蒽醌化合物在特殊反应器中悬浮氢化制备过氧化氢的方法

文档序号:5015094阅读:310来源:国知局
专利名称:蒽醌化合物在特殊反应器中悬浮氢化制备过氧化氢的方法
技术领域
本发明涉及一种蒽醌化合物在特殊反应器中按蒽醌法进行悬浮氢化制备过氧化氢的方法。在本发明氢化方法中,蒽醌化合物或其2种或更多种的混合物,按照如同DE-A 196 11 976中综述的那样在特殊反应器中与悬浮催化剂和含氢气体相进行接触。该特殊反应器包括具有特定水力直径的通孔或流道的构件。
实际上世界上生产的全部过氧化氢(大于2百万公吨每年(/a))都是采用蒽醌法生产的。
该方法的原理是,蒽醌化合物催化氢化为对应的蒽氢醌化合物,然后后者与氧气反应生成过氧化氢,随后萃取分离出生成的过氧化氢。该催化循环通过对氧化步骤中再次生成的蒽醌化合物进行反复氢化而成为闭合循环。
下面的反应式概括了主要反应 在该反应中,蒽醌化合物通常被溶解在多种有机溶剂混合物中。形成的溶液称作工作溶液。在蒽醌法中,该工作溶液通常连续地通过方法的上述各步骤。
有关蒽醌法的概述载于《Ullmanns工业化学大全》,第5版,卷A13,pp.447~456。
蒽醌法中特别重要的步骤是氢化步骤,其中工作溶液中存在的蒽醌化合物在催化剂存在下氢化为对应的蒽氢醌化合物。
本发明涉及蒽醌法的该氢化步骤。
该催化氢化可在各种类型反应器中的悬浮体或者固定床中进行。有关先有技术例如详述在EP 0 672 617中。
在固定床法中,含氢气相与工作溶液按并流或逆流方式通过装有涂布贵金属的载体型催化剂的反应器。所用催化剂随时间推移逐渐丧失活性,因此必须再生或更换。为此,首先必须从反应器中取出固定床催化剂,然后装入新的或再生催化剂。这既非常费时又非常费钱。
因此工业上,氢化步骤主要按悬浮体方式进行,因为催化剂活性的下降可通过连续引入和抽出催化剂予以抵消。
按最常见的模式,悬浮氢化在这样一种反应器中进行,其中除了含氢气相之外,还存在工作溶液,溶液中悬浮着至少1种催化剂。
悬浮反应器的技术大致综述于《Ullmanns工业化学大全》,第4版,卷3,pp.494~518中。
蒽醌化合物悬浮氢化所使用的一些反应器描述在《Ullmanns工业化学大全》,第4版,卷17,pp.700~702中。这些反应器包括搅拌釜、泡罩塔以及移动床反应器。
作为蒽醌化合物悬浮氢化的催化剂,采用悬浮催化剂或载体型悬浮催化剂。后者包含加载在载体颗粒上的金属层。载体型悬浮催化剂的优点是,其0.06~0.15mm的颗粒直径,与非载体型悬浮催化剂相比,简化了催化剂至反应器的循环。另外,其活性与纯催化剂相比,对热应力和中毒的敏感性一般均比较小。
采用装有钯黑作为催化剂的环管反应器实施蒽醌化合物的悬浮氢化描述于US 4 428 923中。
在DE-C 938 252中,蒽醌化合物的氢化是在泡罩塔中进行的,其中装有管状内部构件,氢气从每根管的下部引入,然后与在管中朝上流动的工作溶液汇合。采用的催化剂为一种载体型钯悬浮催化剂(例如,2%Pd载于活性氧化铝上)。
悬浮反应中的基本问题是要保证反应物与悬浮在液相中的催化剂颗粒之间的充分接触。
悬浮反应器要求引入机械能量,例如借助搅拌器、喷嘴或上升气泡引入,以维持固体颗粒的悬浮。然而,该机械能量输入若增加到超过悬浮的要求,则并不能显著改善液体与悬浮固体颗粒之间的传质,因为可到达的相对速度将仅比沉降速度大微不足道的幅度。
实现蒽醌法经济操作的决定因素是氢化步骤期间的高空时收率。
空时收率是单位催化剂体积、单位时间内所生成的产物数量。
采用迄今先有技术用于蒽醌化合物悬浮氢化以制备过氧化氢所使用的反应器,不总是能保证获得足够高的空时收率。
本发明的目的是提供一种蒽醌化合物的悬浮氢化方法,所采用的反应器乃是迄今从未应用于此种氢化的。
我们发现,这一目的可采用权利要求部分所描述的方法实现。在该方法中,为实施蒽醌化合物或其2种或更多种的混合物的悬浮氢化,在一种反应器中存在一种其中悬浮着至少1种催化剂的工作溶液,以及一种含氢气相,该工作溶液或气相在反应器中至少部分地,即它们体积的一部分在其一部分路径上,通过具有通孔或流道的构件,通孔和流道的水力直径介于0.5~20mm,优选1~10mm,尤其优选1~3mm。水力直径的定义是通孔断面面积的4倍与其周长的比值。
在每种情况下理想流道宽度的选择主要取决于流过液体的粘度、悬浮颗粒的尺寸(粒度)以及气相的类型。液体越粘稠,流道宽度必须越大。在液体动粘度介于10×10-5~200×10-5标准s/m2的情况下,最佳水力直径介于1~4.5mm的范围。
这样,便可获得高于蒽醌化合物悬浮氢化用传统反应器的空时收率。
为达到本发明方法的目的,氢化步骤一般在约20~120℃,优选约30~80℃进行。所采用的压力一般约1~20bar,优选约2~10bar。
氢化可采用纯氢气或者含氢气体实施。
氢化一般进行到约50~70%的转化率,以达到一般大于90%,优选大于95%的较高选择性。
术语“蒽醌化合物”原则上涵盖所有可用于制备过氧化氢的蒽醌法的蒽醌化合物以及对应的四氢蒽醌化合物。优选用于本发明方法的蒽醌化合物是2-烷基蒽醌,如2-乙基-、2-叔丁基-、2-戊基-、2-甲基-、2-丁基-、2-异丙基-、2-仲丁基-或2-仲戊基-蒽醌以及多烷基蒽醌,如1,3-二乙基蒽醌、2,3-二甲基蒽醌、1,4-二甲基蒽醌或2,7-二甲基蒽醌,乃至相应的四氢蒽醌化合物及其2或更多种的混合物。
可使用的溶剂是任何先有技术已知用于蒽醌或蒽氢醌化合物的溶剂。优选2种或更多种溶剂组分的混合物,因为此种溶剂混合物能最好地照顾到蒽醌与蒽氢醌化合物之间不同的溶解性能。可举出的例子是甲基萘与壬醇、甲基萘与四丁基脲、多烷基化苯与磷酸烷基酯或者甲基萘、四丁基脲与磷酸烷基酯的混合物。
作为催化剂,可使用先有技术已知并适合悬浮法的所有催化剂体系,例如阮内镍或钯黑。非载体型与载体型催化剂之间存在明显区别。所使用的催化剂是金属,优选贵金属。可用于本发明方法的非载体型催化剂是所有周期表过渡族Ⅷ的金属。优选采用铂、铑、钯、钴、镍或钌或者其2种或更多种的混合物;尤其优选采用钌作为催化剂。同样可用作非载体型催化剂并同样原则上全部可使用的周期表过渡族Ⅰ和Ⅶ的金属当中,优选使用铜和/或铼。进而,还可使用金属盐或氧化物如硫化铼、copper chromides、zinc chromides、氧化镍、氧化钼、氧化铝、氧化铼以及氧化锌,作为本发明方法的催化剂。
优选采用载体型悬浮催化剂。它们由载体颗粒涂以金属,优选贵金属组成。可用于此类催化剂的活性金属原则上是所有周期表的过渡族Ⅷ的金属。作为活性金属,优选使用铂、铑、钯、钴、镍或钌或其2种或更多种的混合物;尤其优选使用钌作为活性金属。同样原则上全部可使用的周期表过渡族Ⅰ和Ⅶ的金属当中,优选使用铜和/或铼。
虽然原则上可使用任何已知用于制备催化剂的载体材料,但优选使用活性炭、碳化硅、氧化铝、氧化硅、二氧化硅、二氧化钛、二氧化锆、氧化镁、氧化锌、碳酸钙、硫酸钡或其混合物,更优选氧化铝和二氧化锆。
所用载体型悬浮催化剂的活性金属含量一般介于约0.01~约30wt%,优选约0.01-约5wt%,尤其优选约0.1~5wt%,在各种情况下均以所用相应的催化剂总重量为基准。
在本发明方法中,催化剂颗粒相对于液相具有较强的相对运动,因为它们在狭窄通孔和流道内受到相对于周围工作溶液的制动作用。这种制动可由与流道壁的碰撞或者由于颗粒在粗糙壁面上被暂短滞留所致。
在本发明方法中,所使用的悬浮催化剂颗粒的平均粒度可介于0.0001~2mm,尤其优选0.001~0.1mm,更优选0.005~0.05mm。凭借其单位体积的高表面积,此种颗粒可产生良好效果,因为由于经由狭窄内部构件穿过,它们处于与工作溶液相对的相对运动状态。结果,获得显著高的空时收率。实验表明,即便催化剂颗粒仅具有较小的相对运动或者催化剂颗粒中仅一小部分受到制动,也会导致反应的加速。
反应器内用于引导原料相流动的具有通孔或流道的构件可采取床层、针织制品、开孔泡沫体,优选塑料(例如,聚氨酯或密胺树脂)或者陶瓷的,或者填料元件等形式,正如在原则上,即,就其几何形状而言,从蒸馏以及萃取技术已知的。此种填料元件可提供低压降的优点,例如Montz A3和Sulzer BX、DX和EX等型号线网填料。然而,用于实施本发明方法的填料所具有的水力直径却远小于蒸馏或萃取技术领域中可比内部构件,一般为后者的1/2~1/10。线网填料尤其有利。这被认为是由于,部分悬浮体不是顺着所形成的流道流动,而是穿过网。然而,为达到本发明方法的目的,也可使用其他机织物、针织物或毡化透液材料制成的填料来代替线网填料。另一类适合使用的填料是扁平金属片材,优选不带冲孔或其他大通孔,例如相当于Montz B1或Sulzer Mellapak型。金属板网填料,例如Montz BSH型填料,也是有利的。在这类填料中,通孔,如冲孔之类的通孔也必须保持得适当小。决定填料是否适合本发明目的的关键不在于其几何形状,而在于可供在填料中流动的开孔尺寸或流道宽度。
在本发明方法中,工作溶液和气相优选通过这样的通孔或流道流动,其侧壁材料的表面粗糙度为悬浮催化剂颗粒平均粒度的0.1~10倍,优选0.5~5倍。通孔或流道壁的粗糙尤其可产生良好的制动,从而导致悬浮催化剂颗粒的相对运动。这些颗粒可设想成暂短滞留在壁面,以致它们经历一段延时,然后再返回到液体主流中。优选采用的材料粗糙度视具体情况而定,取决于悬浮催化剂颗粒的尺寸。
再有,在本发明方法中,工作溶液和含氢气体相优选通过这样的具有金属壁材料的通孔或流道,即,材料按DIN 4768/1的平均粗糙度Ra介于0.001~0.01mm。此种金属表面例如可通过钢材如Kanthal(材料代号1.4767)在氧气氛中进行热处理来造成。于是,它不但在宏观上,而且在微观上也是粗糙的,这才是对实现本发明目的有效的。
本发明方法的优选实施过程是,令液相以约50~300m3/m2h,优选150~200m3/m2h的空管速度流过具有通孔和流道的构件。气相的空管速度优选介于0.15~8.5cm/s,尤其优选2.5~5.5cm/s。
本发明方法可连续地或者间歇地实施。
蒽醌化合物按照本发明在其中进行氢化的反应器,可以是任何先有技术已知用于悬浮反应的反应器类型,例如喷嘴反应器、泡罩塔、移动床反应器、管道反应器、多管反应器以及搅拌釜。在搅拌釜的情况下,上面所描述的内部构件也可直接固定在搅拌轴上,并可至少部分地代替搅拌器的功能。它们另外还可起到挡板的作用。上述内部构件优选但不要求填满整个反应器,除非用在搅拌釜中。反应器优选是立式泡罩塔,反应物优选地按并流方式自下而上穿过塔身。另一种优选的反应器类型是可加热或可冷却多管反应器,其中所述内部构件装在一根根管子中。反应物优选自下而上并流流过该反应器。另一种适当类型的反应器是搅拌釜,其中内部构件与挡板和/或搅拌器结合在一起。
此种反应器有利于工作溶液和气相的引入和取出。
悬浮催化剂材料的引入和再次取出可采用传统技术(沉降、离心、平面床层过滤、交叉流过滤)。
悬浮固体可采用传统分离方法分离,例如平面床层过滤或烛式过滤。在连续反应的情况下,交叉流过滤据发现尤其有用。
本发明将利用下面的附图加以描述。在这些附图中

图1蒽醌化合物在特殊泡罩塔中间歇氢化的实验布置图2蒽醌化合物在特殊泡罩塔中连续氢化的实验布置图3蒽醌化合物在特殊多管反应器中连续氢化的实验布置图1,作为例子给出一种包括间歇操作泡罩塔反应器1的实验布置,按照本发明的规定,其中布置着一种线网填料2,其几何形状与蒸馏填料Sulzer BX大致相同。为实施反应,含悬浮催化剂的工作溶液首先经由注入管线3引入。含氢气相经由连接管线4喂入并在混合喷嘴5中与沿回路打循环的悬浮体彼此混合,然后该混合物从反应器的下端引入到反应器1中。悬浮体连同气体一起经由管线6从反应器排出并送入分离容器7中。从那儿,气体经过废气冷却器8,然后通过压力保持装置9进入到废气管线10中。悬浮体从分离容器7出来经过管线11,通过泵12、热交换器13、混合喷嘴5,再次进入到反应器1中。反应完成以后,悬浮体通过排料管线14排出。
图2表示一种连续操作泡罩塔1,备有填料2,该塔另外还通过管线15和16接受循环气体,该气体连同含氢新鲜气体4一起通过混合喷嘴5混入到不断打循环的悬浮体11中。反应器出料通过管线6进入到分离容器7中,在此,分离出气相并经过管线15排出。为限制气态杂质的积累,经由管线10抽出该气体的一股支流,其余气体则经由管线16返回到反应器中。只有液态工作溶液通过管线3引入。悬浮催化剂借助交叉流过滤器17的拦截作用依然留在反应系统中,只有不含催化剂的液体14离开反应器并被取出。
图3表示的实施方案优选在高反应热的快速反应情况下使用;在该实施方案中,反应器1具有列管壳式热交换器的构造,包括管束18,其中布置着线网填料2。图1和2中所示热交换器8在这种情况下可省略。它也可保留以便在反应开始阶段起到预热器作用,如果只准备向反应器供应冷却剂的话。部件4、5、6、7、10、12、14、16和17的作用与图2中的相对应。
DE-A 196 11 976中有关采用的反应器、工艺流程、实验布置、催化剂以及采用的填料元件等进一步细节,类似地适用于本发明方法的内容。
下面,将通过实施例举例说明本发明实例2-乙基蒽醌(13%浓度在Shellsol/四丁基脲(70∶30)中的溶液)的间歇氢化,在30℃和常压下,分别在装有三叶喷洒搅拌器(1000rpm)的传统搅拌釜11中以及在装有线网填料的泡罩塔(400mm高,40mm直径)中进行。作为悬浮催化剂,采用1.5g氧化铝载钯(钯含量5%)。工作溶液用量在2种情况下均为650mL。
a)搅拌釜氢化反应总共进行3h。3h以后,所使用的2-乙基蒽醌中50%转化为2-乙基蒽氢醌(按气相色谱测定)。
b)填料-泡罩塔氢化反应总共进行3h。3h以后,所使用的2-乙基蒽醌中65%转化为2-乙基蒽氢醌(按气相色谱测定)。
权利要求
1.一种蒽醌化合物或其2种或更多种的混合物的悬浮氢化方法,该方法在一种反应器中进行,其中存在一种悬浮着至少1种催化剂的工作溶液,以及一种含氢气相,该工作溶液或气相在反应器中至少部分地通过具有水力直径介于0.5~20mm的通孔或流道的构件。
2.权利要求1的方法,其中采用平均粒度介于0.0001~2mm的悬浮催化剂颗粒。
3.权利要求1或2的方法,其中所采用的具有通孔或流道的构件是床层、针织物、开孔泡沫体或填料元件。
4.以上权利要求中任何一项的方法,其中工作溶液和气相至少部分地通过开孔或流道,其侧壁材料的表面粗糙度为悬浮催化剂颗粒平均粒度的0.1~10倍。
5.以上权利要求中任何一项的方法,其中工作溶液和气相通过开孔或流道,它具有金属侧壁材料,其表面按照DIN 4768/1的平均粗糙度Ra为0.001~0.01mm。
6.以上权利要求中任何一项的方法,其中工作溶液以50~300m3/m2h,优选150~200m3/m2h的空管速度流过具有通孔和流道的构件。
7.以上权利要求中任何一项的方法,其中反应器优选是立式泡罩塔。
8.以上权利要求中任何一项的方法,其中反应器是可加热或可冷却的多管反应器,其中在每根管中装有具有通孔或流道的构件。
9.以上权利要求中任何一项的方法,其中反应器是搅拌釜,且该具有通孔或流道的构件与挡板和/或搅拌器制成一体。
10.以上权利要求中任何一项的方法,其中所采用的催化剂是载体型悬浮催化剂。
11.权利要求10的方法,其中载体型悬浮催化剂上涂有周期表过渡族Ⅷ的金属。
全文摘要
在蒽醌化合物或其2种或更多种的混合物的悬浮氢化的方法中,在一种反应器中进行,其中存在一种悬浮着至少1种催化剂的工作溶液,以及一种含氢气相,该工作溶液或气相在反应器中至少部分地通过具有水力直径介于0.5~20mm,优选1~10mm,尤其优选1~3mm的通孔或流道的构件。
文档编号B01J19/24GK1298369SQ99805577
公开日2001年6月6日 申请日期1999年3月1日 优先权日1998年2月27日
发明者A·贝特谢尔, J·亨克尔曼, F·J·布雷克尔, G·凯贝尔, H·吕特尔 申请人:Basf公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1