用于自动启动/停止内燃机的控制设备的制作方法

文档序号:5227043阅读:130来源:国知局
专利名称:用于自动启动/停止内燃机的控制设备的制作方法
技术领域
本发明涉及一种用于自动启动/停止内燃机的控制设备。
背景技术
本发明是以2003年8月26日提出的、申请号2003-301390的日本专利申请为基础要求优先权的,该申请的内容包含于此,以供参考。
传统的混合型车辆装有内燃机和电动机,并且内燃机和电动机中的任何一个为车辆提供驱动力以使车辆移动。在这样的混合型车辆中,已知一种混合型车辆,其包括怠速停止装置,其能够当例如由于驾驶员使用制动器而使得车辆停止时使内燃机的工作自动地停止,并且当内燃机停止以及检测到驾驶员已经松开制动器时自动重新启动内燃机;防止内燃机的排气管浸水的防止浸水装置;以及将已经进入内燃机排气管的水排出的排水装置(例如,参见日本未审定专利申请,首次公开号为No.H11-353995)。
在这种混合型车辆中,防止浸水装置例如包括阻塞排气管的阀和改变排气管布置的致动器。排水装置例如包括启动内燃机以利用废气压力将水从排气管中排水或者打开安装在排气管中的放泄阀。
如果车辆外部的水位升高到预定水位以上并且进入包括用于净化废气的催化设备的排气系统,它可能对排气系统产生不良影响。防止浸水装置被设计成可防止这种效果。
但是,在根据上述现有技术的示例的混合型车辆中,排水装置的功能在于一旦检测到水已经进入排气管之后防止进一步浸水,并且不是必须阻挡水进入排气系统。

发明内容
本发明是考虑对上述情况而提出的,本发明的一个目在于,提供一种能够防止水从车辆外部进入内燃机的排气系统的用于自动启动/停止内燃机的控制设备。
本发明为一种用于自动启动/停止内燃机的控制设备,该控制设备能够根据车辆的驱动状态自动停止或者自动启动作为车辆的驱动源而提供的内燃机,该控制设备包括用于确定在内燃机的排气系统中是否有浸水的可能的浸水确定装置;自动停止禁止装置,该自动停止禁止装置在该浸水确定装置确定内燃机的排气系统中有浸水的可能的情况下禁止内燃机的自动停止的执行。
根据本发明,如果确定在内燃机的排气系统中有浸水的可能,通过禁止处于工作状态的内燃机的自动停止,能够保持在内燃机中所需的废气压力,并且能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供一种启动装置,该启动装置在该浸水确定装置确定内燃机的排气系统中有浸水的可能的情况下能够自动启动处于停止状态的内燃机。
根据本发明,通过在达到内燃机的排气系统中发生浸水的状态之前自动启动内燃机,这样能够在内燃机中保持所需的废气压力,并且能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供一个温度传感器,该温度传感器检测废气温度或者与废气温度相关的状态量,并且该浸水确定装置根据从温度传感器输出的检测值确定在内燃机的排气系统中是否有浸水的可能。
根据本发明,当排气系统的一个适合位置被浸水时,该位置附近的比热增大。例如这导致相对于废气温度或者内燃机的发动机温度的预定温度变化的该位置附近的温度变化的响应降低以及导致该区域的温度变化减小。因此,能够根据从安装在排气系统内的温度传感器输出的检测值确定在内燃机的排气系统中是否有浸水的可能。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供多个温度传感器,并且所述浸水确定装置根据从多个温度传感器中的任意两个输出的检测值之间的差值确定在内燃机的排气系统中是否有浸水的可能。
根据本发明,接近排气系统中发生浸水的位置的比热增大。例如这导致例如相对于废气温度或者内燃机的发动机温度的预定温度变化的接近该位置的温度变化的响应降低以及导致该区域的温度变化减小。因此,与两个位于没有被浸水的区域中的温度传感器之间的检测值之间的差值相比,在位于没有被浸水的区域中的温度传感器和接近浸水区域的温度传感器之间的两个检测值之间的差值增大到预定的温度差以上。因此,根据从设置在排气系统中的多个温度传感器中选出的两个温度传感器输出的两个检测值之间的差值,能够确定在内燃机的排气系统中是否有浸水的可能。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供一种液位传感器,该液位传感器设置在内燃机中的排气系统的排气孔附近,并且检测所需要检测的液体的液面位置或者与液面位置相关的性质,并且所述浸水确定装置根据从液位传感器输出的检测值确定在内燃机的排气系统中是否有浸水的可能。
根据本发明,利用各种类型的液位传感器,例如,浮动型、光学型和传导型的液位传感器检测在排气系统的排气孔附近的液面位置,诸如车辆外部的水位、与液面位置相关的状态量,并且例如,能够根据车辆外部的水位是否超过预定水位来确定在内燃机的排气系统中是否有浸水的可能。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供发动机加速装置,该发动机加速装置在该浸水确定装置确定在内燃机的排气系统中有浸水可能的情况下使用于内燃机怠速工作的目标发动机速度增加预定值。
根据本发明,在确定在内燃机的排气系统中有浸水可能的情况下,通过使内燃机怠速工作的目标发动机速度增加预定值,能够在内燃机中保持所需的废气压力,并且能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供作为独立于内燃机的用于车辆的驱动源而设置的电动机和禁止装置,该禁止装置在浸水确定装置确定内燃机的排气系统中有浸水可能的情况下能够禁止内燃机的自动停止操作的执行或者禁止仅在来自于电动机的驱动力的作用下驱动车辆的操作的执行。
根据本发明,在确定在内燃机的排气系统中有浸水可能的情况下,通过禁止处于工作状态下的内燃机的自动停止,能够在内燃机中保持所需的废气压力,并且防止水被吸入到装在内燃机或者排气系统中的废气净化设备中。另外,通过禁止仅在来自电动机的驱动力的作用下驱动车辆的操作的执行,能够延续处于车辆的驱动状态的内燃机操作并且保持所需的废气压力。
在本发明的用于自动启动/停止内燃机的控制设备中,优选提供一种控制装置,在该浸水确定装置确定内燃机的排气系统中有浸水的可能的情况下,该控制装置能够从处于停止状态的内燃机被自动启动的状态或者车辆仅在来自电动机的驱动力的作用力下驱动的状态切换到车辆在来自内燃机的驱动力的作用下被驱动的状态。
根据本发明,通过在内燃机的排气系统中发生浸水之前自动启动内燃机,能够在内燃机中保持所需的废气压力,并且防止水被吸入装在内燃机或者排气系统中的废气净化设备中。另外,通过从车辆仅在来自电动机的驱动力的作用下被驱动的状态切换到车辆在来自内燃机的驱动力的作用下被驱动的状态,能够保持所需的驱动力和处于车辆驱动状态下的内燃机所需的废气压力。
根据本发明,通过禁止处于工作状态的内燃机自动停止,能够在内燃机中保持所需的废气压力,并且能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
根据本发明,通过在达到内燃机的排气系统中发生浸水的状态之前自动启动内燃机,能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
根据本发明,能够根据从安装在排气系统内的温度传感器输出的检测值确定在内燃机的排气系统中是否有浸水的可能。
根据本发明,根据从设置在排气系统中的多个温度传感器中选择的两个温度传感器所输出的两个检测值之间的差值,能够确定在内燃机的排气系统中是否有浸水的可能。
根据本发明,基于设置在排气系统的排气孔附近的液位传感器输出的检测结果,能够确定在内燃机的排气系统中是否有浸水的可能。
根据本发明,即使在确定在内燃机的排气系统中有浸水的可能的情况下,通过使内燃机怠速工作的目标发动机速度增加预定值,能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
根据本发明,能够在内燃机中保持所需的废气压力,并且能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。
根据本发明,通过在内燃机的排气系统中发生浸水之前自动启动内燃机,当启动内燃机时,能够防止水从车辆的外部进入装有废气净化设备等的内燃机的排气系统。另外,在车辆的驱动状态下,能够防止水进入排气系统同时保持所需的驱动力。
对附图的简要说明

图1为表示装有根据本发明一个实施例的用于自动启动/停止内燃机的控制设备的混合型车辆的框图。
图2为表示根据本发明一个实施例的用于自动启动/停止内燃机的控制设备的框图。
图3为表示根据本发明一个实施例的内燃机的排气系统的框图。
图4为表示废气温度和排气孔温度的变化的示例的图表。
图5为表示废气温度和排气孔温度TEND之间随着时间变化的温度差变化的示例的曲线。
图6为表示废气温度和排气孔温度TEND之间的温度差随时间变化的示例的曲线。
图7为表示用于确定是否有可能在内燃机中发生浸水的步骤的流程图。
图8为表示用于确定是否应该执行怠速停止的步骤的流程图。
图9为表示用于确定是否应该执行怠速停止的步骤的流程图。
图10为表示用于确定内燃机是否应该重新启动的步骤的流程图。
图11为表示用于确定内燃机是否应该重新启动的步骤的流程图。
图12为表示根据本实施例一个变型示例的浮动型液位检测设备的框图。
图13为表示根据本实施例一个变型示例的光学型液位检测设备的框图。
图14为表示根据本实施例一个变型示例的传导类型的液位检测设备的框图。
图15为表示在本实施例的一个变型示例中的用于确定是否在内燃机中可能发生浸水的步骤的流程图。
具体实施例方式
下面将参照附图对根据本发明一个实施例的用于自动启动/停止内燃机的控制设备进行描述。
例如,在图1中所示的根据本实施例的用于自动启动/停止内燃机的控制设备10被安装在四轮驱动型的混合型车辆1中,其中,内燃机(ENG)11、前电动发电机(F-M/G)12和传动机构(T/M)13通过前差速器DF串联到前车轮Wf上,并且,后电动发电机(R-M/G)14通过后差速器DR连接到后车轮Wr上。如图2所示,该控制设备包括主电池(BATT)15、前动力驱动单元(F-PDU)16、后动力驱动单元(R-PDU)17、DC-DC转换器(DC/DC)18、辅助电池19、电池ECU21、前电动机ECU22、后电动机ECU23、FIECU24、T/MECU25和管理ECU26。
在混合型车辆1中,通过在左、右前车轮Wf之间分配驱动力的前差速器DF使来自内燃机11和前电动发电机12的驱动力从诸如自动传动机构(AT)、CAT或者人工传动机构(MT)的传动机构13通过离合器CF被传送到前车轮Wf上。
通过在左、右后车轮Wr之间分配驱动力的后差速器DR使来自后电动发电机14的驱动力通过离合器CR被传送到后车轮Wr上。
这里,例如,如果安装在前差速器DF中的离合器CF被接合,并且安装在后差速器DR中的离合器CR的接合被脱开,那么仅前车轮Wf被驱动,形成了前车轮驱动状态。另外,如果离合器CR被接合,那么前车轮Wf和后车轮Wr被驱动,形成了四轮驱动状态。在四轮驱动状态下,在左、右后车轮Wr之间的驱动力的分配是可控制的。
当混合型车辆1减速时,如果驱动力从前车轮Wf被传送到前电动发电机12,并且从后车轮Wr传送到后电动发电机14,那么相应的电动发电机12和14用作产生所谓的再生制动力的发电机,以电能的形式回收车体的动能。
在接收到来自相应的电动机ECU22和ECU23的控制指令后,相应的电动发电机12和14的驱动和再生(发电)操作由相应的动力驱动单元16和17执行。
与电动发电机12和14之间执行电能转换的高压系统的主电池15与例如装有利用脉冲宽度调制(PWM)的PWM变换器的动力驱动单元16和17相连接。主电池15具有串联的多个模块,其中一个模块由多个串联的电池构成。另外,主电池15通过DC-DC转换器18与12伏地辅助电池19相连。辅助电池19驱动各个辅助设备。
由管理ECU26控制的DC-DC转换器18通过逐步降低主电池15的端电压或者在相应的动力驱动单元16和17中逐步降低由相应的电动发电机12和14产生的电压为辅助电池19充电。
相应的动力驱动单元16和17和DC-DC转换器18相对于主电池15是并联的。
电池ECU21不仅保护主电池15,而且还计算电池的充电状态SOC和计算能够从主电池15输出的放电量和能够被充电到主电池15的充电量。另外,电池ECU21可根据电池的充电状态SOC、端电压的检测值、温度和主电池15的放电电流以及充电电流的检测值的变化曲线来确定主电池15是否劣化。因此,从用于检测主电池15的输入和输出电流的电流传感器(未示出)输出的检测信号和用于检测主电池15的端电压的电压传感器(未示出)输出的检测信号被输入到电池ECU21。
相应的电动机ECU22和23根据从管理ECU26输入的驱动和再生扭矩指令控制电动发电机12和14的驱动和再生操作。
FIECU24控制内燃机11的工作状态,例如来自于燃料喷射阀的燃料供给量、点火器的点火定时和启动电动机的工作状态。
T/MECU25控制传动机构13的变速操作。
管理ECU26协调地控制电池ECU21、电动机ECU22和23、FIECU24、T/MECU25和DC-DC转换器的相应操作。
如下所述,FIECU24控制车辆的驱动状态。尤其是,它根据排气系统中的浸水的存在/不存在或者其发生的可能控制内燃机11的怠速操作的停止和重新启动。这里,FIECU24例如根据排气系统的温度确定浸水的存在/不存在或者发生浸水的可能。
例如,如图3所示,与内燃机11的相应气缸相连并且构成排气歧管的排气管31安装有用于净化废气中的诸如HC、CO和NOx的组分的废气净化设备32。这种废气净化设备32安装有用于检测催化剂温度(催化剂温度TCAT)的CAT温度传感器33,并且从CAT温度传感器33输出的检测信号被输入到FIECU24。
另外,排气管31装有消声器34。排气孔31a位于消声器34的下游。用于检测排气孔31a的温度(排气孔温度TEND)的排气孔温度传感器35安装在排气孔31a附近。从排气孔温度传感器35输出的检测信号被输入到FIECU24。
例如,如图4所示,如果内燃机11处于长于预定的时间的停止状态,内燃机11就在时间t1处被启动,接着在时间t1之后,被引入到废气净化设备32的废气的温度(例如,废气温度等于催化剂温度TCAT)随着内燃机11的发动机温度的升高而升高。
例如,当在良好的天气下正常行驶时,并且在排气孔31a中没有发生浸水的情况下,排气孔温度TEND(晴天)低于催化剂氛围的废气温度。
另一方面,当在雨天正常行驶时,排气孔温度TEND(雨天)低于良好的天气TEND(晴天)相对应的排气孔温度。这是由于大气中的湿度较大。
另外,当在河床中驾驶时,排气孔31a被浸水,接着排气孔温度TEND(水下)低于在雨天TEND(雨天)中相对应的排气孔温度,并且也低于预定温度。
因此,如图5所示,在排气孔31a或者排气孔31a周围发生浸水的情况下,在废气温度和排气孔温度TEND(废气温度-排气孔温度TEND)之间的温度差增大,并且高于预定的温度差。因此,FIECU24能够基于在排气系统中的不同位置之间的温度差来区分已经在排气孔31a或者排气孔31a周围发生浸水的状态和在排气孔31a或者排气孔31a周围没有发生浸水的状态(诸如在晴天和雨天下)。
另外,例如,在内燃机11处于临时的怠速停止状态,并且然后被重新启动的情况下,如果具有较高温度的内燃机11被启动,那么如图6所示,催化剂氛围的废气温度和排气孔温度TEND之间的温度差高于内燃机在时间t1处启动之前的预定温度差。然后,随着启动内燃机11,高温废气从废气净化设备32流到排气孔31a。当排气孔31a和排气孔31a的周边没有被浸水时,在催化剂氛围的废气温度和排气孔温度TEND之间的温度差下降,并且低于预定温度差。
在这种状态下,当在河床中驾驶并从时间t2起在排气孔31a或者排气孔31a周围发生浸水时,排气孔31a被冷却,这样导致在催化剂氛围的废气温度和排气孔温度TEND之间的温度差增大,并且高于预定温度差。
因此,基于在排气系统中的不同位置之间的随时间变化的温度差,FIECU24能够确定排气系统中的存在/不存在浸水,并且确定是否有在排气系统中浸水的可能。
如果FIECU24确定在排气系统中已经发生浸水或者有排气系统中浸水的可能,那么禁执行处于驱动状态下的内燃机11的怠速停止的执行,或者处于怠速停止状态的内燃机11被重新启动,以防止水从车辆的外部进入排气系统。
另这一点上,当FIECU24确定在排气系统中已经发生浸水或者有排气系统中浸水的可能时,禁止执行仅在来自相应的电动发电机12和14的驱动力作用下驱动车辆的操作。或者,所述状态可从仅在来自相应的电动发电机12和14的驱动力作用下驱动车辆的状态切换到在来自于内燃机11的驱动力作用下驱动车辆的状态。
在这一点上,FIECU24使用于内燃机11的怠速操作的目标发动机速度增大预定的速度,并且增加了废气量,以进一步防止水从车辆外部进入排气系统中。
根据本发明的用于自动启动/停止内燃机10的控制设备包括上述结构。下面将参照附图对用于自动启动/停止内燃机10的控制设备的操作进行描述,具体地说,步骤为根据从CAT温度传感器33输出的催化剂温度TCAT和从排气孔温度传感器35输出的排气孔温度TEND确定排气系统中存在/不存在浸水或者浸水发生的可能;以及根据上述确定来确定是否能够执行内燃机11的怠速停止以及是否能够执行从怠速停止状态的内燃机的重新启动。
下面参照图7对用于确定是否在内燃机11中发生浸水的可能的步骤进行描述。该步骤以间隔预定的时间例如每10msec被主流程(未示出)调用的方式在FIECU24中执行。
首先,在图7所示的步骤S01中,确定由安装在废气净化设备32中并且检测催化剂(CAT)的温度(TCAT)的CAT温度传感器33检测的催化剂温度TCAT是否高于预定的温度TCAT1。
当结论是“YES”时,流程执行下面描述的步骤S04。
另一方面,当结论是“NO”时,流程执行步骤S02,并且浸水确定标记F_INUN的标记值被设定为“1”。接着,流程执行步骤S03,其中表示处于内燃机11的怠速工作状态下的目标发动机速度增大了预定转速的目标怠速速度增加标记F_INEUP的标记值被设定为“1”。一旦设定后,该系列步骤完成。
在步骤S04中,内燃机11的排气系统的排气孔温度(TEND)由排气孔温度传感器35检测,并且通过从排气孔温度TEND中减去催化剂温度TCAT所得到的数值被设定为温度差ΔT。
接着,在步骤S05中,确定温度差ΔT是否高于预定的温度差ΔT1。
当步骤S05的结论为“YES”时,流程执行上面描述的步骤S02。
另一方面,当步骤S05的结论是“NO”时,流程执行步骤S06。
在步骤S06中,浸水确定标记F_INUN的标记值被设定为“0”,流程执行步骤S07。在步骤S07中,怠速速度增加标记F_INEUP的标记值设定为“0”,该系列步骤完成。
下面将参照图8和图9对用于确定是否应该执行怠速停止的步骤进行描述。该步骤以预定的时间间隔例如每10msec被主流程(未示出)调用的方式在FIECU24中执行。是否应该执行怠速停止由怠速停止执行确定标记F_FCMG的标记值确定。当怠速停止执行确定标记F_FCMG的标记值为“1”时,然后当返回主流程时,执行怠速停止控制。当怠速停止执行确定标记F_FCMG的标记值为“0”时,不执行怠速停止控制。
首先,在图8所示的步骤S11中,确定怠速停止执行确定标记F_FCMG的标记值是否为“1”。
当结论为“YES”时,该系列步骤完成。
另一方面,当结论为“NO”时,流程执行步骤S12。
在步骤S12中,确定表示可能利用前电动发电机12的驱动力启动内燃机11的标记F_MOTSTB的标记值是否为“1”。
当结论为“NO”时,流程执行步骤S13,如图9所示。在步骤S13中,表示在当车辆减速行驶时燃料供给取消状态下制动器处于OFF状态的标记F_FCBRK的标记值被设定为“0”,该系列步骤完成。
另一方面,当结论为“YES”时,流程就执行步骤S14。
在步骤S14中,确定表示主电池15的充电状态高于预定充电状态的标记F_SOCOK的标记值是否为“1”。
当步骤S14的结论为“NO”时,即主电池15的充电状态低于预定充电状态,流程就执行上述步骤S13。
另一方面,当步骤S14的结论为“YES”时,即主电池15的充电状态高于预定充电状态,流程执行步骤S15。
在步骤S15中,确定浸水确定标记F_INUN的标记值是否为“1”。
当结论为“NO”时,即在内燃机11中没有浸水的可能,流程就执行上述步骤S13。
另一方面,当结论为“YES”时,即,存在内燃机11中浸水的可能,流程就执行步骤S16。
在步骤S16中,确定IDLE确定标记F_THIDLMG的标记值是否为“1”。
当结论为“YES”时,即驾驶员执行的加速踏板的操作量未完全闭合,流程就执行上述步骤S13。
另一方面,当结论为“NO”时,即,驾驶员执行的加速踏板的操作量完全闭合,流程就执行步骤S17。
在步骤S17中,确定表示主电池15的充电状态高于允许怠速停止的执行的预定最小充电状态的怠速停止执行确定标记F_FCMGBAT的标记值是否为“1”。该设定是这样的,即例如根据车辆中的功率消耗,允许怠速停止的执行的预定最小充电状态发生变化。
当结论为“YES”时,即主电池15被充电到允许怠速停止的执行的程度,流程就执行上述步骤S13。
另一方面,当结论为“NO”时,即主电池15没有被充电到允许怠速停止的执行的程度,流程就执行步骤S18。
在步骤S18中,确定表示已经检测到的制动踏板的开(例如制动踏板已经被驾驶员压下)/关状态的标记F_OKBRKSW的标记值是否为“1”。例如基于发动机速度、车辆速度、档位等设定该标记值。
当结论为“NO”时,流程就执行上述步骤S13。
另一方面,当所有结论是“YES”时,流程就执行步骤S19。
在步骤S19中,确定表示在预定时段从脉冲发生器输出的脉冲异常的标记F_VPFCMG的标记值是否为“1”。脉冲发生器设置在轮(前车轮Wf和后车轮Wr)上以基于轮速检测车辆速度。
当步骤S19的结论为“YES”时,流程就执行上述步骤S13。
另一方面,当步骤S19的结论为“NO”时,流程就执行如图9中所示的步骤S20。
在如图9所示的步骤S20中,确定车辆速度VP是否超过预定车辆速度#VIDLST(例如,3km/h)。
当结论为“NO”时,流程执行下文描述的步骤S28。
另一方面,当结论为“YES”时,即,车辆速度VP超过预定车辆速度#VIDLST,然后确定车辆已经开始移动,流程执行步骤S21。在步骤S21中,根据车辆速度VP将怠速停止执行确定标记F_FCMGV的标记值设定为“1”。
当车辆速度VP增加到大于预定车辆速度时,怠速停止执行确定标记F_FCMGV的标记值变为“1”,并且表示车辆已经开始移动。而且在重新启动频率CNTL中储存有离散值,例如为已经达到啮合状态的次数。
接着,在步骤S22中,确定车辆速度VP是否超过预定车辆速度#VFCMGST(例如,30km/h)。
当结论为“YES”时,流程执行上述步骤S13。
另一方面,当结论为“NO”时,那么流程执行步骤S23。
在步骤S23中,确定表示车辆的驱动状态处于减速状态的标记F_VDEC的标记值是否为“1”。在其中车辆的减速度超过预定值(例如,0.05G)的情况下标记F_VDEC的标记值为“1”。
当步骤S23的结论为“NO”时,系列步骤完成了。
另一方面,当结论为“YES”时,流程执行步骤S24。
在步骤S24中,确定表示车辆速度中的偏差超过预定值的标记F_NDLY的标记值是否为“1”。
当结论为“YES”时,流程执行如下描述的步骤S27。
另一方面,当结论为“NO”时,流程执行步骤S25。
连续地执行流程的步骤S25和步骤S26。在步骤S25中,确定表示用于取消燃料供给的减速度F/C是否仍然处于车辆减速状态中的标记F_FCBRK的标记值是否为“1”。在步骤S26中,确定表示制动器是否由驾驶员操纵的标记F_BKSW的标记值是否为“1”。
当步骤S25的结论为“YES”或者步骤S26的结论为“NO”时,系列步骤完成。
另一方面,当步骤S25的结论为“NO”,并步骤S26的结论为“YES”时,那么流程执行步骤S27。
在步骤S27中,将怠速停止执行确定标记F_FCMG的标记值设定为“1”,系列步骤完成。
而且,在步骤S28中,确定表示换挡位置处于空挡已经超过预定时段以上的标记F_NDLY的标记值是否为“1”。
当结论为“YES”时,流程执行上述步骤S27。
另一方面,当结论为“NO”时,流程执行步骤S29。
在步骤S29中,确定根据车辆速度VP的怠速停止执行确定标记F_FCMGV的标记值是否为“1”。
当结论为“NO”时,系列步骤完成。
另一方面,当结论为“YES”时,那么流程执行上述步骤S27。
在下文中将参照图10和图11描述涉及确定当处于怠速停止状态中时是否应执行内燃机11的重新启动的步骤。该步骤以预定的时间间隔例如每10msec被主流程(未示出)调用的方式在FIECU24中执行。
是否应重新启动内燃机11取决于怠速停止执行确定标记F_FCMG是否将被设定为“0”。也就是说,当怠速停止执行确定标记F_FCMG为“0”时,然后在返回到主流程之后,执行内燃机11的重新启动控制,而当标记值为“1”时不执行所述控制。
首先,在图10所示的步骤S51中,确定怠速停止执行确定标记F_FCMG的标记值是否为“1”。
当结论为“YES”时,流程执行下文所描述的步骤S55。
当结论为“NO”时,流程执行步骤S52。
在步骤S52中,确定表示内燃机11处于失速状态(即,发动机速度NE为零)的标记F_MEOF的标记值是否为“1”。
当步骤S52的结论为“YES”时,即,发动机速度NE在禁止执行怠速停止的状态下(例如当车辆在啮合状态停止中时)变为零,流程执行下文所描述的步骤S55。
另一方面,当步骤S52的结论为“NO”时,流程就执行步骤S53。
在步骤S53中,将表示车辆已停止的标记F_VSTP的标记值设定为“0”,流程就执行步骤S54。
在步骤S54中,将表示在换挡位置处于空挡时离合器已被设定处于接合状态并且已经执行啮合操作的标记F_INGMG的标记值设定为“0”,系列步骤完成。
在步骤S55中,确定浸水确定标记F_INUN的标记值是否为“1”。
当结论为“NO”时,即在内燃机11中没有浸水的可能,流程就执行下文所描述的步骤S57。
另一方面,当结论为“YES”时,即,在内燃机11中有浸水的可能,流程就执行步骤S56。
在步骤S56中,将怠速停止执行确定标记F_FCMG的标记值设定为“0”,流程执行上述步骤S53。
而且,在步骤S57中,确定表示车轮处于转动中的标记F_VCLRUN的标记值是否为“1”。
当步骤S57中的结论为“YES”时,流程就执行下文所描述的步骤S60。
另一方面,当步骤S57中的结论为“NO”时,那么流程执行步骤S58。在步骤S58中将表示车辆已停止的标记F_VSTP的标记值被设定为“1”。然后流程执行步骤S60。参照该标记F_VSTP的标记值,可确定车辆过去何时已停止,以及车辆停止的次数。
在步骤S60中,确定表示起动器开关处于处于接通状态的标记F_STS的标记值是否为“1”。
当步骤S60的结论为“YES”时,流程执行步骤S61。在步骤S61中,将表示当车辆停止时禁止怠速停止的执行的标记F_IDLREST的标记值设定为“1”。流程就执行步骤S62,在步骤S62中将根据车辆速度VP的怠速停止执行确定标记F_FCMGV的标记值设定为“0”。然后流程执行步骤S63,在步骤S63中将表示减速度F/C进行中的标记F_FCBRK的标记值设定为“1”。流程就执行上述步骤S56。
另一方面,当步骤S60的结论为“NO”时,流程就执行步骤S64。在步骤S64中,确定在离合器被接合的同时,表示达到啮合状态的标记F_INGMG的标记值是否为“1”。
当步骤S64的结论为“YES”时,确认驾驶员在打算重新启动内燃机11的情况下压下离合器之后将换挡机构推入到啮合状态中。实际上甚至如果由于快速的操作使得驾驶员在压下离合踏板之前将换挡机构推入到啮合状态中的话,那么为了在再一次压下离合踏板的情况下重新启动内燃机11,流程执行上述步骤S61。
另一方面,当步骤S64的结论为“NO”时,流程执行步骤S65。
在步骤S65中,确定表示车辆停止的标记F_VSTP的标记值是否为“1”。
当结论为“YES”时,流程就执行步骤S67。
另一方面,当结论为“NO”时,即离合踏板被压下并不存在已经停止的车辆的历史记录并且车辆滑行时,流程执行步骤S66,其中确定IDLE确定标记F_THIDLMG的标记值是否为“1”。
当步骤S66的结论为“YES”时,即驾驶员所执行的加速踏板的操作量未完全闭合时,流程执行上述步骤S63。这意味着当在滑行时压下离合踏板并压下加速踏板时,发动机被重新启动。
另一方面,当结论为“NO”时,即驾驶员执行的加速踏板的操作量完全闭合时,流程就执行步骤S67。
在步骤S67中,确定表示在上次操作时换挡位置处于空挡的标记F_NSW的标记值是否为“1”。
当结论为“NO”时,流程就执行下文所描述的步骤S72。
另一方面,当结论为“YES”时,流程执行步骤S68,并且确定这次标记F_NSW的标记值是否为“1”。
当步骤S68的结论为“YES”时,流程执行下文所描述的步骤S76。
另一方面,当步骤S68的结论为“NO”时,即离合踏板被压下并且已执行齿轮变速,流程执行步骤S62。
在图11中所示的步骤S72中,确定表示目前制动器正由驾驶员操纵的标记F_BKSW的标记值是否为“1”。
当步骤S72的结论为“YES”时,那么流程执行稍后描述的步骤S74。
另一方面,当步骤S72的结论为“NO”时,流程执行步骤S73,在步骤S73中,确定表示车辆已停止的标记F_VSTP的标记值是否为“1”。
当步骤S73的结论为“YES”时,系列步骤完成。
另一方面,当步骤S73的结论为“NO”时,即驾驶员未压下离合踏板(离合器处于接合状态中),换挡位置处于空挡,驾驶员未压下制动踏板(制动器OFF状态),并且不存在车辆已停止的历史记录,确定驾驶员有滑行的意图,而停止车辆的意图是未知的(包括没有停止车辆的意图的情况)。因此,为了重新启动内燃机11以准备好驱动操作(例如加速操作),流程就执行上述步骤S63。
在步骤S74中,确定连接于制动踏板的助力器的制动器主动力负压MPGA是否超过预定值#MPFCMG。
当结论为“NO”时,即当制动器主动力负压MPGA已减小并且制动踏板的反应较强时,确定驾驶员在使制动器有效方面可能有困难。为了重新启动内燃机11以便确保所要的负压,流程返回到上述步骤S61。
另一方面,当结论为“YES”时,流程执行步骤S75。
在步骤S75中,确定表示制动踏板已被接通和切断的次数是否已超过预定数量使得制动器泵(brake pumping)已执行的标记F_PBRK的标记值是否为“1”。
当步骤S75的结论为“YES”时,即驾驶员经常使用制动器泵,从而确定存在制动器主动力负压MPGA可能过度减小的可能,于是重新启动内燃机11以便确保所要的负压,流程就执行上述步骤S61。
另一方面,当步骤S75的结论为“NO”时,系列步骤完成。
在步骤S76中,确定表示主电池15的充电状态高于预定充电状态的标记F_SOCOK的标记值是否为“1”。
当步骤S76的结论为“NO”时,即在前面的过程循环和本次过程循环中的换挡位置处于空挡,并且主电池15的充电状态低于预定充电状态,流程执行上述步骤S61。
另一方面,当步骤S76的结论为“YES”时,即主电池15的充电状态高于预定充电状态,流程执行步骤S77。
在步骤S77中,确定IDLE确定标记F_THIDLMG的标记值是否为“1”。
当步骤S77的结论为“YES”时,即驾驶员执行的加速踏板的操作量未完全闭合,流程返回到上述步骤S61。
另一方面,当步骤S77的结论为“NO”时,即驾驶员执行的加速踏板的操作量完全闭合,流程执行上述步骤S74。
如上所述的,根据本发明的用于自动启动/停止内燃机10的控制设备,如果确定出可能在内燃机11的排气系统中浸水的话,就通过在操作状态中禁止内燃机11的自动停止,可保持内燃机11的期望排气压力,并防止水进入装有废气净化设备32等的排气系统中。另外,通过禁止仅由来自各自电动发电机12和14的驱动力驱动车辆的操作的执行,可在车辆的驱动状态中连续地操纵内燃机11,并且保持期望的排气压力。
另外,通过在内燃机11的排气系统中实际上被浸水之前自动地启动内燃机11,可保持内燃机11的期望排气压力,并且防止水进入到装有废气净化设备32等的排气系统中。另外,通过从车辆仅由来自各自的电动发电机12和14的驱动力下行驶的状态中切换到车辆在来自内燃机11的驱动力下行驶的状态中,可在内燃机11中保持期望排气压力,同时在车辆驱动状态中保持期望驱动力。
在本实施例中,基于在排气系统中的不同位置之间的随时间变化的温度差,FIECU24确定出在排气系统中浸水的存在/不存在以及确定是否存在排气系统中有浸水的可能。但是,该确定不局限于此,例如可将液面检测设备安置在排气管31的排气孔31a附近,并且可根据从所述液面检测设备中输出的检测信号确定出排气系统中浸水的存在/不存在以及确定出是否有排气系统中浸水的可能。
可使用各种液面检测设备,例如浮动型的、光学型的以及传导型的液面检测设备。
例如,如图12所示的浮动型液面检测设备40包括浮动开关;圆柱形浮动导向器41;沿中心轴P可移动地容纳在浮动导向器41内部的球形浮子42;以及行程开关(lead switch)43,该行程开关43被布置在中心轴线P上浮动导向器41内部的一端处。浮动导向器41具有多个开口41a,该开口41a将用于检测的液体导入内部,并且将该液体排到外部。在浮子42内部安置有永久性磁体(未示出)。
图12所示的浮动型液面检测设备40被设定为使得中心轴线P平行于垂直方向,其中具有行程开关43的端部竖直地位于另一端上方。例如,当用于检测的液体液面沿垂直方向逐渐升高并进入浮动导向器41时,浮子42沿垂直方向从其初始位置F0升高到上限位置F1。例如,由于来自安置在浮子42中的永久性磁体的激励,这导致在正常情况下被设定为打开(OFF状态)的行程开关43的接触点变为关闭(ON状态)。
另外,图13所示的光学型液面检测设备50包括例如由例如透光树脂等光学透明材料构成的透光材料51;以及布置在透光材料51中的包括例如发光二极管的发光元件52和包括例如光电二极管的光测器53。该结构是这样的,即使得发光元件52被布置为使得从发光元件52中朝向透光材料51的外表面51A发射的光束La被完全反射在透光材料51的外表面51A上,该透光材料51的外表面51A例如暴露在大气中,并且由该全反射导致的反射光束Lb通过透光材料51被传输并到达光测器53。
然后,例如,如图13所示,光学型液面检测设备50被布置为使得透光材料51的外表面51A的正交轴线Q平行于垂直方向。在这种情况下,在由于检测的液体的液面沿垂直方向逐渐升高使得透光材料51的外表面51A浸入液体中的情况下,折射率减小,从而不再实现全反射,并且穿过液体发射的光束La作为透射光束Lc。因此,与其中当透光材料51的外表面51A暴露在大气中的正常状态(OFF状态)相比较,当透光材料51的外表面51A浸入液体中(ON状态)时在光测器53处检测的接收到的光线量较低。
而且,图14所示的传导型液面检测设备60包括例如由连接于电源E的导体构成的芯线61;覆盖芯线61的第一涂层62;由接地线构成的屏蔽线63,其沿芯线61延伸的方向R螺旋形地绕在第一涂层62的外圆周表面上直到预定位置;以及覆盖绕在屏蔽线63上的第一涂层62的外圆周表面的第二涂层64。
第一涂层62包括由传导性氟树脂构成的传导部分62a,该传导部分62a覆盖芯线61的一端61a,以及由绝缘性氟树脂构成的绝缘体62b,该绝缘体62b覆盖除端部61a之外的所有芯线61。
第二涂层64包括由传导性氟树脂构成的传导部分64a,该传导部分64a覆盖包括沿芯线61延伸的方向R靠近预定位置的屏蔽线63的一端63a的第一涂层62的外圆周表面,以及由绝缘性氟树脂构成的绝缘体64b,该绝缘体64b覆盖沿芯线61延伸的方向R靠近预定位置之外的部分。
然后,例如,如图14中所示,传导型液面检测设备60被设定为使得沿芯线61延伸的方向R平行于垂直方向,并且芯线61的端部61a被竖直地布置在另一端61b的下方。在这种状态下,如果用于检测的液体(例如水)的液面沿垂直方向逐渐升高,从而第一涂层62的传导部分62a和第二涂层64的传导部分64a浸入液体中,电流就通过该液体在传导部分62a和传导部分64a之间流过。因此,与当第一涂层62的传导部分62a和第二涂层64的传导部分64a暴露在大气(OFF状态)的正常状态相比较,当第一涂层62的传导部分62a和第二涂层64的传导部分64a浸入在液体中(ON状态)时,由连接于屏蔽线63的电流传感器检测的电流值较高。
在包括液面检测设备40、50或60的用于自动启动/停止内燃机的控制设备的操作中,具体地说,在用于确定是否在内燃机11中发生浸水的可能的步骤S01到步骤S07的过程中,可省略掉步骤S01和步骤S04。并且如图15所示,执行步骤S91来代替步骤S05。
在步骤S91中,确定各自液面检测设备40、50或60的检测结果是否处于ON状态。也就是说,在浮动型液面检测设备40中,确定行程开关43的接触点是否处于关闭状态,在光学型液面检测设备50中,确定由光测器53检测的光线量是否已减小到预定值以下,或者在传导型液面检测设备60中,确定由电流传感器检测的电流值是否增加到预定值以上。
当结论为“NO”时,流程执行上述步骤S06。
另一方面,当结论为“YES”时,流程就执行上述步骤S02。
虽然以上已描述并示出了本发明的优选实施例,但是应该理解为这些实施例为本发明的示例并且不应被认为具有限制性。在不脱离本发明的精神或保护范围的前提下可进行补充、省略、替换以及其他修改。因此,本发明不局限于前面的描述,并且只受所附权利要求范围的限制。
权利要求
1.一种用于自动启动/停止内燃机的控制设备,所述控制设备能够根据车辆的驱动状态自动地停止或者自动地启动作为车辆的驱动源而提供的内燃机,所述控制设备包括浸水确定装置,其确定在所述内燃机的排气系统中是否有浸水的可能;以及自动停止禁止装置,其在所述浸水确定装置确定所述内燃机的排气系统中存在浸水的可能的情况下,禁止所述内燃机的自动停止的执行。
2.如权利要求1所述的用于自动启动/停止内燃机的控制设备,还包括启动装置,该启动装置在所述浸水确定装置确定内燃机的排气系统中有浸水的可能的情况下能够自动启动处于停止状态的所述内燃机。
3.如权利要求1所述的用于自动启动/停止内燃机的控制设备,还包括温度传感器,该温度传感器检测废气温度或者与所述废气温度相关的状态量,其特征在于,所述浸水确定装置根据从所述温度传感器输出的检测值确定在所述内燃机的排气系统中是否有浸水的可能。
4.如权利要求3所述的用于自动启动/停止内燃机的控制设备,还包括数个所述温度传感器,其特征在于,所述浸水确定装置根据从所述数个温度传感器中的任意两个输出的检测值之间的差值确定在所述内燃机的排气系统中是否有浸水的可能。
5.如权利要求1所述的用于自动启动/停止内燃机的控制设备,还包括液位传感器,该液位传感器设置在所述内燃机中的排气系统的排气孔附近,并且检测用于检测的液体的液面高度,或者与所述液面高度相关的性质,其特征在于,所述浸水确定装置根据从所述液位传感器输出的检测值确定在所述内燃机的排气系统中是否有浸水的可能。
6.如权利要求1所述的用于自动启动/停止内燃机的控制设备,还包括发动机加速装置,该发动机加速装置在所述浸水确定装置确定在所述内燃机的排气系统中有浸水的可能的情况下,使所述内燃机怠速工作的目标发动机速度增加一个预定值。
7.如权利要求1所述的用于自动启动/停止内燃机的控制设备,还包括作为独立于所述内燃机的所述车辆的驱动源而设置的电动机,以及禁止装置,该禁止装置在所述浸水确定装置确定所述内燃机的排气系统中有浸水的可能的情况下,禁止所述内燃机的自动停止操作的执行,或者禁止仅在来自所述电动机的驱动力的作用下驱动所述车辆的操作的执行。
8.如权利要求7所述的用于自动启动/停止内燃机的控制设备,还包括控制装置,该控制装置在所述浸水确定装置确定所述内燃机的排气系统中有浸水的可能的情况下,从处于停止状态的所述内燃机被自动启动的状态或者所述车辆仅在来自所述电动机的驱动力的作用下驱动的状态,切换到所述车辆在来自所述内燃机的驱动力的作用下驱动的状态。
全文摘要
用于检测催化剂温度(催化剂温度TCAT)的CAT温度传感器被设置在排气管的废气净化设备中,并且用于检测排气孔温度(排气孔TEND)的排气孔温度传感器被设置在排气孔附近。在催化剂温度TCAT高于预定温度TCAT1的情况下或者在通过从排气孔温度TEND减去催化剂温度TCAT所得到的温度差ΔT高于预定的温度差ΔT1的情况下,FIECU将浸水确定标记F_INUN设定为“1”,并且将表示处于内燃机的怠速工作状态下的目标发动机速度增大预定转速的怠速速度增加标记F_INEUP的标记值设定为“1”。
文档编号F02D41/08GK1590737SQ20041005714
公开日2005年3月9日 申请日期2004年8月24日 优先权日2003年8月26日
发明者天沼弘胜, 多多良裕介 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1