用于监测dna聚合酶链反应的仪器的制作方法

文档序号:5015102阅读:210来源:国知局
专利名称:用于监测dna聚合酶链反应的仪器的制作方法
技术领域
本发明涉及生化分析,更具体地说是涉及聚合酶链反应过程中DNA的定量监测。
背景聚合酶链反应是一个放大或增加双链脱氧核糖核酸(DNA)数量的方法。在PCR装置中,一个热循环块上有一个或多个用于放置装有反应物悬浮液的小瓶的小孔,以DNA的“种子”样品为起点开始反应来生成更多的DNA。在水悬浮液的起始成份中,除了种子样品外,还包含有所选择的DNA引物链、DNA元件、酶及其他的化学制品。循环块温度在一个相对低温的约为60℃的PCR反应延伸段和一个约为95℃的高温变性阶段之间循环,在扩展阶段期间所有的DNA链已结合成了双链,在变性阶段期间DNA发生了变性或分解成单链。这样每经过一次循环,DNA量就翻番了,这就提供了从少量开始大量复制DNA的一种方法。例如在第4683202号的美国专利中就记载有PCR过程。
对PCR过程中DNA的生产已有了定量的测量方法以测量出开始的数量和生成的数量。在下列的文献均记载有有关的测量和计算技术第5766889号美国专利(Atwood);在Bio/Technologyvol.11,pp.1026-1030(1993年9月)上登载的由Russel Higuchi,etal.撰写的题为“动态PCR分析实时监测DNA扩增反应”的文章;在Analytical Biochemistry Vol.245,pp.154-160(1997)登载的由Kirk M.Ririe,et al.撰写的题为“通过分析聚合酶链反应中的解链曲线区别产物”的文章。
在现有的测量技术中,已采用了微量荧光计(分光荧光计)和带有照明灯泡的视频摄像机的简单装置。这种装置使用有双链DNA时会发出荧光的染料。这些技术和仪器不是特别适合于用于反应的常规测量的PCR装置。也需要提高监测和测量的精度。现有的可以实时采集和分析PCR数据的仪器不具有所需要的动态范围;没有内置的校准部件;不可以带着样品孔帽进行操作;或者非常昂贵。
本发明的一个目的是提供一种新型的用于对PCR装置中的DNA复制进行定量监测的光学仪器。其他的目的是提供具有下述特点的一种仪器动态范围得到改进、可自动选择照射时间以扩展动态范围、自动进行漂移校正、操作简单、相对低成本、易于针对不同的荧光染料而调整光学元件。
概述采用本文所述的一种用于监测DNA聚合酶链反应复制的光学仪器便可至少部分地实现前述的和其他的目的。复制是在一个反应装置中进行的,所述反应装置包含一个至少有一个装有反应成份悬浮液小瓶的热循环块。反应成份中包含一种与DNA存在成比例的荧光染料。
所述仪器包含一个光源、引导光束部件、光探测器和用于处理数据信号的部件。光源所发射的光源光束包含至少一个使染料以某一发射频率发出荧光的基本激发频率。设置的第一部件接收具有激发频率的可成为激发光束的光源光束。设置基本聚焦部件来使激发光束聚焦到各个悬浮液中,以使基本染料发出具有发射频率的发射光束,该光束的强度代表着各个悬浮液中的DNA的浓度。聚焦部件接收并透过发射光束。设置的第二部件接收来自聚焦部件的发射光束以便于进一步使具有发射频率的发射光束通过另一个将发射光束聚焦到探测器的聚焦部件处。探测器便产生了代表着发射光束进而也代表着各个小瓶中的DNA浓度的基本信号。处理器可接收基本的数据信号并计算和显示DNA的浓度。
在一个优选实施方案中,第一部件和第二部件共有一分光器,该分光器接收成为激发光束的光源光束,同时接收发射光束并使之通过而到达探测器。循环块可包含多个小瓶,聚焦部件包含有多个相对应的置于小瓶上方的小瓶透镜以使发射光束中含有对应于各个小瓶的独立光束。聚焦部件还可进一步包含有一个例如菲涅耳透镜的物镜,该物镜与小瓶透镜一起使激发光束聚焦到各个悬浮液中,还使各独立光束通过而到达第二部件(分光器)。探测器最好包含一光感受器阵列以接收各独立光束进而产生相应的数据信号,以便于处理部件计算出各个小瓶中的DNA浓度。
仪器还应在光源和分光器间设置一个激发滤光器,而在分光器和探测器之间设置一个发射滤光器。分光器和滤光器与悬浮液中所选用的基本染料有关。在一个改进的实施方案中,在一个滤光模块中包含有分光器和滤光器,且该模块可从空腔中移开而替换为另一个与另一种基本染料相应的模块。
作为参比,一荧光参比元件发出相应于激发光束的参比光束。设置参比来接收来自第一部件的一部分激发光束。一部分参比光作为参比光束通过第二部件而到达探测器,以便于产生用于计算DNA浓度的参比信号。参比元件最好包含多个参比发射器,每个发射器所发射的参比光束具有相应于激发光束的不同强度,以便于处理器对含有最大数据信号的参比组进行筛选,所述的最大数据信号小于一个预先设定的最大值而该设定值又小于饱合极限。
探测器与其处理部件结合成一整体,累计在预定的照射时间内发射光来的输入,并产生一套数据信号,处理部件或探测器或二者的结合体对数据信号有一饱合极限。作为本发明的进一步改进,处理部件含有用于自动完成照射时间调节的调整部件,通过这种调节可以使基本数据保持在一预定的工作范围之内,也就是使与之相应的数据信号小于饱合极限,处理部件还含有用于校正基本数据使之与照射时间调节成比例的部件。处理器最好针对来自各个光感受器的数据信号计算出相应的光接收数据,用调整元件来确定出最大的光接收数据,再确定该最大数据是小于、大于还是处在预定的工作范围之内,基于上述的判断来确定是加大、减小还是维持照射时间以便于所实施的照射时间可以使随后的光接收数据落在预定的工作范围之内。
附图的简要说明

图1是一本发明中所述的与聚合酶链反应(PCR)装置有关的光学仪器的光路图。
图2是如图1所示仪器在挪去其侧面板后的透视图。
图3是图2中所示模块的分解透视图。
图4是图1中所示光路中的一个参考元件的透视图。
图5表示的是利用图1所示仪器获得的数据计算DNA浓度的流程图。
图6表示的是一个用于确定在图1所示仪器运作中获取数据的照射时间以及用于图5所示流程中的计算的流程图。
图7是由图1所示仪器以及PCR装置运行中所得的荧光对循环的延伸期数据图。
图8是一表示计算用于图5所示流程图中计算的附属数据的流程图。
图9表示的是一个用于计算图4所示的参考元件中的多个参考发射极部分间比值的流程图。
详细描述采用本发明中所述的光学仪器A或是将该光学仪器与通过聚合酶链反应(“PCR”)来复制(“扩增”)所选择的DNA片段的反应装置B相结合使用。反应装置是常规装置,且该装置在不受用于实时监测复制过程中DNA数量的仪器干扰的情况下应能正常工作。在第5475610号和第5656493号的美国专利中记载有适用的反应装置。
采用的是常规反应装置(图1中),该反应装置有两个主要部件即带有用于放置至少一个小瓶1b的小孔1a的热循环块1,在所述的小瓶中盛放着反应成份的悬浮液;以及通过一定的控温程序来控制循环块的循环温度的热循环控制器1c。水悬浮液样品中的初始成份包括一份DNA的“种子”样品,所选取的DNA引物链,DNA元件,酶以及其他的化学制剂。通过电学部件、液体或气体冷却剂、或它们的组合、或用以完成所述循环的其他部件按照一定的循环程序来对循环块(一般是用铝制成的)进行加热和冷却。因此,小瓶中的悬浮液在两个温度段间循环以影响聚合酶链反应。这两个温度段中,一个是相对低的约为60℃的PCR反应的延伸阶段,在这一温度段DNA链已结合成了双链;另一是约为95℃的高温变性阶段,在此温度段内DNA发生变性或分解成单链。
为了达到本目的,样品中还含有荧光染料,该荧光染料可相应地发出荧光且在双链DNA出现时由于荧光染料键联使得荧光发射加强,例如SYBR Green染料(购自Molecular Probes,Inc.,Eugene,Oregon)在双链DNA出现时就发出荧光。也可采用标记“探针”的另一种荧光染料,该染料具有与所选取的DNA链部分的互补序列相类似的结构。也可采用具有相似特性的其他染料。如这里以及权利要求中所说,词语“标记染料”指的是与双链DNA相连接的类型剂、或探针类型、或与DNA相连接的其他类型的染料,以使所发荧光与DNA的数量成比例。样品中还可含有其他的不活泼染料(不依赖于DNA)来作为下述的一种参照物。在一具有适当激发频率的光的照射下,染料通常以一低于激发光频率的发射频率来发出荧光。
在一整体塑料盘上成形出许多圆锥状的小瓶,如以12乘8的阵列排列形成96个小瓶。该盘最好能从循环块上移开以便于做准备工作。可用一带有小瓶帽1d的整体塑料盖放在或连在小瓶上以防止污染和蒸发损失。也可采用其他方法来达到这一目的,例如可在样品表面上涂油,这种情况下就不需要使用瓶帽了。如使用瓶帽,该瓶帽对所用仪器中采用的光来说是透明的,而且瓶帽的凸面朝上。
监测仪器安装在装有小瓶的循环块上方。仪器可以移开或转开以接近小瓶。在仪器底部有一压盘2,该压盘2放在瓶帽上,如果没有瓶帽就直接放在小瓶上。压盘最好用铝制成,在压盘上有一个阵列的孔2a,穿过这些孔与小瓶相连,每个孔的直径大约与小瓶顶部直径相等。如果有瓶帽,应采用薄膜加热器或其他的方法来充分加热压盘使保持其温度,这是为了防止在瓶帽下面发生凝结而干扰小瓶内的DNA复制,例如可将使压盘保持在一个温度,该温度略高于热循环器所达到的最高的样品温度。
在每个小瓶的上方放置有一透镜2b,使该透镜的焦点近似聚焦在小瓶中的悬浮液中。在上述透镜的上方有一物镜3以形成一远心光路系统。物镜最好是一个经非球面校正的菲涅耳透镜以使变形最小。为了校正照明与成像间的不一致性,可在物镜上或接近物镜处安装一中灰光栅(neutral density pattern)(图中未标出),例如使光在像场的中心变细。为了便于包装可将一折向光学平面镜以45°的倾斜角度安装。这一点可以被忽略,也可以使用其他类似的折向光学器件。物镜和/或小瓶透镜均可以由两个或更多个透镜组成以达到所要求的聚焦作用,这里所说的“透镜”包含上述的透镜组合。
用于提供光束20的光源11可以例如是一个100瓦的卤素灯。最好将光源安装在一椭圆形反射器11a的焦距处,这样可以使所需区域内光束均匀。该反射器最好应具有二向色性,也就是说大体上可使可见光反射而使红外光透过,以限制来自其他光学部件和仪器过热所产生的红外光。还可通过设在光路中的一热反射平面镜13来进一步辅助完成上述功能。一个机械或电学光闸12可以遮住光束以获得暗数据。对光源的类型并没有限制,也可以采用例如投影灯或激光等带有适当光学器件的其他类型的光源。
设置一分光器6来接收光束20。在该实施方案中使用的是二向色性的反射器,以使该以45°的倾斜角度安装的反射器所反射的光具有一定的激发频率以使标记染料以某一发射频率发出荧光,而透过该反射器的光正具有这一发射频率。这一常规的光学装置一般是利用光干涉层来达到一定的频率特性。
放置分光器以使其将来自光源的光束反射到折叠式平面镜上。从分光器反射的光源光束就成为了大体具有激发频率的激发光束22。激发光束经物镜3聚焦后作为独立光束24通过小瓶(孔)透镜2b进入小瓶的中心部。因此引发标引染料以某一发射频率发射光。所发射的光作为发射光束以独立光束26的形式向上传输,经折叠式平面镜5反射到分光器6,发射光束透过分光器后到达探测器10。
小瓶透镜2b和物镜3构成了一基本聚焦部件用于使激发光束和发射光束聚焦。另一方面,也可以忽略物镜以使聚焦部件仅仅由小瓶透镜2b组成。另外,也可忽略小瓶透镜以使仅仅由物镜组中的一个接物镜组成的聚焦部件将个体发射光束聚焦到探测器上。
另外,还可通过适当地重新布置光源灯和探测器,以使透过分光器6的光源光束作为激发光束,而分光器反射的是发射光束。而且,也可采用更适合于分光器的其他角度而不一定是45°,例如采用一可使反射和透射更垂直的角度。更广义地说,分光器是将光路分成了激发光光路和发射光光路,因此其他能达到此目的光路都可以被采用。人们还希望到达探测器的光源光束最少,而二向色性装置就有助于达到此目的。也可以使用非二向色性的分光器,但其工作效率将比较低,这是由于较多的光源光束可能到达探测器,或可能以错误的方向被反射或传输而丢失。
为了更好地过滤光源光束,在光源11和分光器6之间放置一激发滤光器7。这一滤光器可使具有激发频率的光束通过,且大体上能挡住具有发射频率的光束。类似地,在分光器和探测器之间放置了一发射滤光器8,具体地说是放置在分光器和一个置于探测器之前的监测透镜9之间。这一滤光器可使具有发射频率的光束通过,且大体上能挡住具有激发频率的光束。虽然应优先采用探测透镜,但也可用一聚焦反射器来代替该监测透镜。可将这样的一个发射聚焦部件(探测透镜或反射器)放置在分光器之后(如图所示)或之前且可在发射滤光器的任一侧,另外也可将其结合到基本聚焦部件中去。例如,物镜可以是接物镜而将发射光束聚焦到探测器上。
合适的滤光器是常规的采用光学干涉膜的光学带通滤光器,分别具有一个最适合于荧光染料激发频率或其发射频率的通频带。每个滤光器对其他频率(非通带)应具有非常高的衰减率,以防止由反射和散射光形成的“伪”像。例如,对于SYBR Green染料,激发滤光器的通频带应以与约485nm波长相对应的频率为中心,发射滤光器的通频带应以与约555nm波长相对应的频率为中心。分光器应在上述两个频率之间以产生由反射到传输的转变,例如,约为510nm,以使小于这个波长的光被反射而大于这个波长的光通过。
更广义地说,激发滤光器和分光器一起构成了用于接收光源光束以形成一具有激发频率的激发光束的第一部件,发射滤光器和分光器一起构成了用于接收来自聚焦部件的发射光束以使具有发射频率的发射光束通过而到达探测器的第二部件。如上所述,分光器也可以使透过的光源光束作为激发光束,而将发射光束反射到探测器。另一方面,也可以略掉滤光器,由分光器来代表第一部件来从光源光束中形成激发光束,且由分光器来代表第二部件以使发射光束通过而到达探测器。
在另一布置中,也可以略掉分光器,第一部件由适于激发频率的激发滤光器构成,第二部件由适于发射频率的第二滤光器构成,光源和探测器并排放置以使激发光束光路与发射光束光路角度稍有不同。实际上,如果使用一个或多个折叠式平面镜,光源和探测器就不必并排放置了。因此,只要能获得这里所述效果的光路布置都被认为是等同的。但是,最好使用分光器以使通过物镜的激发光束和发射光束具有相同的光学路径。
分光器6,激发滤光器7和发射滤光器8最好固定在模块30(图2所示)中,该模块与给悬浮液所选的基本染料有关。模块可从仪器A的空腔32中移开,这个模块便可以用含有不同的分光器和滤光器与另一种所选的基本染料相关的另一个模块来代替。该仪器包含一个灯泡子腔33和一个照相子腔35。
在一个例子(如图3所示)中,各个模块包含一个带有法兰36的装配块34,因而可用一个螺钉38将法兰固定到空腔上的。使用一个框架40和螺钉42将分光器6以45℃的倾斜角度安装在装配块上。发射滤光器8固定在装配块上(如,可用粘结剂)类似地将激发滤光器7装配到一个装配元件44上,再用螺钉46将所述装配元件安装到装配块上。组件装好后,用一螺接的侧板47将仪器封闭起来。定位钉(未示出)确保可以重复装配。替代组件含有相同的装配块和有关元件,以及更换了的分光器和滤光器。
探测透镜9(如图1中所示)与小瓶透镜2b和物镜3一起使个体光束聚焦到了探测器10上。这些透镜应具有大孔径、低变形和最小晕映。
探测器最好是一阵列型探测器,例如电荷射入装置(CID)或最好为电荷耦合装置(CCD)。含有CCD探测器、探测透镜和与探测器有关的电子器件的常规视频摄像机应该都适用,例如Electrim model1000L,这种型号具有751个有效水平像素和242(非交错的)个有效垂直像素。这种摄像机包含有一直接与计算机ISA总线接口的电路板。并不要求摄像机含有帧接收器电路系统。实际上,可以采用任何其他的数字成像装置或子系统,只要该装置或子系统能够摄取用于在计算机中进行后期处理的静止或定格图像即可。
如果有许多个小瓶,那么最好选用带有许多光感受器(像素)的探测器以做到对各个小瓶分别监测。另外,也可使用带有单个光感受器的扫描装置,例如通过扫描折向平面镜以及对探测器采用小孔径扫描。如果只有一个小瓶,也可使用诸如光电倍增管一类的简单装置。CCD接收所选取合成阶段的光,且在模/数转换之后读出在这一阶段的累积水平上的数字信号数据。利用一电子光栅便可对合成进行有效控制,还希望有一画面传送电路。对于各个像素点都生成有相应的信号数据,其中包含那些接收来自小瓶的个体被发射光束的像素。
仪器最好包含一荧光参比元件4,该元件发射响应于激发光束的参比光束。参比元件最好由多个参比发射器组成,例如由6个组成,每个发射出一个响应于激发光束的具有不同强度的参比光束。上述强度的范围应近似于小瓶中标引染料所预计具有的强度范围;例如可以约2.5的系数按亮度大小分成几部分。
设置这一参比元件来接收来自分光器的一部分激发光束。一个理想的放置位置是在临近物镜处,以使与该元件有关的光路接近于与小瓶有关的光路。大部分参比光透过分光器作为到探测器的参比光束。探测器像素接收发射光束以产生与数据信号一起用于DNA的浓度计算的参比信号。
参比元件4(如图4中所示)最好包含一成形荧光带4a和一装配在荧光带上的中密度滤光器4b,在这两者之间可选择地性留有一空间4h,以使一部分激发光束和参比光束通过中密度滤光器后变细。中密度滤光器具有一密度系列4c以适应于发射不同强度参比光束的多个参比发射器(段)。一个加热带4d和一个用以使加热平缓的铝带4g装配在一槽4e内的底部,荧光带装配在位于加热带之上的铝带上。为了防止热量损失,最好用一透明的有机玻璃窗(在图中未标以便于显示密度变化的滤光器)将该装置遮盖住。为了有助于保持定量的荧光,通过控制加热带而抵消掉循环块的热循环及其他因素对荧光带的影响而使荧光带维持在一恒定温度。上述设置是由于大多数荧光物质的荧光性与温度呈反比变化。
计算机处理器14(图1)可以是普通的PC机。计算程序也是例如用“C”编成的常规程序。对本领域技术人员来说能够较容易地获得适合于本发明的程序。处理器选择性地处理像素所接收的来自小瓶和参比发射器的光信号,而忽略掉背景光。因此,所述程序最好包含用于确定像素有意义区域的掩模,例如可采用在等审中的于98年7月14日申请的申请序列号为60092785的属于本受让人的临时性专利申请中公开的内容。可能光学元件的机械排列对于协力将光束聚焦到所编程序定义的有意义区域内来说也是必要的。模拟数据信号经过模/数(A/D)转换器15后输入到处理器,所以模/数转换器被认为是处理器的一部分。通过探测器或A/D来禁止达到饱合水平,或者最好使CCD动态范围与A/D的动态范围相匹配。一个合适的范围是8比特的精度(256级),设定CCD放大器的偏移量以使CCD(光闸12被闭合)的暗信号输出落在A/D范围之内。处理器按选定的照射时间给探测器发指令以保持输出落在动态范围之内。
在一个典型例子中,对热循环中DNA反应复制序列的每个循环,一般为40至50个循环从多个小瓶(如96个有意义区)和参比发射器部分采集荧光数据,对约为60℃的PCR反应延伸阶段的每个热循环周期采集两组数据,在所述延伸阶段所有的DNA链结合成双链。一组数据是正常的基础数据50(与下述的参比数据一起),另一组是机械光闸闭合时的暗信号数据51这两组数字数据50、51分别是由来自探测器的两组模拟数据信号48、49经A/D15转换而得到。55中从基础数据中减去暗数据而得到暗校正数据57。在一简单步骤中实行的是像素与像素相减。另外,也可以从相应的荧光总数中减去各个有意义区域的总的暗数据。在另一例子中,为了增加有效的动态范围,在每次照射期间最好采集例如4或8等多个照射量。这可以通过对每个像素采集多个正常照射数据和暗信号数据,分别从正常数据中减去相应的暗数据,然后将相减所得的数据相加以得到基础数据来实现。这样可以提高图像数据的统计学有效性且可增加有效动态范围。
同时采集来自例如有6个部分的参比带和96个小瓶共有102个有意义区域的数据。这种处理方法可以自动调节照射时间以使数据信号保持在一个预定工作范围内,该范围小于DNA复制期间的饱合极限例如为饱合度的35%-70%。对DNA浓度的计算包含与所调节的照射时间(图6)成比例的校正量。通过将合计在每个有意义区域(ROI)内的像素数而得到在一预定照射时间54内的来自每次照射52、53的信号数据50、51。
为了能调整时间,从对应的数据信号50中搜寻出58最大的信号数据56,该数据是从一个或多个例如三个读取记录最高的相邻像素中选出。通过一次比较62以确定所述的最大信号数据是小于、大于还是落在所选择的工作范围之内。根据上述比较结果,对照射时间进行增加、减少或维持原值的调整64,以获得随后的照射时间66。也要对参比时间68进行选择,例如可以是一个起始时间或是一个固定的标准时间如为1024ms。经校正后的暗数据57经除以实际照射时间与参比时间的比值的时间校正后69得到校正后的基础数据71。开始的几个周期可能超出范围,之后应获得一有用的荧光曲线(图7)。
对于参比发射器,从接收来自参比带4(图1与图4)的光束的像素中生成参比数据信号73,再经A/D15转换后得到参比数据72。来自一具体参比部分4c图4的参比数据74经过如下筛选76,具有最大信号强度的数据小于一个预定的最大值77,而该最大值又小于饱合极限,例如为该极限的70%。也对下一个调光器部分进行了筛选75,经筛选后的参比数据74包含来自这一部分的数据。从参比数据74中减去78暗数据51,经暗校正后的数据80经照射时间54调整84而得到调整后的参比数据82。
数据82包含对最高部分进行暗校正后的数据82’和对下一个调光器部分进行暗校正后的数据82”(图9)。各个部分间的亮度比在数据采集的过程中被计算89和建立起来。采集各个时间数据,计算最高部分和下一个调光器部分间的比值。由于在继续的数据采集过程中会选出不同的最优部分,这样便可汇编出一个比值表85。另外,也可预先采集计算出这些比值。调整后的参比数82’(来自图5的数据82)与初始参比数据90或从比值表85中得到的,其它选定的此前的DNA复制(PCR)序列的参比数据的比值进行实时归一化86,以计算归一化参比数据88。利用归一化后的参比数据和校正的基础数据71再经归一化运算后得到偏移归一化基础数据94,所进行的归一化运算就是用基础数据除以归一化后的参比数据。这就对仪器在监测过程中的偏移进行了校正。利用一已存储的校准因子99便可计算98出DNA浓度96,通过用已知的标准DNA浓度以确定出一条与趋势曲线(图7)的起始周期的起始浓度有关的直线的斜率和截距便可确定出校准因子99了,具体可参见上述的由Higuchi撰写的文章以及第5766889号美国专利。(将在下文中对进一步的归一化处理118、120和基线校正122-130进行讨论。)一个典型PCR序列的延伸阶段的数据如图7所示,图7中绘出了各个PCR循环中的数据。如需要,还可利用包含带有相同染料和用化学方法防止发生放大的DNA的样品小瓶来实现归一化处理,以对染料漂白或其他的样品化学制剂所造成的影响进行校正。
另外,样品还可包含一种或多种类型的用作“不活泼”参比物的染料分子,所述的“不活泼”参比染料具有与DNA结合染料相同波长范围的荧光。例如,这种参比染料可用标有Rhodamine和Fluorescein染料衍生物的核酸系列物制成。一种合适的参比剂是购自Perkin-Elmer Applied Biosystems的Rox染料。这些不活泼染料分子不参加PCR反应,因此它们的荧光实际上不受DNA的影响而是在反应过程中维持一个恒定值。通过在至少一个小瓶、最好是在每个小瓶的成份中放置一标准浓度的不活泼染料,就可以利用不活泼染料的荧光来对DNA结合染料的荧光进行归一化处理。
光源光束中包含一附属的激发频率,以使不活泼染料在这一附属频率发射荧光,因此对着探测器就发射有一附属光束并产生有相对应的附属数据信号。处理器接收附属数据信号以计算出代表标准浓度的附属数据。利用这些数据来对基础数据进行归一化,以使经与照射时间成比例的校正运算以及对漂移进行了归一后的DNA浓度相对于不活泼染料的标准浓度也具有归一性。在这一例子中,最好使附属激发频率与基础激发频率相等,不活泼染料发出荧光以便所发射的附属光束大体上也具有发射频率。在热循环块循环的各个扩展阶段产生基础数据信号,这些阶段正是DNA再结合且相应的基础染料发射量最大的时候。而在DNA变性且相应地基础染料发射量最小的热循环块的每个变性阶段产生附属数据信号。因此,基础阶段的数据信号实际上代表了DNA的浓度,而附属阶段的数据信号实际上代表了不活泼染料的标准浓度。
对小瓶样品和参比带采集暗数据和正常数据,从正常荧光数据中减去暗数据。在大约60℃的PCR反应的扩展阶段采集到了暗和正常数据组,在这一阶段中所有的DNA链已结合成了双链。在这一阶段,来自DNA结合染料的荧光最强,这一荧光与来自不活泼参比分子的弱得多的荧光相叠加。在高温(约95℃)变性阶段采集到了分离的暗和正常数据组,在这一阶段DNA发生了变性或解链为单链。在这一阶段,DNA结合染料所发出的荧光最弱,几乎为零,这是因为DNA不是双链的,而所用染料发出的荧光量随着温度的升高有一个很大的衰减。因此,变性阶段图像实际上包含发自不活泼参比分子的参比荧光。在用测定的与温度的关系校正之后的暗校正参比(变性)数据组可以从暗校正DNA结合染料数据组中减去,或者可以被认为对正常数据组来说没有意义。另外,可能希望对标有不活泼参比染料的分子独立成像,对于各个PCR周期,可另外使用一个可以滤掉由DNA结合染料所发射的光束而可以通过由不活泼参比染料所发射的光束的光学带通滤光器。这些数据在功能上等同于变性数据。
对于变性阶段的处理如图8所示,以与获取基础数据同样的方式,即通过正常照射52’和闭合光栅53’来分别获得正常和暗数据信号102、104。照射时间106可以与序列中相临近的一个延伸阶段的照射时间相同,或者根据前一个变性阶段(见与图7相关的描述)来确定,或者可以是为序列中的所有变性阶段所预定的一个合适的时间。A/D15将信号转换成附属数据108和暗数据110。从附属数据中减去55’暗数据而得暗校正数据112,再进一步用参比时间114和实际照射时间106对其进行校正69’而获得校正后的附属数据116。
在延伸阶段,通过除以一个为变性阶段校正附属数据116而选择的循环数(如10)的平均值而对经漂移归一化后的基础数据94再进行归一化118,以生成进一步归一化后的荧光数据或进一步归一化数据120,这一归一化处理将消除样品孔的不一致性所带来的影响。可以用循环比循环来代替平均值。另外,可以在漂移归一化之前或之后将附属数据应用到校正后的基础数据71上。对基线样品进行选择122和平均124后生成基线数据126。用基线数据除以128进一步归一化数据120而得到经基线校正的数据130。选择基线样品以使其在PCR趋势超过图7中所示曲线的近似水平基线部分之前。例如,所选的基线周期可以是6个周期至15个周期。在进一步归一化118之后,使用进一步归一化数据118来计算98出DNA浓度96。
从归一化的延伸期数据中减去这些相同基线样品的趋势(例如,最小二乘回归线)而得到具有零值平直基线的数据。然后利用已建立的或其他所期望的PCR方法对这一数据组进行处理而计算出DNA起始复制的数量。一个简单的方法是推断出发生从平直到上升转变时的拐点。另一种较复杂的方法在前述的第5766889号美国专利中有记载。
这些数据还可有不同的用途,例如用于反应的最化监测或确定复制DNA的浓度,或用于起始量的确定。仪器也可以被用来(经过或没有经过归一化和其他校正)简单地显示在一连续时间内复制是正在进行还是已经发生了。
尽管在上面已结合具体的实施例对本发明进行了详细描述,但在本发明的实质内容和所附权利要求的范围内技术方案还可进行各种不同的改变和变形,这对本领域的技术人员来说是显而易见的。因此,本发明只限定为所附的权利要求书或等同于它们的内容。
权利要求
1.一种用于监测在一个反应装置中进行的复制DNA的聚合酶链反应的光学仪器,所述反应装置包含一个至少设置有一个装有反应成份悬浮液的小瓶的热循环块,反应成份中包含一种荧光基本染料,该染料所发荧光与DNA的存在成比例,所述仪器包含一个光源,光源所发射的光源光束包含至少一个使基本染料以某一发射频率发出荧光的基本激发频率;第一部件,用来接收具有激发频率的可成为激发光束的光源光束;基本聚焦部件,用来使激发光束聚焦到各个悬浮液中,以使基本染料发出具有发射频率的发射光束,该光束的强度代表着各个悬浮液中的DNA的浓度,这一聚焦部件可接收和透过发射光束;第二部件,用来接收来自聚焦部件的发射光束以便于进一步使具有发射频率的发射光束通过;发射聚焦部件,用来聚焦发射光束;探测器,用来接收来自第二部件和发射聚焦部件的发射光束以使发射光束聚焦到探测器上,探测器便产生了代表着发射光束进而也代表着相应的各个小瓶中的DNA浓度的基本数据信号;处理部件利用接收到的基本数据信号计算出基本信号数据和相应的DNA浓度。
2.如权利要求1所述的仪器,其特征在于第一和第二部件共有一分光器,所述分光器接收成为激发光束的光源光束,也接收发射光束且使具有发射频率的发射光束通过而到达探测器。
3.如权利要求2所述的仪器,其特征在于所设置的分光器反射具有激发频率的光而透过具有发射频率的光。
4.如权利要求1所述的仪器,其特征在于循环块上设置有多个小瓶,聚焦部件包含有相应的置于各个小瓶上方的多个小瓶透镜以使发射光束中包含与各个小瓶相关的独立光束,探测器包含一光感受器阵列,所述的光感受器接收独立光束而生成相应的数据信号,以便处理部件可计算出各个小瓶中的DNA浓度。
5.如权利要求4所述的仪器,其特征在于小瓶带有透明的瓶帽,仪器还包含一压盘,所述压盘上有与小瓶透镜排成一列的小孔以便使独立光束和所通过的激发光束中的有关部分通过,在压盘上设置小孔是为了配合放置瓶帽,还包含有用于充分加热压盘的加热部件,以防止在瓶帽下发生凝结而干扰小瓶中DNA的复制。
6.如权利要求4所述的仪器,其特征在于聚焦部件还包含一物镜,所述物镜与小瓶透镜一起使激发光束聚焦到各个悬浮液中,还使独立光束通过而到达第二部件。
7.如权利要求6所述的仪器,其特征在于所述物镜是一个经非球面校正的菲涅耳透镜。
8.如权利要求6所述的仪器,其特征在于发射聚焦部件包含一置于第二部件和探测器之间的探测器透镜,探测器透镜与小瓶透镜和物镜一起使独立光束聚焦到探测器上。
9.如权利要求8所述的仪器,还包含一发射与激发光束相应的参比光的荧光参比发射器,发射聚焦部件将至少一部分的参比光作为参比光束聚焦到探测器上,探测器进一步接收参比光束以产生一参比信号,而处理部件中包含有用于接收参比信号以计算出参比数据的元件,以及对DNA复制反应中的某一选定的点用参比数据来对其对应的基本数据进行归一化的部件,以此来校正仪器在监测过程中所发生的漂移。
10.如权利要求9所述的仪器,其特征在于参比元件包含多个参比发射器,各个发射器发射与激发光束相应的具有不同强度的参比光束,发射聚焦部件将各参比发射器所发射的各个参比光束聚焦到探测器,探测器则接收各个参比光束而对于各个参比发射器生成一组参比信号,处理部件中包含接收参比信号而计算出相应各组的参比数据的部件,以及从各组中选出小于预定最大值的最大信号数据的参比数据的选择部件,使用所选定的参比数据来对基本数据进行归一化。
11.如权利要求1所述的仪器,其特征在于第一部件还包含激发滤光器,第二部件还包含发射滤光器,第一和第二部件共有一分光器,激发滤光器置于光源与分光器之间,发射滤光器置于分光器与探测器之间,激发滤光器透过具有激发频率的光而大体上挡住具有发射频率的光,发射滤光器则透过具有发射频率的光而大体上挡住具有激发频率的光,激发滤光器和分光器共同接收光源光束而产生出激发光束,发射滤光器与分光器共同接收发射光束以使具有发射频率的发射光束透过而到达探测器。
12.如权利要求11所述的仪器,还包含一容纳有光源、探测器、聚焦部件和滤波模块的空腔,其特征在于分光器、激发滤光器和发射滤光器固定在模块上,且与悬浮液所选用的基本染料有关,模块可从空腔中移开而用另一个与另一种选用的基本染料相关的模块来代替这一模块。
13.如权利要求1所述的仪器,其特征在于光源包含一个卤素灯和一椭圆形反光器,该反光器临近于卤素灯而与第一部件相对,灯泡置于椭圆形反光器的焦距处以使光源光束从椭圆形反光器处反射,椭圆形反光器大体上反射可见光而透过红外光。
14.如权利要求1所述的仪器,还包含一发射与激发光束相应的参比光的荧光参比发射器,发射聚焦部件将至少一部分的参比光作为参比光束聚焦到探测器上,探测器接收参比光束以产生一参比信号,而处理部件中包含有用于接收参比信号以计算出参比数据的部件,以及对DNA复制反应中的某一选定的点用参比数据来对其对应的基本数据进行归一化的部件,以此来校正仪器在监测过程中所发生的漂移。
15.如权利要求14所述的仪器,其特征在于参比元件包含多个参比发射器,各个发射器发射与激发光束相应的具有不同强度的参比光束,发射聚焦部件将各参比发射器所发射的各个参比光束聚焦到探测器,探测器则接收各个参比光束而对于各个参比发射器生成一组参比信号,处理部件中包含接收参比信号而计算出相应各组的参比数据的部件,以及从各组中选出小于预定最大值的最大信号数据的参比数据的选择部件,使用所选定的参比数据来对基本数据进行归一化。
16.如权利要求15所述的仪器,其特征在于参比元件包含一成形荧光带和一装配于荧光带上的中密度滤光器,以使参比光束和一部分的激发光束通过中密度滤光器后变细,中密度滤光器具有一系列的密度以适应各自发射参比光束的多个参比发射器。
17.如权利要求16所述的仪器,还包含有将参比元件大体维持在一恒温的保温部件。
18.如权利要求17所述的仪器,其特征在于保温部件包含一安装在荧光带下面的加热带,和用于控制加热带加热的部件。
19.如权利要求1所述的仪器,还包含多个荧光参比发射器,各个发射器发射与激发光束相应的具有不同强度的参比光束,发射聚焦部件将各参比发射器所发射的各个参比光束聚焦到探测器,探测器则接收各个参比光束而对于各个参比发射器生成一组参比信号,处理部件中包含接收参比信号而计算出相应各组的参比数据的部件,以及从各组中选出小于预定最大值的最大信号数据的参比数据的选择部件,以及对DNA复制反应中的某一选定的点用参比数据来对其对应的基本数据进行归一化的部件,以此来校正仪器在监测过程中所发生的漂移。
20.如权利要求1所述的仪器,其特征在于各组数据信号按照复制顺序依次生成,处理部件或探测器或两者的结合体对各组中的数据信号有一个饱合极限值,探测器与处理部件结合成一体工作使探测器累积对应于在一预选照射时间内的发射光束输入而生成各组数据信号,处理部件包含调整部件,该调整部件用于实现照射时间的自动调整以使基本数据保持在一预定工作范围内即使相对应的数据信号小于饱合极限,以及用于校正基本数据使之与所调整的照射时间成比例。
21.如权利要求20所述的仪器,其特征在于探测器包含一接收发射光束以生成在一相关照射时间内的相应数据信号的光感受器阵列,针对各个光感受器有一预定的工作范围,处理部件还包含根据各光感受器所生成的数据信号而计算出光感受器数据的部件,调整部件还包含用于确定出最大光接收数据的部件,用于确定该最大数据是小于、大于还是处在预定的工作范围之内的部件,以及根据上述的判断来确定是加大、减小还是维持照射时间以便于所实施的照射时间可以使随后的光接收数据落在预定的工作范围之内的部件。
22.如权利要求1所述的仪器,还包含多个荧光参比发射器,各个发射器发射与激发光束相应的具有不同强度的参比光束,发射聚焦部件将各参比发射器所发射的各个参比光束聚焦到探测器,探测器则接收各个参比光束而对于各个参比发射器生成一组参比信号,处理部件中包含接收参比信号而计算出相应各组的参比数据的部件,以及从各组中选出小于预定最大值的最大信号数据的参比数据的选择部件,以及对DNA复制反应中的某一选定的点用参比数据来对其对应的基本数据进行归一化的部件,以此来校正仪器在监测过程中所发生的漂移。
23.如权利要求20所述的仪器,其特征在于小瓶内的成份还包含一标准浓度的荧光不活泼染料,该染料所发荧光大体上不受DNA的影响,光源光束包含一使不活泼染料以附属发射频率发射荧光的附属激发频率,所发射的附属发射光束通过第二部件而聚焦到探测器上以产生相应的附属数据信号,处理部件还包含用于接收附属数据信号以计算出附属数据的部件,用于染料归一化基本数据的部件,由此使所计算出的DNA浓度相对于不活泼染料的标准浓度进行了归一化。
24.如权利要求23所述的仪器,其特征在于附属激发频率等同于基本激发频率,不活泼染料所发出的附属光束大体上具有发射频率,在当DNA再结合时的热循环块的循环延伸阶段期间产生了基本数据信号,相应地该阶段内的基本染料发射最强,而在当DNA发生变性时的热循环块的循环变性阶段期间产生了附属数据信号,相应地该阶段内的基本染料发射最弱,因此扩展阶段的数据信号大体上代表了DNA浓度,而变性阶段的数据信号大体上代表了不活泼染料的标准浓度。
25.如权利要求1所述的仪器,其特征在于小瓶内的成份还包含一标准浓度的荧光不活泼染料,该染料所发荧光大体上不受DNA的影响,光源光束包含一使不活泼染料以附属发射频率发射荧光的附属激发频率,所发射的附属发射光束通过第二部件而聚焦到探测器上以产生相应的附属数据信号,处理部件还包含用于接收附属数据信号以计算出附属数据的部件,用于染料归一化基本数据的部件,由此使所计算出的DNA浓度相对于不活泼染料的标准浓度进行了归一化。
26.如权利要求25所述的仪器,其特征在于附属激发频率等于基本激发频率,不活泼染料所发出的附属光束大体上具有发射频率,在当DNA再结合时的热循环块的循环扩展阶段期间产生了基本数据信号,相应地该阶段内的基本染料发射最强,而在当DNA发生变性时的热循环块的循环变性阶段期间产生了附属数据信号,相应地该阶段内的基本染料发射最弱,因此扩展阶段的数据信号大体上代表了DNA浓度,而变性阶段的数据信号大体上代表了不活泼染料的标准浓度。
27.一个用于复制DNA且对复制进行监测的系统,包含一用于DNA复制的聚合酶链反应装置,一用于监测复制期间DNA存在的光学仪器,所述反应装置包含一个至少有一个装有反应成份悬浮液小瓶的热循环块,反应成份中包含一种所发荧光与DNA存在成比例的荧光染料,还包含用于对循环块进而对悬浮液实现热循环以便于发生聚合酶链反应的部件;所述仪器包含一个光源,光源所发射的光源光束包含至少一个使染料以某一发射频率发出荧光的激发频率;设置的第一部件来接收具有激发频率的可成为激发光束的光源光束且透过激发光束而到达聚焦部件,设置聚焦部件来使激发光束聚焦到各个悬浮液中以使染料发出具有发射频率的发射光束,且使发射光束透过而到达第二部件,设置第二部件以进一步使发射光束通过而到达探测器,设置探测器来接收来自第二部件的发射光束以产生代表发射光束进而代表DNA浓度的数据信号;处理部件利用接收到的数据信号计算并显示出DNA浓度。
28.如权利要求27所述的系统,其特征在于第一和第二部件共有一分光器,所述分光器接收成为激发光束的光源光束,也接收发射光束且使具有发射频率的发射光束通过而到达探测器。
29.一种用于监测在一反应装置进行的复制DNA的聚合酶链反应的光学仪器中的滤光模块,所述反应装置包含一个至少有一个装有反应成份悬浮液小瓶的热循环块,反应成份中包含一种所发荧光与DNA存在成比例的荧光染料,所述光学仪器包含一个空腔,一个设置在空腔中的光源,该光源所发射的光源光束包含至少一个使染料以某一发射频率发出荧光的激发频率,一个设置在空腔中的聚焦部件,该聚焦部件使激发光束聚焦到各个悬浮液中以使染料发出具有发射频率的发射光束,一个设置在空腔中的探测器,该探测器接收发射光束以产生代表发射光束进而代表DNA浓度的数据信号,和一利用接收到的数据信号计算并显示出DNA浓度的处理部件;其中模块包含一个支持框架,所述仪器可容纳该框架并使之与仪器成为一体;一个固定在支持框架中的分光器,以便于在模块插入后分光器接收光源光束以产生激发光束,接收并使发射光束透过而到达探测器;一个可以透过具有激发频率的光而大体上挡住具有发射频率光的激发滤光器,该激发滤光器固定在支持框架中,以便于在插入模块后该激发滤光器置于光源与分光器之间;一个可以透过具有发射频率的光而大体上挡住具有激发频率光的发射滤光器,该发射滤光器固定在支持框架中,以便于在插入模块后该发射滤光器置于分光器与探测器之间;分光器、激发滤光器和发射滤光器、及由此而成的模块,与悬浮液所选用的染剂有关,且模块可从空腔中移开以用另一个与另一种选用的染料相关的模块来代替这一模块。
30.如权利要求29所述的模块,其特征在于分光器反射具有激发频率的光而透过具有发射频率的光。
全文摘要
一种光学仪器用于监测在一个反应装置中进行的DNA的PCR复制,所述反应装置包含一个设置有装有反应成分的小瓶的热循环块,所述反应成分中包含一种在双链DNA存在时会发出荧光的染料。激发光束通过分光器而到达小瓶使染料发出荧光。来自染料的发射光束通过分光器而到达CCD探测器,一个处理器据此计算出DNA浓度。含有多个参比发射器的参比带发射出具有不同强度的参比光束,处理器从中选出一个最合适的发射器用来补偿漂移。自动调节照射时间使之保持在CCD和处理器的最佳动态范围之内。分光器和与之有关的滤光器组成的模块与所选用的染料有关,而且可根据不同的染料进行替换。
文档编号B01L7/00GK1309766SQ99806199
公开日2001年8月22日 申请日期1999年5月17日 优先权日1998年5月16日
发明者M·R·干比尼, J·G·阿特伍德, E·F·杨, E·J·拉卡托斯, A·L·塞罗内 申请人:Pe公司(Ny)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1