适合于使燃烧气体脱硫的so的制作方法

文档序号:5015100阅读:199来源:国知局
专利名称:适合于使燃烧气体脱硫的so的制作方法
背景技术
本发明涉及一种SO2吸收剂,更具体地说,涉及一种适合于使燃烧气体脱硫的SO2吸收剂的生产方法。
硫在煤中以两种方式存在有机和无机。无机化合物黄铁矿即FeS2以离散颗粒的形式存在于燃料中,一般占硫总量的20-50%。与粉状燃料蒸汽发生器相关的研磨和分级操作(利用粉碎机)从煤中除去了大部分以黄铁矿存在的硫。其余的无机硫以固体形式保留在离开粉状燃料蒸汽发生器的底灰和飞灰中。
含于煤的分子结构中的有机硫在燃烧过程中被氧化,并以硫氧化物气体的形式从粉状燃料蒸汽发生器中排出。主要的氧化反应导致形成了二氧化硫SO2。除SO2以外,在燃烧过程中还形成了少量的三氧化硫SO3。在燃烧气体中,SO2/SO3的比通常为20∶1至80∶1。与SO2相比,SO3是高度反应性和吸湿性的。因此,SO3能容易地与水结合形成硫酸气溶胶。由于有细颗粒存在,它们作为凝结核促进了这一反应。生成的气溶胶是从与粉状燃料蒸汽发生器相连的烟囱排出的看得见的羽烟的主要构成成分。
在历史上,二氧化硫气体的排放是通过分散或减少来控制的。通过高烟囱来分散SO2和其它污染物是最古老的控制方式。在有利的地形(meterorological)条件下,高烟囱能有效地将地表水平面SO2浓度限制到当地的环境空气标准。作为一项控制方法,热转化(thermalinversions)或比较短期的地形条件可能削弱分散的效果。关于通过分散进行的控制,进一步更重要的是积累了科学证据表明硫和氮的氧化物是酸雨的主要前体。
现已知道,减少硫的排放可以通过如下一种方法或其组合来实现使用低硫燃料,使用燃料脱硫方法,使用烟气脱硫系统。然而,对于许多燃烧矿物燃料的大型蒸汽发生设备来说,使用低硫燃料是不可能的。燃烧脱硫方法包括常规的煤洗涤方法以及煤的液化和气化技术。然而,煤的洗涤不能从煤体中除去有机硫,因此,煤的洗涤所除去的硫少于50%。烟气脱硫在1935年始于英格兰。从那时起,已开发了超过50种脱硫方法,它们使用的化学试剂和所得到的最终产物都不同。
石灰和石灰石洗涤是最古老和最常用的烟气脱硫方法。第一个成功应用石灰/石灰石闭路方法的是一个叫J.Howden and Company的英国公司。所进行的第一个小规模试验的洗涤塔排出物流被循环到吸收塔。然而,不幸的是发现在吸收塔中存在结垢现象。当确定了问题是洗涤塔内石膏过饱和后,这一方法取得了重要的突破,这一问题的解决办法是增加一个结晶罐并提高液气比率。增加一个在高固体浓度下操作的结晶罐可以使钙-硫化合物在洗涤塔外沉淀。由于沉淀反应,循环到洗涤塔的吸收剂中的成垢石膏浓度较低。高液气比率使洗涤塔内的过饱和度升高最小,因此,使成垢的可能性更小。
后来,人们努力开发注入石膏石的洗涤方法并使之市场化。这一方法是将粉碎的石灰石与煤一起注入到炉中。所得到的焙烧石灰石、CaO与飞灰一起被夹带在烟气中。水洗涤塔用于从烟气中除去飞灰、石灰石和SO2。已有几种系统投入了操作,但存在结垢、添加剂利用率低、堵塞炉的对流面堵塞的问题,这与较早的Howden方法相同。
在典型的石灰/石灰石湿法烟气脱硫系统中,来自炉的烟气进入洗涤塔并与吸收剂浆液接触,二氧化硫和少量的氧气被同时吸收。用过的吸收剂返回反应罐或洗涤塔流出物储罐,溶解的硫化合物以钙盐的形式沉淀下来。加入新鲜的石灰石或石灰浆液以再生用过的吸收剂。
使加入的碱性添加剂最少以获得所需SO2除去效率能降低烟气脱硫系统的操作成本。为了确定影响添加剂使用的因素,需要理解添加剂的溶解过程以及系统操作条件、设计和添加剂性质对这一方法的影响。
在石灰/石灰石SO2洗涤系统中,碱的加入被控制成中和吸收的SO2并使钙-硫盐沉淀。尽管在理论上石灰或石灰石的加入与除去的SO2量的化学当量相等,然而,石灰石溶解过程的动力学表明需要使用过量的添加剂以实现所要求的SO2除去效率。
添加剂的化学当量通常定义为相对于每摩尔吸收的SO2所输入的添加剂的摩尔数,但杂质除外。有时也可以定义为相对于进入洗涤塔的每SO2所需的添加剂摩尔数。
尽管意义不大,如HCl的其它酸性气体的吸收也会影响吸收剂的利用。利用率可以更广泛地定义为在洗涤塔内转化为反应产物的添加剂的百分数。为了提高利用率,可以降低添加剂的输入量同时维持SO2的吸收效率,或者在给定的石灰石输入量下提高SO2的除去效率。
碱性添加剂的溶解速率与溶液的pH成反比。因此,系统在较低的pH下操作可以得到较好的利用率。然而,降低pH也会降低SO2的除去效率。因此,在相同的系统pH下提高吸收塔的性能,或者在恒定的系统pH下提高添加剂的溶解和利用率是更有利的。
石灰或氧化钙CaO是通过焙烧石灰石CaCO3得到的。石灰石的焙烧或“煅烧”条件对所生产的石灰石的反应性有很大的影响。由于在市场上购买的石灰石具有高反应性,可以提高利用率,高达95%,对系统剩余物的影响最小。为使利用率最高的主要设计参数是洗涤浆液的pH。当pH维持在8.5时,由于烟气中有10-50%体积百分比的二氧化碳,因此,会有大量的二氧化碳被吸收。二氧化碳以与二氧化硫相似的方式与石灰反应形成碳酸钙。在高pH下,碳酸钙不溶于水并沉淀下来,从而妨碍了钙与二氧化硫反应。基于已有的数据,发现当pH从7.5升高到9.0时,其利用率从95%下降到85%。因此,为了降低相对高成本的石灰的浪费,石灰系统的pH应当保持在8.5以下。
相对于石灰,在相同条件下操作的烟气脱硫系统中,石灰石的反应性通常较低。由于这一原因,需要改进系统以使石灰石的利用率超过90%至95%。
石灰石的溶解是悬浮石灰石的表面积以及溶液中氢离子浓度即pH的函数。为提高石灰石的溶解速度及其利用率,建议使用两种方法,第一种方法是增加表面积,第二种方法是提高氢离子浓度,即降低pH。
在将石灰石注入到系统中之前细磨石灰石可以得到大表面积。在烟气脱硫应用中,石灰石通常粉碎到有80%-90%能通过325目筛。可以磨得更细,但需要更多的能量。然而,这仍被证明是成本有效的。
石灰石的利用率还可以通过降低pH值来改进。然而,这会影响效率。即为了在降低的pH下维持相同的去除率,必需改进吸收塔的设计。例如,可以提高液气比率,这伴随着较高的泵送成本,或者可以增加塔高,这伴随着较高的设备投资成本。因此,在实施之前,必须考查任何调整的成本-效率。
也可以用两步法来操作,第一级在低pH下操作,以优化石灰/石灰石的利用率,第二级在高pH下操作,以得到高的SO2去除率。为适应这种操作方式,石灰石被输入到第二级,在被排放之前,来自第二级的用过的浆液被输入到第一级。
提高石灰石利用率的另一种方法是延长停留时间。为了实现这一目的,在固定的反应速度下,石灰石颗粒在吸收塔/反应罐环路中停留的时间越长,溶解的颗粒百分比越高。
固体颗粒在工艺过程中的停留时间是颗粒量和固体排放速度的函数。然而,在稳定的操作状态下,因为排放速率由SO2吸收速率固定,仅仅总量是可调节的。在这一点上,通过增加反应罐的体积和/或固体浓度,可以增加固体的总量。但是,由于浆液是研磨的,因此,固体浓度实际上存在一个上限,为约50%。因此,罐的成本相对较低和搅拌器所需能量较少,因此在许多场合中建议增加罐的尺寸来改进石灰石的利用率。
为实现烟气的廉价脱硫,尽管目前已认识到注入炉用石灰石是可行的工业技术,但是发现其应用有限,这是因为与使用炉用石灰石注入法相关的吸收剂利用率低。然而,当注入炉用石灰石时,可以通过减少吸收剂颗粒的粒径来提高吸收剂的利用率。如此做被认为是不经济的,因为通过粉碎来降低吸收剂、即石灰石的粒径,这样成本高。
进而,有人认为在矿物燃烧的发电厂中,用干法洗涤技术来取代湿法脱硫技术是可能的。用于干法洗涤技术的吸收剂是石灰,而最常用于湿法脱硫技术中的吸收剂是石灰石。然而,不幸的是,缺点不仅在于石灰比石灰石昂贵,还在于石灰在某些市场上不易买到。
人们曾试图用炉用石灰石作为潜在的在干法洗涤技术中用作吸收剂的石灰来源。为了实现这一目的,将石灰石注入到炉中,石灰石在炉中焙烧成石灰,然后,这些石灰在炉内与矿物燃料在炉内燃烧产生的SO2反应,这样,这些石灰在炉内吸收一些硫。
尽管由焙烧注入石灰石所产生的石灰在炉内吸收了一部分硫,但是目的是要通过使用干法洗涤技术实现所需的最大量的硫吸收。就干法洗涤技术而论,活性物质是Ca(OH)2,它是由夹带在飞灰中的石灰与水反应形成的,飞灰是矿物燃料在炉内燃烧产生的。就石灰的这一反应,即转化为Ca(OH)2而论,其他限制因素是与飞灰的量相比,夹带的石灰仅仅占飞灰含量的一小部分。另一限制因素是不能控制夹带在飞灰中的石灰量,如可以有效地结合注入石灰石焙烧产生的石灰量与使用干法洗涤技术为实现所需性能所要求的石灰量。
至于人们所致力的主题,即致力于从石灰石生产石灰和/或改进吸收剂的SO2捕获特征,以增强在烟气脱硫系统中的利用率,一种努力的非限制性例子是US4867955所涉及的主题。US4867955是1989年9月19日授权公开的,其名称是“燃烧气体脱硫方法”。在US4867955中,提供了一种气体燃烧产物的脱硫方法,包括以下步骤在燃烧室中燃烧含硫固体燃料以产生飞灰和含硫燃烧气体;在燃烧室的选定的温度区域内将选自镁、钙和钠碳酸盐及其混合物的可焙烧颗粒化合物加热足够长的停留时间,以将可焙烧化合物焙烧成相应的氧化物,其中所选择的可焙烧化合物的粒径、选定的温度区域和停留时间可以使大量的可焙烧化合物均焙烧成其相应氧化物;从燃烧室中移出可焙烧化合物;从燃烧室移出燃烧气体;以及用氧化物处理移出的燃烧气体以从燃烧气体中除去基本所有的含硫气体。
另一个非限制性例子是US5006323所涉及的主题。US5006323是1991年4月9日授权公开的,其名称为“燃烧气体脱硫方法”。在US5006323中,提供了一种气体燃烧产物的脱硫方法,包括以下步骤在燃烧室中燃烧含硫固体燃料以产生飞灰和含硫燃烧气体;在燃烧室的选定温度区域内将选自镁、钙和钠碳酸盐及其混合物的可焙烧颗粒化合物加热足够长的停留时间,以将可焙烧化合物焙烧成相应的氧化物,其中所选择的可焙烧化合物的粒径、选定的温度区域和停留时间可以使基本上所有可焙烧化合物均焙烧成其相应氧化物;从燃烧室中移出可焙烧化合物;从燃烧室移出燃烧气体;形成含有可焙烧化合物的的浆液;用浆液处理移出的燃烧气体以从燃烧气体中除去基本所有的含硫气体。
再一个非限制性例子是US5492685所涉及的主题。US5492685是1996年2月20日授权公开的,其名称为“高表面积的水合石灰和从A气流中除去SO2的方法”。在US5492685中,提供了a)一种具有高表面积、高孔隙率、小粒径的优良性质的水合石灰;b)一种使用所述高表面积水合石灰作吸收剂以从废气流中除去SO2的方法;以及c)控制水合石灰的物理性质,以优化其在多种去除SO2的任何一种吸收剂注入系统中的适应性。
还有一个非限制性例子被描述在题目为“FDG Experience AtPoland′s Rybnik Power Station:Dry Method WithHumidification”的科技论文中,其共同作者是:L.Pinko ofEnergopomiar;J.Chacula of the Rybnik Power Plant;W.Ellisonof Ellison Consultants;以及J.Podkanski of the Institute ofChemical Engineeriing,Polish Academy of Sciences。在该科技论文中描述了一种方法,其中石灰石被粉碎,在粉碎后,石灰石被吹入炉中。在炉中,石灰石被分解成氧化钙和二氧化碳。氧化钙与SO2反应,然后,与烟气和飞灰一起通过空气再热器系统。在这些空气再热器系统之后,烟气通过一个导管被引导到并流反应器上部,该导管被设计成保证烟气、飞灰和吸收剂颗粒均匀流动。正好在反应器之前,水合石灰和循环飞灰被吹入导管中。在反应器中,烟气被加温和脱硫。在加湿和脱硫后,在反应器的底部,烟气与热空气混合,并被导入静电除尘器中。之后,来自反应器底部的飞灰和吸收剂,以及来自除尘器的一部分飞灰和吸收剂被循环。
还有一个非限制性例子被描述在题目为“B&W′s E-LIDSTMProcess-Advanced SOx,Particulate,And Air Toxics Control ForThe Year 2000”的科技论文中,其共同作者为Deborah A.Madden和Michael J.Holmes,他们都是McDermott Technology,Inc.公司的。在该科技论文中,描述了一种以石灰石为基础的炉法注入/干洗SO2除去方法,该方法包括三种烟气净化技术的集成炉法注入石灰石,干洗,和脉冲喷射织物过滤,并宣称得到了工业证明。特别是按照所述方法,SO2的除去发生在锅炉和对流通道中、干洗塔中和织物过滤器中。为了实现这一目的,石灰石被粉碎并以干粉的形式注入到锅炉上部空间的烟气中。由于如此注入,石灰石被焙烧成石灰,一部分在烟气中与SO2反应形成硫酸钙。从锅炉排出的烟气最终通过干洗塔反应器,烟气与含有氢氧化钙的浆液接触。在干洗塔中,烟气被冷却和加湿到接近水饱合温度。在这些条件下,气体中的一部分SO2与氢氧化钙反应。当液滴通过干洗塔反应器时,含于浆液液滴中的水蒸发,反应产物以干粉的形式离开干洗塔,并仍然悬浮在烟气中。然后,烟气进入袋滤器中,煤的飞灰、用过的吸收剂、未反应的吸收剂颗粒被收集。袋滤器的使用被认为是关键因素,因为当烟气通过在袋滤器滤袋中的含有吸收剂的滤饼时,能额外除去SO2。在干洗塔的上游提供颗粒收集装置以从烟气中除去颗粒物质。来自颗粒收集装置的一部分固体被循环到反应物制备系统,以生产用于干洗塔的氢氧化钙浆液。
因此,尽管过去的努力已被证明能够实现所提出的目的,但是,现有技术中仍然需要一种新的改进方法以生产适用于燃烧气体脱硫的SO2吸收剂。更具体地说,现有技术需要一种新的改进方法来生产SO2吸收剂,与生产已知SO2吸收剂的现有方法相比,该方法应能以更有效的方式进行。
本发明的一个目的是提供一种生产SO2吸收剂的新的改进方法,与生产已知SO2吸收剂的现有方法相比,该方法应能以更有效的方式进行。
本发明的另一目的是提供一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫,该方法的特征在于由所述方法生产的SO2吸收剂是石灰石颗粒,石灰石颗粒被“僵烧”从而产生不活泼的石灰颗粒。
本发明的再一目的是提供一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫,该方法的特征在于所述“僵烧”是通过将石灰石颗粒以粗颗粒的形式或其它形式注入到常规固体燃料蒸汽发生器中进行的,因此,在常规固体燃料蒸汽发生器中产生蒸汽的同时,注入的石灰石颗粒被“僵烧”。
本发明的再一目的是提供一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫,该方法的特征在于除非石灰石颗粒已具有所希望的粒径,否则,拟于常规固体燃料蒸汽发生器中“僵烧”的石灰石颗粒在粉碎机上游与固体燃料混合,使石灰石颗粒和固体燃料在粉碎机中粉碎。
本发明的还一目的是提供一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫,该方法的特征在于如果待于常规固体燃料蒸汽发生器中“僵烧”的石灰石颗粒并未在粉碎机上游与固体燃料混合,则其将在粉碎机下游与固体燃料混合,并以石灰石颗粒与固体燃料混合物的形式注入常规固体燃料蒸汽发生器中;或者石灰石颗粒和固体燃料分别单独注入常规固体燃料蒸汽发生器中。
本发明的进一步的目的是提供一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫,该方法的特征在于拟于常规固体燃料蒸汽发生器中“僵烧”的石灰石颗粒经特定路径通过常规固体燃料蒸汽发生器,并同时在常规固体燃料蒸汽发生器中产生蒸汽,以避免石灰石颗粒与常规固体燃料蒸汽发生器中的硫混合。
本发明的最后一个目的是提供一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫,该方法的特征在于它相对易于实施,其应用相对简单,并且相对廉价。
发明概述按照本发明,提供了一种生产SO2吸收剂的新的改进方法,该SO2吸收剂适合于燃烧气体的脱硫。适合于燃烧气体的脱硫的SO2吸收剂的所述生产方法包括如下步骤。以粗颗粒的形式或其它形式提供石灰石颗粒。石灰石颗粒在粉碎机上游与固体燃料混合,并且这二者在粉碎机中粉碎,或者如果石灰石已具有所希望的粒径,则其在粉碎机下游与固体燃料混合;或者保持与固体燃料分开的状态。石灰石颗粒和固体燃料以混合物的形式注入常规固体燃料蒸汽发生器,或者石灰石和固体燃料分别单独注入常规固体燃料蒸汽发生器。在常规固体燃料蒸汽发生器中产生蒸汽的同时,石灰石颗粒在常规固体燃料蒸汽发生器中“僵烧”而产生不活泼的石灰颗粒。在常规固体燃料蒸汽发生器中产生蒸汽的同时,经受“僵烧”的石灰石颗粒经特定路径通过常规固体燃料蒸汽发生器,以避免石灰石颗粒与常规固体燃料蒸汽发生器中的硫混合。
对于本发明中适合于燃烧气体脱硫的SO2吸收剂的生产方法,特别值得注意的是在本发明之前,人们相信如果石灰石在炉中在太高的温度下被“焙烧”,由此产生的石灰是“僵烧的”,因此是不活泼的,由此产生的“僵烧的”、不活泼的石灰不适合于燃烧气体的脱硫,即不适合于烟气脱硫。按照现有技术的教导,为了在炉中进行“焙烧”,应保证将待“焙烧”的石灰石注入到炉中的某一位置,该位置的温度要足够低以保证避免石灰石的“僵烧”,并且在石灰石被注入炉中后石灰石的停留时间不足以引起石灰石被“僵烧”。这与本发明的教导明显相反,在本发明中,石灰石被注入到常规固体燃料蒸汽发生器中,注入的目的是保证“僵烧”。即石灰石被故意注入到常规固体燃料蒸汽发生器中的这样一个位置其温度高于现有技术认为适合于石灰石“焙烧”的温度,并且石灰石在常规固体燃料蒸汽发生器中的停留时间超过现有技术中认为适合于石灰石“焙烧”的停留时间。
附图简述

图1是常规固体燃料蒸汽发生器的纵剖示意图,该蒸汽发生器的结构适合于注入石灰石颗粒以经受本发明的“僵烧”并产生不活泼石灰颗粒,同时在常规固体燃料蒸发生器中产生蒸汽。
优选实施方案的详细描述参看图1,示出了一种常规固体燃料蒸汽发生器,总体用数字10表示。由于常规固体燃料蒸汽发生器的结构和操作模式对本领域技术人员来说是已知的,因此在这里不需对图1所示的常规固体燃料蒸汽发生器10进行详细描述。然而,为了深入理解常规固体燃料蒸汽发生器10,它能用于实现本发明的生产适合于燃烧气体脱硫的SO2吸收剂,只要详细描述本发明上述固体燃料蒸汽发生器10的部件就足够了。为了详细说明常规固体燃料蒸汽发生器10的结构和操作模式,可以参看现有技术US4719587,该专利于1988年1月12授权给F.J.Berte并被转让给与本申请相同的受让人。
参看图1,常规固体燃料蒸汽发生器10包括燃烧区12。正如下面所要详细描述的,燃烧区12位于常规蒸汽发生器10内,在蒸汽发生器10内,粉碎固体燃料和空气以本领域技术人员已知的方式被激发燃烧。由粉碎固体燃料和空气燃烧产生的热气体在常规固体燃料蒸汽发生器10内上升。在常规固体燃料蒸汽发生器10中上升的过程中,热气体以本领域技术人员已知的方式向流经管道(为保证附图的清晰,未示出)的流体释放热量,管道以已知方式排列在常规固体燃料蒸汽发生器10的四壁上,因此可以用热气体传递的热量来产生蒸汽。然后,热气体通过常规固体燃料蒸汽发生器10中的水平通道14排出常规固体燃料蒸汽发生器10,再导入常规固体燃料蒸汽发生器10的后气体通道16。尽管为了清晰起见没有在图1中示出,但水平通道14和后气体通道16共有其它热交换表面以本领域技术人员已知的方式产生和过加热蒸汽。之后,所产生的蒸汽一起通过涡轮机(未示出),涡轮机构成涡轮机/发电机装置(未示出)的一个部件,蒸汽提供动能以驱动涡轮机(未示出),进而驱动发电机(未示出),发电机与涡轮机以本领域技术人员已知的方式连接,因此,由发电机(未示出)直接产生电力。
现在继续描述图1所示的常规固体燃料蒸汽发生器10,常规固体燃料蒸汽发生器10包括多个箱罩,每一个箱罩都优选为主风箱(windbox)的形式,由20表示。每一个主风箱20都以本领域技术人员已知的方式由合适的支承装置(未示出)支承在常规固体燃料蒸汽发生器10的燃烧区12内,以至于每一主风箱20的纵轴线基本上沿常规固体燃料蒸汽发生器10的纵轴线平行延伸。按照已知的方式,每一主风箱20包括多个空气仓(为清晰起见未示出)和多个燃烧仓(为清晰起见未示出),它们优选以相互错开的方式排列。进一步说,在每一空气仓内安装一空气喷嘴(未示出),用于向常规固体燃料蒸汽发生器10的燃烧区12中注入所需空气以进行燃烧。类似地,在每一燃料仓中安装燃料喷嘴(未示出),用于向常规固体燃料蒸汽发生器10的燃烧区12注入燃料以进行燃烧。为了更详细地说明主风箱20的结构和操作模式,可以参看现有技术US5315939,该专利是1994年5月31日授予M.J.Rini并转让给与本申请相同的受让人。
关于常规固体燃料蒸汽发生器10的主风箱20,一个空气供应装置(为清晰起见未示出)连接多个空气仓(未示出)中的每一个,更具体地说,连接于空气喷嘴(未示出),该空气喷嘴安装在空气仓(未示出)内。因此,空气供应装置(未示出)向常规固体燃料蒸汽发生器10的燃烧区12供应空气。为了这一目的,已知形式的空气供应装置(未示出)包括鼓风机(未示出)和空气导管(未示出),导管的一端与鼓风机(未示出)流通连接,另一端通过单独的阀和控制元件(未示出)与安装在空气仓(未示出)内的空气喷嘴(未示出)流通连接。类似地,粉碎固体燃料的供应装置22与燃料喷嘴(未示出)连接,燃料喷嘴安装在燃料仓(未示出)内,因此,粉碎固体燃料的供应装置22将粉碎的固体燃料供应到燃料仓(未示出),更具体地说是将燃料供应到燃料喷嘴(未示出)内,从而将燃料注入到常规固体燃料蒸汽发生器10的燃烧区12。为了实现这一目的,粉碎固体燃料的供应装置22包括粉碎机24以及粉碎固体燃料的导管26。粉碎机24以本领域技术人员已知的方式生产具有所希望细度的粉碎固体燃料。尽管为清晰起见未示出,粉碎机24与空气供应装置(未示出)的鼓风机(未示出)连接(空气供应装置已在前面描述过了),因此,空气也从空气供应装置(未示出)的鼓风机(未示出)供应到粉碎机24,因此,从粉碎机24向燃料喷嘴供应的粉碎固体燃料在空气流中通过粉碎固体燃料导管26以粉碎领域内技术人员已知的方式输送。
下面描述石灰石颗粒注入常规固体燃料蒸汽发生器10的方式,这些石灰石颗粒将被“僵烧”以产生不活泼的石灰颗粒。为了实现这一目的,正如参看附图1所理解的,本发明的常规固体燃料蒸汽发生器10具有石灰石颗粒供应装置28,石灰石供应装置28包括合适的储存器30和导管32,石灰石颗粒优选从储存器供应,利用导管,石灰石颗粒可以从储存器30中输送到所希望的位置。
按照本发明,将要注入到常规固体燃料蒸汽发生器10中并“僵烧”以产生不活泼石灰颗粒的石灰石颗粒可以经几个不同路径的任何一个从储存器30流入常规固体燃料蒸汽发生器10的注入点。除了将要注入到常规固体燃料蒸汽发生器10中的已具有所希望粒径的石灰石颗粒外,石灰石颗粒可以在粉碎机24上游与固体燃料混合,即没有达到所希望粒径的石灰石颗粒如图1的实线所示从储存器30经导管32达到图1所示的点34,在这里石灰石颗粒与图1中标号36所指的固体燃料合并,被供应到粉碎机24中。由于石灰石颗粒与固体燃料在粉碎机24的上游合并,石灰石颗粒和固体燃料在粉碎机24中被粉碎,以致于在石灰石颗粒和固体燃料离开粉碎机24时都具有所希望的细度。一方面,如果石灰石颗粒已具有所希望的粒径,拟于常规固体燃料蒸汽发生器10中“僵烧”以产生不活泼石灰颗粒的石灰石颗粒将与固体燃料在粉碎机24的下游混合,即从储存器30通过导管32′(图1中的虚线所示)流到图1中的点38,在这里与固体燃料合并,固体燃料已经过了粉碎机24的粉碎,并以混合物的形式与固体燃料一起注入。或者,石灰石颗粒还未达到所希望的粒径,如图1中的虚线32″所示,从储存器30直接流到常规固体燃料蒸汽发生器10中,以致于石灰石颗粒和固体燃料分别单独注入到常规固体燃料蒸汽发生器10中。
正如从图1中可以清楚看到的,不管石灰石颗粒注入常规固体燃料蒸汽发生器10以经受“僵烧”从而产生不活泼石灰颗粒的路径如何,在每一种情形中,石灰石都被注入常规固体燃料蒸汽发生器10中,以致于石灰石颗粒暴露于常规固体燃料蒸汽发生器10中的最高温度区域。即进入常规固体燃料蒸汽发生器10的燃烧区12,正如本领域技术人员所知道的,它是常规固体燃料蒸汽发生器10内温度最高的地方,不管石灰石颗粒离开储存器30所流经的路径如何,石灰石颗粒均被注入到该区域。此外,因为燃烧区12位于常规固体燃料蒸汽发生器10的底部,不管在注入前所流经的路径如何,石灰石颗粒都注入到这一区域,因此在常规固体燃料蒸汽发生器10中具有最长的停留时间。最后要提及是因为根据其相对密度,石灰石颗粒的密度低于固体燃料,石灰石颗粒的流动路径以及在“僵烧”后不活泼石灰颗粒流经常规固体燃料蒸汽发生器10内部的路径不同于固体燃料的流动路径。由于这些固有的倾向-石灰石颗粒和固体燃料在常规固体燃料蒸汽发生器10内流经不同路径,石灰石颗粒与来源于固体燃料的硫的混合在常规固体燃料蒸汽发生器10中被避免。进一步说,一旦由于石灰石的“僵烧”产生了不活泼石灰颗粒,这些不活泼石灰颗粒与硫的混合基本上可以避免,即由于这些不活泼石灰颗粒的性质,基本不会发生硫的捕获。在以本领域技术人员已知的方式流过常规固体燃料蒸汽发生器10后,燃烧气体从后氧化通道16排出常规固体燃料蒸汽发生器10。由于不活泼石灰颗粒与燃烧气体的分离,不活泼石灰颗粒的后续条件使之恢复了反应活性,后者适合于燃烧气体的脱硫。
因此,本发明提供了一种生产SO2吸收剂的新的改进方法,与现有技术中已知的用于生产SO2的方法相比,它更为有效。此外,本发明提供了这样一种生产SO2吸收剂的新的改进方法,所述吸收剂适合于燃烧气体的脱硫,该方法的特征在于所述方法生产的SO2吸收剂是经“僵烧”的产生不活泼石灰的石灰石颗粒。进一步说,本发明提供了这样一种生产SO2吸收剂的新的改进方法,所述吸收剂适合于燃烧气体的脱硫,该方法的特征在于石灰石颗粒的“僵烧”是通过以粗颗粒的形式或其它形式将石灰石注入到常规固体燃料蒸汽发生器,同时在常规固体燃料蒸汽发生器中产生蒸汽,注入的石灰石颗粒被“僵烧”。此外,本发明提供了这样一种生产SO2吸收剂的新的改进方法,所述吸收剂适合于燃烧气体的脱硫,该方法的特征在于待于常规固体燃料蒸汽发生器中经受“僵烧”的石灰石颗粒,除非已经具有所希望的粒径,否则,在粉碎机上游与固体燃料混合,使石灰石颗粒和固体燃料在粉碎机中粉碎。本发明提供了这样一种生产SO2吸收剂的新的改进方法,所述吸收剂适合于燃烧气体的脱硫,该方法的特征在于待于常规固体燃料蒸汽发生器中经受“僵烧”的石灰石颗粒,如果在粉碎机上游没有与固体燃料混合,那么将在粉碎机下游与固体燃料混合,并以石灰石与固体燃料混合物的形式注入到常规固体燃料蒸汽发生器中,或者石灰石颗粒和固体燃料分别单独注入常规固体燃料蒸汽发生器中。另一方面,本发明提供了这样一种生产SO2吸收剂的新的改进方法,所述吸收剂适合于燃烧气体的脱硫,该方法的特征在于待于同时产生蒸汽的常规固体燃料蒸汽发生器中经受“僵烧”的石灰石颗粒经特定通道流过常规固体燃料蒸汽发生器,避免石灰石颗粒在常规固体燃料蒸汽发生器与硫混合。最后,本发明提供了这样一种生产SO2吸收剂的新的改进方法,所述吸收剂适合于燃烧气体的脱硫,该方法的特征在于它是相对易于实施的、其应用相对简单、而且相对廉价。
尽管已描述了本发明的几个具体实施方案,但是应当理解,上面暗示的某些方面也易于由本领域技术人员来实施。因此,权利要求覆盖了暗示的改进和落入本发明精神和范围内的其它改进。
权利要求
1.一种适合于使燃烧气体脱硫的SO2吸收剂的生产方法,包括以下步骤a)提供一个具有燃烧区的固体燃料蒸汽发生器;b)向固体燃料蒸汽发生器的燃烧区注入固体燃料和燃烧空气;c)使固体燃料和燃烧空气在固体燃料蒸汽发生器的燃烧区中燃烧,以产生燃烧气体;d)当燃烧气体流过固体燃料蒸汽发生器时,通过热量传递从燃烧气体产生蒸汽;e)向固体燃料蒸汽发生器的燃烧区注入石灰石颗粒;以及f)在产生蒸汽的同时,在固体燃料蒸汽发生器中使石灰石颗粒“僵烧”以产生不活泼石灰颗粒。
2.权利要求1的方法,其特征在于,注入到固体燃料蒸汽发生器的燃烧区中的石灰石颗粒是粗颗粒。
3.权利要求1的方法,其特征在于,还包括在将固体燃料注入固体燃料蒸汽发生器的燃烧区之前,在粉碎机中粉碎固体燃料。
4.权利要求3的方法,其特征在于,还包括在将石灰石颗粒注入到固体燃料蒸汽发生器的燃烧区之前,在粉碎机上游混合石灰石颗粒和固体燃料,以使石灰石颗粒和固体燃料在粉碎机中粉碎。
5.权利要求3的方法,其特征在于,还包括在将石灰石颗粒注入到固体燃料蒸汽发生器的燃烧区之前,在粉碎机下游混合石灰石颗粒和团体燃料,以使石灰石颗粒和固体燃料以混合物的形式注入固体燃料蒸汽发生器的燃烧区。
全文摘要
一种适合于燃烧气体脱硫的SO
文档编号B01D53/50GK1300234SQ99805950
公开日2001年6月20日 申请日期1999年4月20日 优先权日1998年5月8日
发明者小·H·E·安德鲁斯, M·S·麦卡特尼 申请人:Abb阿尔斯托姆能源公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1