–divinylbenzene,pdms-dvb)作为spme涂层标准测出了水中的二十七种多环芳烃。habib等用电化学方法制备了聚苯胺spme涂层,将其与gc-ms联用对水样中的多环芳烃进行了研究。

spme技术发展的关键在于萃取头上的涂层,纳米tio2作为一种绿色功能材料,具有湿敏、电效应、光电转化、光致变色及优越的光催化等性能,在涂料、介电材料和自洁材料等领域应用广泛。与纳米tio2粉末相比,钛酸纳米管的特殊结构,使它具有更大的比表面积和更强的吸附能力,并被应用于光催化剂、太阳能电池、催化剂载体和超级电容器等领域,若将其制备成固相微萃取涂层用于pahs前处理具有良好的应用前景,但目前尚未有相关报道。



技术实现要素:

本发明所要解决的第一个技术问题是:提供一种对pahs具有良好富集作用的钛酸纳米管spme涂层。

本发明所要解决的第二个技术问题是:提供一种上述钛酸纳米管spme涂层的制备方法。

本发明所要解决的第三个技术问题是:提供一种带有上述钛酸纳米管spme涂层的应用。

为了解决上述第一个技术问题,本发明采用的技术方案为:一种钛酸纳米管spme涂层,所述涂层包括附着在固相微萃取纤维上的钛酸纳米管层。

为了解决上述第二个技术问题,本发明采用的技术方案为:一种钛酸纳米管spme涂层的制备方法,包括以下步骤:取预处理后的固相微萃取纤维,在所述固相微萃取纤维表面涂敷聚亚酰胺树脂,然后再在聚亚酰胺树脂上添加钛酸纳米管,老化处理后制得所述钛酸纳米管spme涂层。

进一步地,在老化处理之前,将添加钛酸纳米管后的固相微萃取纤维在室温下放置20~40min(优选为30min)。

优选地,所述老化处理的时间为11~12h。

进一步地,所述老化处理按照以下程序设置老化过程中的环境温度:

起始温度为40℃,以4℃/min升温至150℃,保持30min;

然后以150℃/min升温至220℃,保持30min;

再以1℃/min升温至290℃,保持3h;

降至室温后,放置6h。

进一步地,所述老化处理是在氮气或惰性气体保护下进行。

进一步地,所述老化处理是在gc炉箱内进行,也可以是马弗炉中进行。

进一步地,所述固相微萃取纤维的预处理操作为:将固相微萃取纤维前端浸入丙酮溶液中,剥去外层的聚酰亚胺涂层后洗净。

为了解决上述第三个技术问题,本发明采用的技术方案为:一种固相微萃取头,所述固相微萃取头包括固相微萃取纤维和附着于所述固相微萃取纤维表面的涂层,所述涂层为上述的钛酸纳米管spme涂层。

一种上述钛酸纳米管spme涂层在环境分析中的应用。

本发明的有益效果在于:本发明方案的spme涂层表面具有多重孔隙结构,有效增大了涂层的比表面积,进而提高了吸附萃取效率;本发明方案还提供了一种采用简单、快速、廉价的树脂固定法制备钛酸纳米管spme涂层的方法,该方法操作简便,且制得的spme涂层的热稳定性好;本发明方案的涂层可直接用于自然水体中的pahs分析,对多种pahs具有较宽的线性范围及较低的检测限,同时对多种pahs具有良好的富集作用。

附图说明

图1为本发明实施例制得的钛酸纳米管spme涂层的红外光谱图;

图2为本发明实施例制得的钛酸纳米管spme涂层的扫描电镜图;

图3为本发明实施例中不同老化时间处理的钛酸纳米管spme涂层的萃取效率关系曲线图。

具体实施方式

为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。

本发明的实施例为:一种钛酸纳米管spme涂层,所述涂层包括附着在石英纤维上的钛酸纳米管层。

所述涂层的制备方法如下:

1、石英纤维的处理:取约为20cm长的石英纤维(直径140μm,河北省永年锐沣色谱器件有限公司),将前端2cm部分浸入丙酮(购于国药集团化学试剂有限公司)溶液中约5min,剥去外层的聚酰亚胺涂层后洗净。取出按上述步骤处理后的石英纤维,在纤维表面涂敷一层聚亚酰胺树脂(购于agilent公司),然后均匀的沾上钛酸纳米管(从福州大学化肥催化剂国家工程研究中心获取得到,也可市购或按照现有技术中公开的文献资料的教导进行自制)粉末,在室温下晾30min,然后放在在gc(6890n/5973气相色谱与质谱联用仪(agilent,usa),db-5ms石英硅胶毛细管柱(30m×0.25mm×0.25μm,agilent,usa))的炉箱中。

2、在gc炉箱中按照以下程序老化:炉温按以下程序设置:起始温度40℃,以4℃/min升到150℃保持30min,然后以150℃/min升至220℃,保持30min,以1℃/min,升至290℃保持3h。按以上操作完毕将gc炉箱温度降至室温,取出纤维,放置在gc进样口老化6h。

取上述操作制得的涂层进行红外光谱分析,具体操作如下:

取干燥的样品试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约100mg干燥的kbr一起研磨至两者完全混合均匀。取适量的混合样品于干燥的压片模具中,用手压式压片机用力压片约30s,制成透明薄片。将试样薄片装在磁性样品架上,放入wqf300/400型的ftir光谱仪的样品室中,测量样品得到红外光谱图,如图1所示。从图1中可以看出,本发明方案制得的涂层中在518.50cm-1处存在宽大的峰即为ti-o的特征吸收峰。而3444.27和1634.06cm-1为羟基(-oh)的伸缩振动,是kbr压片过程中带来的。

取上述操作制得的涂层进行形貌表征,具体操作如下:

通过环境扫描电镜仪(environmentalscanningelectronmicroscope,esem,philips,holland)用于观察钛酸纳米管spme涂层的表面形貌,结果如图2所示。图2中(a)、(b)和(c)依次为500、10000和100000倍率下的扫描电镜图。从环境扫描电镜(sem)电镜图2(a)中可以看出,钛酸纳米管粘合在石英纤维表面,具有疏松多孔的结构。从图2(b)和图2(c)可以看出,其多孔隙的结构有效地增大了涂层的比表面积。

取上述操作制得的涂层测定比表面积,具体操作如下:

采用micromeriticstristar3000型快速比表面积与孔隙率分析仪(micromeritics,usa),在液氮温度(77k)下进行n2物理吸附,测定复合氧化物及催化剂比表面积。样品测定前经200℃抽真空预处理3个小时,然后将样品迅速移入样品池中在170℃下真空脱气干燥至压力小于0.133pa。最后将样品浸入液氮中,开机测定氮气在样品上的吸附/脱附等温线,通过bet法计算比表面积。结果发现其表面积为275.1611m2/g,适合小分子物质的分离分析。

将上述操作制得的spme涂层应用于环境分析(水样中pahs的分析)中,其中,在加标水样分析中的步骤如下:

在不含有pahs的水中分别添加系列浓度的苊烯、苊、芴、菲、荧蒽、芘、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽及苯并[a]芘(购自于和光纯制药公司)制备成储备液样品。取配制的不同浓度的储备液样品于萃取瓶中,用顶端带孔的聚四氟乙烯隔垫盖密封,并将萃取瓶内的溶液搅拌均匀。

每个浓度样品配制两份,其中一份用作实验组,另一份用作对照。其中,实验组的操作如下:将上述操作制得的涂层直接插入所述萃取瓶中进行萃取操作,萃取3.5h后,直接将萃取头插入气相色谱的进样针中进行气相色谱分析。

对照组的操作如下:直接用进样针进样,与实验组在相同条件下进行气相色谱分析。

对实验组和对照组不同浓度标准溶液所得色谱峰面积绘制样品浓度与峰面积的关系曲线,并对该曲线进行线性拟合,拟合结果如下表1所示:

表1

注:参数x为分析物浓度(ng/ml),参数y为各分析物峰面积。

从表1中可以看出,将本发明方案制得的涂层用于水样中的pahs分析时,可实现超低浓度范围内的定量检测,线性相关度均在0.99以上,由此表明,具有良好的线性关系,可实现超低浓度的样品定量检测且检测限低至fg级别,远低于直接进样,由此表明,本发明方案制得的涂层能够取得良好的富集效果。

对上述操作制得的涂层的富集率进行测定,具体过程如下:

富集率(n)的计算方法:选定一个浓度c0,将其在spme萃取条件下的峰面积代入标准品工作曲线方程,由此求出经过萃取后相应峰面积的浓度c1。此时,样品在浓度c0时的富集率n=c1/c0。选取spme线性范围内的两个不同浓度,按富集率的计算方法计算得它们各自的富集率。

选取线性范围内的一个浓度(5ng/ml)做加标水样的精密度实验,计算日内、日间的rsd,相对标准偏差如表2:

表2钛酸纳米管spme涂层富集率和相对标准偏差

从上表可以看出,本发明实施例的涂层对pahs具有良好的富集效果。

收集某矿厂排放的废气,将上述操作制得的spme涂层用于该废气中pahs的富集,结果发现该涂层对pahs能够进行有效的富集,且富集倍数高,远优于商用的常见涂层。

对不同老化时间(5~13h)下制得的涂层的萃取效率进行研究,结果如图3所示,从图3中可以看出,老化时间为11~12h时,萃取效率最好。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1