用于风机转子叶片的主梁帽组件的制作方法

文档序号:5264123阅读:228来源:国知局
专利名称:用于风机转子叶片的主梁帽组件的制作方法
技术领域
本发明大体上涉及风机的转子叶片,确切地说,涉及厚度不同的转子叶片的主梁帽组件。
背景技术
风能被认为是目前可用的最清洁、最环保的能源,在这一方面,风机已获得广泛关注。现代风机通常包括塔筒、发电机、齿轮箱、机舱以及一片或多片转子叶片。转子叶片使用已知的翼原理捕获风的动能并通过旋转动能传输动能来驱动一个轴,所述轴将转子叶片连接到齿轮箱,或者,如果未使用齿轮箱,则直接连接到发电机。之后,发电机将机械能转换为可以应用到电网中的电能。风机转子叶片大体上包括由复合层压板材料制成的两片壳半体构成的壳体。壳半体通常是使用模制工艺制造的,之后再沿转子叶片的对应边缘连接在一起。一般来说,壳体的重量相对较轻,其所具有的结构特性(如刚度、抗弯阻力和强度)无法承受运行过程中施加在转子叶片上的弯矩和其他负载。为了增强转子叶片的刚度、抗弯阻力和强度,壳体通常会通过使用与壳半体内表面配合的梁帽来进行强化。由此,翼面向或翼展向的弯矩和负载通常会通过主梁帽沿转子叶片转移,所述弯矩和负载会引起转子叶片尾梢朝向风机塔偏转。近年来随着转子叶片的长度不断增加,如何满足强度和刚度的要求已成为转子叶片结构设计中需考虑的一个主要方面。由此,传统叶片设计通常强度过大和/或刚度过大。 尤其是,人们通常将主梁帽设计成对称、且具有相同的宽度、厚度和截面面积。这样通常会导致设计成品较重,叶片质量相对较大、和/或会因不必要的材料成本导致设计成本相对
曰虫印贝。因此,需要一种能在不牺牲转子叶片性能的情况下减小叶片质量和/或降低材料成本的主梁帽设计。

发明内容
以下说明将部分地阐明本发明的各方面内容和优点,或者,可以从说明中显而易见地了解这些方面和优点,或可以通过实践本发明来获悉这些方面和优点。一方面,本发明揭示了一种风机中转子叶片的主梁帽组件。一般来说,所述主梁帽组件可以包括由复合材料制成、且配置成与所述转子叶片的内表面配合的抗拉主梁帽。 所述抗拉主梁帽通常可具有第一厚度和第一截面面积。另外,所述主梁帽组件可包括由所述相同的复合材料制成、且配置成与所述转子叶片的相对内表面配合的抗压主梁帽。所述抗压主梁帽通常可具有第二厚度和第二截面面积,所述第二截面面积大于所述第一截面面积。另外,通常所述复合材料经选择以使得所述复合材料的强度和弹性模量中的至少一个可根据所述材料是处于拉伸状态还是处于压缩状态而不同。抗拉主梁帽配置成与转子叶片的压力侧的内表面配合,抗压主梁帽配置成与转子叶片的吸入侧的内表面配合。抗压主梁帽的第二截面面积比抗拉主梁帽的第一截面面积多出的百分比差异至多为大约70%。抗拉主梁帽具有第一宽度,抗压主梁帽具有第二宽度,所述第一宽度与所述第二宽度可以是实质相等,也可以不同。抗压主梁帽的第二厚度大于抗拉主梁帽的第一厚度。抗压主梁帽的第二厚度比抗拉主梁帽的第一厚度多出的百分比差异至多为大约70%。 抗压主梁帽的第二厚度比抗拉主梁帽的第一厚度多出的百分比差异至多为大约45%。所述复合材料包括通过碳、玻璃纤维、碳混合物、玻璃纤维混合物和碳与玻璃纤维混合物中的至少一个强化的层压板复合材料,所述复合材料也可是碳纤维强化的层压板复合材料。所述复合材料的抗拉强度与抗压强度不同,抗拉强度比抗压强度高出的百分比差异至多为大约85%。所述复合材料的抗拉弹性模量与抗压弹性模量不同,抗拉弹性模量比抗压弹性模量高出的百分比差异至多为大约55%。另一方面,本发明公开了一种风机的转子叶片。所述转子叶片通常可包括在根端与梢端之间延伸的壳体,所述壳体还包括第一内表面和第二内表面。转子叶片还可包括一个抗拉主梁帽和一个抗压主梁帽。抗拉主梁帽通常可由复合材料制成,可配置成与所述壳体的第一内表面配合。另外,抗拉主梁帽可具有第一厚度和第一截面面积。抗压主梁帽通常可由所述相同的复合材料制成,可配置成与所述壳体的所述第二内表面配合。此外,抗压主梁帽通常可具有第二厚度和第二截面面积,所述第二截面面积大于所述第一截面面积。进一步地,通常所述复合材料经选择以使得所述复合材料的强度和弹性模量中的至少有一个可根据所述材料是处于拉伸状态还是处于压缩状态而不同。所述复合材料的抗拉强度与抗压强度不同,所述抗拉强度比所述抗压强度高出的百分比差异至多为大约85%。抗压主梁帽的所述第二厚度比抗拉主梁帽的所述第一厚度多出的百分比差异至多为大约0%到大约70%。其中所述复合材料的抗拉弹性模量与抗压弹性模量不同,所述抗拉弹性模量比所述抗压弹性模量高出的百分比差异至多为大约55%。抗压主梁帽的第二厚度比抗拉主梁帽的第一厚度多出的百分比差异至多为大约45%。抗压主梁帽的第二截面面积比抗拉主梁帽的第一截面面积多出的百分比差异至多为大约70%。所述合成材料复合材料包括通过碳、玻璃纤维、碳混合物、玻璃纤维混合物和碳与玻璃纤维混合物中的至少一个强化的层压板合成材料复合材料。其中,抗压主梁帽的第二厚度大于抗拉主梁帽的第一厚度。参考以下具体说明和所附权利要求书可以更深入地了解本发明的这些以及其他特点、方面和优点。所附附图包括在本说明书内、并构成本说明书的一个部分,显示了本发明的各个实施例,且与具体一起用于解释本发明的原理。


本说明书参考附图阐明了本发明,包括其最佳模式,完整且可实现的详细披露,并面向所属领域一般技术人员,其中图1所示为采用传统结构的风机的透视图;图2所示为转子叶片一个实施例的透视图;以及图3所示为图2所示转子叶片的截面图,具体显示所述转子叶片的各结构部件。
元件符号列表10风机12塔筒14支撑表面16机舱18转子20轮毂22转子叶片沈负载转移区36控制器100转子叶片102根端104梢端106壳体108纵向轴110压力侧112吸入侧114前缘116后缘Il8翼展I2O翼弦122抗拉主梁帽123内表面1 抗压主梁帽125内表面1 抗剪腹板1 内表面130内表面132抗拉主梁帽-厚度134第一翼弦向宽度 136抗压主梁帽-厚度138第二翼弦向宽度
具体实施例方式现在将详细阐述本发明的各实施例,附图中将显示本发明实施例的一个或多个实例。各个实施例用以解释本发明而非限定本发明。事实上,所属领域的一般技术人员轻易就可在不脱离本发明的范围或精神的情况下,对本发明作各种修改和变化。例如,作为一个实施例一部分的特点可用于其他实施例中,从而得到另一个实施例。因此,如果对本发明的修改和变化在所附权利要求书和其等效物的范围内,那么本发明应涵盖此类修改和变化。一般而言,本发明是针对具有厚度不同的主梁帽的转子叶片。尤其是,本发明披露了由相同复合材料制成的主梁帽,所述主梁帽根据复合材料的抗拉和抗压特性而具有不同厚度。例如,当复合材料的抗拉强度和/或弹性模量大于其抗压强度和/或弹性模量时,与一对对称的主梁帽相比,在拉伸状态下负载的主梁帽厚度会减少,而在压缩状态下负载的主梁帽厚度会增加。通过这种方法,本发明的发明人发现,在压缩状态下负载的主梁帽所需增加的厚度通常小于拉伸状态下负载的主梁帽可以减少的总厚度,而不会牺牲转子叶片的抗弯强度、刚度或抗弯阻力。因此,发明人发现,可以通过更改原本对称的转子叶片主梁帽的厚度来适应许多复合材料的抗拉强度和/或模量以及抗压强度和/或模量的变化,从而成功地整体降低材料成本并减小叶片质量。现在请参见附图。图1所示为采用传统结构的风机10的透视图。如图所示,风机 10为水平轴风机。但应了解,风机10可以为垂直轴风机。在所显示的实施例中,风机10 包括从支撑表面14延伸出的塔筒12、安装在塔筒12上的机舱16、和连接到机舱16的转子 18。转子18包括可旋转轮毂20,和至少一片转子叶片22,其连接到可旋转轮毂20、且从所述轮毂20向外延伸。如图所示,转子18包括三片转子叶片22。但在一个替代实施例中,转子18可能包括多于或少于三片转子叶片22。另外,在所示实施例中,塔筒12是使用钢管制造的,以在支撑表面14与机舱16之间界定腔(未显示)。在一个替代实施例中,塔筒12 可以为高度合适的任意合适类型的塔筒。转子叶片22通常具有可使风机10如此处所述一般运行的任意合适长度。另外, 转子叶片22可相隔一定距离排列在轮毂20四周,以促使转子18旋转,从而使风的动能转化成可用的机械能,随后转化成电能。具体而言,轮毂20以可旋转的方式连接到位于机舱 16中的发电机(未显示),以使发电机产生电能。进一步地,转子叶片22可以在多个负载转移区沈处与轮毂20配合。因此,作用到转子叶片22上的所有负载都会通过负载转移区 26转移到轮毂20中。如所示实施例中所显示的,风机还可包括集中在机舱16内的风机控制系统或风机控制器36。但应了解的是,控制器36可以设置在风机10上或风机10中的任意位置,也可以设置在支撑表面14上的任意位置或其他任意位置。控制器36通常可配置成控制风机 10的各种运行模式(例如启动或关机时序)。现在请参考图2和图3,所示为根据本发明各方面而用于同风机10结合使用的转子叶片100的一个实施例。具体而言,图2所示为转子叶片100的实施例的透视图。图3 所示为沿图2所示截面线3-3截得的转子叶片100的截面图。如图所示,转子叶片100通常包括配置成安装或固定在风机10的轮毂20 (图1)上的根端102和设置在根端102对面的梢端104。转子叶片的壳体106通常在根端102与梢端104之间、并沿纵向轴108延伸。壳体106通常可以用作转子叶片100的外壳/罩,可以界定大致的气动廓线,例如,通过界定对称或弧状的机翼形截面。壳体106还可界定在转子叶片100的前缘114与后缘116之间延伸的压力侧110和吸入侧112。进一步地,转子叶片 100还具有界定根端100与梢端102之间的总长度的翼展118,和界定前缘114与后缘116 之间的总长度的翼弦120。众所周知,由于转子叶片100从根端102延伸至梢端104,因此翼弦120的长度通常会相对于翼展118变化。在若干实施例中,转子叶片100的壳体106可以制造成单个整体部件。或者,壳体 106可以由多个壳部件制成。例如,壳体106可由大体上界定转子叶片100的压力侧110的第一壳半体和大体上界定转子叶片100的吸入侧112的第二壳半体制造而成,所述壳半体在叶片100的前缘114和后缘116处互相固定。此外,壳体106通常可以由任意合适的材料制成。例如,在一个实施例中,壳体106可完全由层压板复合材料制成,例如碳纤维强化的层压板复合材料或玻璃纤维强化的层压板复合材料。或者,壳体106的一个或多个部分可配置成分层结构,可包括设置在不同层压板复合材料层之间的芯材料,所述芯材料由木材(如轻木)、泡沫(如挤塑聚苯乙烯泡沫)或此类材料的组合等轻量级材料制成。请详细参见图3,转子叶片100还可包括一个或多个纵向延伸的结构部件,所述结构部件经配置可为转子叶片100增强刚性、抗弯阻力和/或强度。例如,转子叶片100可包括一对纵向延伸的主梁帽122和124,所述主梁帽122和IM配置成分别与壳体106的压力侧110和吸入侧112上的相对的内表面1 和130配合。另外,一块或多块抗剪腹板1 可设置在主梁帽122与IM之间,从而形成臂状配置。主梁帽122和IM通常可经设计以控制在风机10运行过程中施加在转子叶片100上大体沿翼展向(与转子叶片100的翼展118 平行的方向)的弯曲应力和/或其他负载。例如,当风直接在叶片100的压力侧112上施加负载时,转子叶片100上可能就会产生弯曲应力,从而在转子叶片100沿风机塔筒12 (图1)的方向弯曲时,使压力侧112受到翼展向的拉伸,使吸入侧110受到翼展向的压缩。因此,根据本发明的各方面,设置在转子叶片100的压力侧110上的主梁帽 122(以下称为“抗拉主梁帽122”)通常可配置成承受因转子叶片100在受到运行过程中的各种弯矩和其他负载而产生的翼展向拉伸。类似地,设置在转子叶片100的吸入侧112上的主梁帽124(下文以“抗压主梁帽124”指代)通常可配置成承受风机10运行过程中产生的翼展向压缩。具体而言,抗拉主梁帽122和抗压主梁帽IM可各自具有等于主梁帽厚度与主梁帽122和IM各自的翼弦向宽度的乘积的截面面积,所述宽度是沿翼弦120测得,所述翼弦120界定在前缘114与后缘116之间。例如,如图3所示,抗拉主梁帽122通常可具有第一厚度132(界定为抗拉主梁帽122的内表面123与壳体106的内表面1 之间的最大厚度)和第一翼弦向宽度132。另外,抗压主梁帽IM通常可具有第二厚度136(界定为抗压主梁帽124的内表面125与壳体106的内表面130之间的最大厚度)和第二翼弦向宽度138。如下文所述,根据用于制成主梁帽122和124的材料的特性,抗拉主梁帽122和抗压主梁帽1 通常可配置成界定不同的厚度132和136以及不同的截面面积,且性能不会受到影响。一般来说,抗拉主梁帽122和抗压主梁帽IM可由任意合适的复合材料制成,所述复合材料的材料特性(如强度和/或弹性模量)会根据复合材料是处于压缩状态还是拉伸状态而变化。另外,抗拉主梁帽122和抗压主梁帽IM通常可由同样的复合材料制成。因此,在本发明的若干实施例中,抗拉主梁帽122和抗压主梁帽IM可由任意合适的层压板复合材料制成,所述层压板复合材料的抗拉强度和/或弹性模量与复合材料的抗压强度和/ 或弹性模量不同。合适的层压板复合材料可包括利用碳、碳混合物、玻璃纤维、玻璃纤维混合物、碳和玻璃纤维混合物以及其他任意合适的强化材料及其混合物强化的层压板复合材料。例如,在本发明的特定实施例中,抗拉主梁帽122和抗压主梁帽IM可由利用碳纤维强化的层压板复合材料制成,所述层压板复合材料的抗拉强度和/或模量大于所述复合材料的抗压强度和/或模量。所属领域的一般技术人员应了解的是,现已知各种不同纤维强化的层压板复合材料具有不同的抗拉/抗压强度和/或抗拉/抗压弹性模量的比率。例如,碳纤维强化的层压板复合材料在市场上可买到,其抗拉强度与抗压强度之间的百分比差异范围为大于0% 到大约85 %,比如,从大约20 %到大约80 %,或从大约55 %到大约75 %,还可以为其间的其他所有子范围。另外,碳纤维强化的层压板复合材料在市场上可买到,其抗拉弹性模量与抗压弹性模量之间的百分比差异范围为大于0%到大约55%,比如,从大约10%到大约50%, 或从大约15%到大约30%,还可以为其间的其他所有子范围。应了解的是,本专利申请文件所用抗拉特性与抗压特性之间的百分比差异定义为抗拉特性与抗压特性之间的差除以抗拉特性。因此,特定复合材料的抗拉/抗压强度的百分比差异等于该复合材料的抗拉强度与抗压强度之间的差除以其抗拉强度。认识到多种复合材料的抗拉和抗压特性的变化之后,发明人发现,为保持硬度、抗弯阻力和/或强度与使用对称主梁帽(如具有相同厚度、宽度和截面面积的主梁帽)时转子叶片中存在的硬度、抗弯阻力和/或强度相同,抗拉主梁帽122的厚度132通常可减小的量大于抗压主梁帽124的厚度136所需的增加量。由此,可以在不牺牲转子叶片100性能的情况下,获得叶片质量和材料成本的整体降低。
应了解的是,抗拉主梁帽122的厚度132和抗压主梁帽124的厚度136的大小差异通常会根据用于制成主梁帽122和IM的复合材料的抗拉和抗压特性之间的整体差异而变化。但是,在本发明的若干实施例中,抗拉主梁帽122的厚度132与抗压主梁帽124的厚度136之间的百分比差异范围通常为大于0%到大约70%。具体而言,对于抗拉强度与抗压强度之间的百分比差异范围为大于0%到大约85%的复合材料而言,抗拉主梁帽122的厚度132与抗压主梁帽124的厚度136之间的百分比差异范围通常为大于0%到大约70%, 例如,从大约10%到大约65%,或从大约35%到大约60%,还可以为其间的所有其他子范围。但是,对于抗拉强度与抗压强度之间的百分比差异大于85 %的复合材料而言,预计厚度 132与136之间的百分比差异可能大于70%。另外,对于抗拉弹性模量与抗压弹性模量之间的百分比差异范围为大于0%到大约55%的复合材料而言,抗拉主梁帽122的厚度132与抗压主梁帽124的厚度136之间的百分比差异范围通常为大于0%到大约45%,例如,从大约10%到大约40%,或从大约15%到大约35%,还可以为其间的其他所有子范围。但是, 对于抗拉弹性模量与抗压弹性模量之间的百分比差异大于55%的复合材料而言,预计厚度 132与136之间的百分比差异可能大于45%。应了解的是,本专利申请文件中使用的抗拉主梁帽122的厚度132与抗压主梁帽124的厚度136之间的百分比差异定义为抗拉主梁帽 122的厚度132与抗压主梁帽124的厚度136之间的差除以抗拉主梁帽122的厚度132。另夕卜,当抗压主梁帽124的厚度136配置成超过抗拉主梁帽122的厚度132时,抗压主梁帽124的截面面积也可大于抗拉主梁帽122的截面面积。因此,在一个实施例中,抗压主梁帽124的翼弦向宽度138可与抗拉主梁帽122的翼弦向宽度134实质相等。由此, 抗拉主梁帽122和抗压主梁帽124的截面面积差异可与主梁帽122和124的厚度差异成正比。因此,在一个特定实施例中,抗压主梁帽124的截面面积可比抗拉主梁帽122的截面面积多出的百分比差异至多可能为大约70%,例如,从大约10%到大约65%,或从大约35% 到大约60%,还可以为其间的其他所有子范围。或者,抗拉主梁帽122的翼弦向宽度134和抗压主梁帽124的翼弦向宽度138可能会变化,但仍可以保持主梁帽122和124的截面面积之间的差异不变。还应了解的是,每个主梁帽122和IM的厚度132和136以及宽度1;34和138通常可沿着转子叶片100的翼展118变化。例如,在若干实施例中,随着主梁帽122和IM从转子叶片100的根端102朝向梢端104延伸,抗拉主梁帽122和抗压主梁帽124的厚度132 和136及/或宽度134和138可能会减少或增加。在此类实施例中,沿着翼展118的长度, 抗拉主梁帽122与抗压主梁帽IM之间的相对厚度百分比差异可能保持不变,也可能增加或减少。类似地,在抗拉主梁帽122和抗压主梁帽124的厚度132和136及/或宽度134 和138沿转子叶片100的翼展118保持不变的实施例中,抗拉主梁帽122与抗压主梁帽124 之间的相对厚度的百分比可能会沿着翼展118保持不变,也可能增加或减少。此外应了解的是,在本发明的一个替代实施例中,转子叶片100可经过一定的配置,使得叶片100的压力侧110会受到压缩力,而叶片100的吸入侧112会受到拉伸力。在此类实施例中,抗拉主梁帽122通常可设置在转子叶片100的吸入侧112上,而抗压主梁帽 IM则设置在压力侧110上。另外,在一个或多个实施例中,抗拉主梁帽122和抗压主梁帽 1 可由抗压强度和/或模量大于抗拉强度和/或模量的复合材料制成。在此类实施例中, 抗拉主梁帽122的厚度132可经设计以超过抗压主梁帽IM的厚度136。此外,在本发明的另一个替代实施例中,制成抗拉主梁帽122的复合材料可能与抗压主梁帽IM采用的复合材料不同。 本专利申请文件使用实例来披露本发明,包括最佳模式,并使所属领域的任何一般技术人员可以实践本发明,包括制作和使用任何装置或系统,以及执行并入本说明中的任何方法。本发明的可专利性范围由权利要求书界定,可以包括所属领域的一般技术人员想出的其他实例。如果其他此类实例的结构要素与权利要求书的字面意义相同,或如果此类实例的等效结构要素与权利要求书的字面意义无显著差别,则此类实例也属于本发明权利要求书的范围。
权利要求
1.一种用于风机的转子叶片的主梁帽组件,所述主梁帽组件包括由一种复合材料制成、且配置成与所述转子叶片的内表面(128)配合的抗拉主梁帽 (122),所述抗拉主梁帽(12 具有第一厚度(13 和第一截面面积;以及由所述相同的复合材料制成、且配置成与所述转子叶片的相对内表面(130)配合的抗压主梁帽(IM),所述抗压主梁帽(124)具有第二厚度(136)和第二截面面积,所述第二截面面积大于所述第一截面面积,其中所述复合材料经选择以使得所述复合材料的强度和弹性模量中至少有一个可根据所述复合材料是处于拉伸状态还是压缩状态而不同。
2.根据权利要求1所述的主梁帽组件,其特征在于所述抗压主梁帽(124)的所述第二截面面积比所述抗拉主梁帽(12 的所述第一截面面积多出的百分比差异至多为大约 70%。
3.根据权利要求1所述的主梁帽组件,其特征在于所述复合材料包括通过碳、玻璃纤维、碳混合物、玻璃纤维混合物和碳与玻璃纤维混合物中的至少一个强化的层压板复合材料。
4.根据权利要求1所述的主梁帽组件,其中所述复合材料包括碳纤维强化的层压板复合材料。
5.根据权利要求1所述的主梁帽组件,其特征在于所述抗拉主梁帽(12 具有第一宽度(134),所述抗压主梁帽(124)具有第二宽度(138),所述第一宽度(134)与所述第二宽度(138)实质相等。
6.根据权利要求1所述的主梁帽组件,其特征在于所述抗拉主梁帽(12 具有第一宽度(134),所述抗压主梁帽(124)具有第二宽度(138),所述第一宽度(134)与所述第二宽度(138)不同。
7.根据权利要求1所述的主梁帽组件,其特征在于所述抗压主梁帽(124)的所述第二厚度(136)大于所述抗拉主梁帽(12 的所述第一厚度(132)。
8.根据权利要求7所述的主梁帽组件,其特征在于所述复合材料的抗拉强度与抗压强度不同,所述抗拉强度比所述抗压强度高出的百分比差异至多为大约85%。
9.根据权利要求8所述的主梁帽组件,其特征在于所述抗压主梁帽(124)的所述第二厚度(136)比所述抗拉主梁帽(12 的所述第一厚度(13 多出的百分比差异至多为大约 70%。
10.根据权利要求7所述的主梁帽组件,其特征在于所述复合材料的抗拉弹性模量与抗压弹性模量不同,所述抗拉弹性模量比所述抗压弹性模量高出的百分比差异至多为大约 55%。
11.根据权利要求10所述的主梁帽组件,其特征在于所述抗压主梁帽(124)的所述第二厚度(136)比所述抗拉主梁帽(12 的所述第一厚度(13 多出的百分比差异至多为大约45%。
12.根据权利要求1所述的主梁帽组件,其特征在于所述抗拉主梁帽(12 配置成与所述转子叶片的压力侧(110)的所述内表面(128)配合,所述抗压主梁帽(124)配置成与所述转子叶片的吸入侧(112)的所述内表面(130)配合。
13.一种用于风机的转子叶片,所述转子叶片包括在根端(10 与梢端(104)之间延伸的壳体(106),所述壳体(106)包括位于所述转子叶片的压力侧(110)上的第一内表面(128)和位于所述转子叶片的吸入侧(112)上的第二内表面(130);由一种复合材料制成、且配置成与所述壳体(106)的所述第一内表面(128)配合的抗拉主梁帽(122),所述抗拉主梁帽(12 具有第一厚度(13 和第一截面面积;以及由所述相同的复合材料制成、且配置成与所述壳体(106)的所述第二内表面(130)配合的抗压主梁帽(IM),所述抗压主梁帽(124)具有第二厚度(136)和第二截面面积,所述第二截面面积大于所述第一截面面积,其中所述复合材料经选择以使得所述复合材料的强度和弹性模量中至少有一个可根据所述复合材料是处于拉伸状态还是压缩状态而不同。
14.根据权利要求13所述的转子叶片,其特征在于所述复合材料的抗拉强度与抗压强度不同,所述抗拉强度比所述抗压强度高出的百分比差异至多为大约85% ;所述抗压主梁帽(124)的所述第二厚度(136)比所述抗拉主梁帽(122)的所述第一厚度(132)多出的百分比差异至多为大约0%到大约70%。
15.根据权利要求13所述的转子叶片,其特征在于其中所述复合材料的抗拉弹性模量与抗压弹性模量不同,所述抗拉弹性模量比所述抗压弹性模量高出的百分比差异至多为大约55%;所述抗压主梁帽(124)的所述第二厚度(136)比所述抗拉主梁帽(12 的所述第一厚度(132)多出的百分比差异至多为大约45%。
全文摘要
本发明涉及一种用于风机的转子叶片的主梁帽组件。一般来说,主梁帽组件可包括由复合材料制成、且配置成与所述转子叶片的内表面配合的抗拉主梁帽。所述抗拉主梁帽通常可具有第一厚度和第一截面面积。另外,所述主梁帽组件可包括由所述相同的复合材料制成、且配置成与所述转子叶片的相对内表面配合的抗压主梁帽。所述抗压主梁帽通常可具有第二厚度和第二截面面积,所述第二截面面积大于所述第一截面面积。另外,通常所述复合材料经选择以使得所述复合材料的强度和弹性模量中至少有一个可根据所述材料是处于拉伸状态还是处于压缩状态而不同。
文档编号F03D1/06GK102465826SQ201110339070
公开日2012年5月23日 申请日期2011年10月24日 优先权日2010年10月28日
发明者B·C·巴斯贝, P·J·弗里茨, T·默茨霍伊泽 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1