变容式压缩机和具有其的制冷装置的制造方法_2

文档序号:9806832阅读:来源:国知局
领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
[0071]下面参考图1a-图20描述根据本发明实施例的变容式压缩机100。变容式压缩机100可以应用于制冷装置200中,但不限于此。在本申请下面的描述中,以变容式压缩机100应用于制冷装置200为例进行说明。
[0072]如图2和图3所示,根据本发明第一方面实施例的变容式压缩机100,包括壳体1、压缩机构以及变容阀3。
[0073]压缩机构设在壳体I内,压缩机构包括两个轴承和设在两个轴承之间的气缸组件,气缸组件包括变容气缸,变容气缸上形成有压缩腔B,压缩机构上形成有吸气口 A ο在本申请的下文中,为了便于描述,将上述两个轴承分别称为主轴承21和副轴承22。
[0074]变容阀3设在压缩机构上,此时变容阀3也位于壳体I内,变容阀3被构造成在导通压缩腔B和吸气口 A的导通位置和隔断压缩腔B和吸气口 A的隔断位置之间可运动,当变容阀3位于导通位置时变容气缸工作,当变容阀3位于隔断位置时变容气缸卸载。
[0075]当变容阀3位于导通位置时,由于变容气缸的压缩腔B与吸气口A连通,从而低压冷媒可以由吸气口 A被吸入到压缩腔B内并进行压缩,此时变容气缸参与压缩工作。而当变容阀3位于隔断位置时,由于变容气缸的压缩腔B与吸气口 A是不连通的,此时低压冷媒无法进入到压缩腔B内,变容气缸不参与压缩工作。
[0076]例如,当具有该变容式压缩机100的制冷装置200应用于空调器时,在空调器要求低功耗运行时,可以使变容阀3位于隔断位置,此时变容气缸不工作,变容式压缩机100可以小容量运转。而在如低温制热需要提高空调器能力时,可以使变容阀3位于导通位置,此时变容气缸参与压缩工作,变容式压缩机100可以大容量运转,保证空调器的运行效果。
[0077]这里,“容量”可以理解为整个变容式压缩机100的容量,即气缸组件包括的多个气缸的容量之和,也称为工作容积或排气量。其中,每个气缸的容量指的是在活塞27旋转一圈的过程中的最大吸气容积。
[0078]由此,根据本发明实施例的变容式压缩机100,通过设置上述的变容阀3,变容阀3位于壳体I内部,简化了变容式压缩机100的结构,提高了变容式压缩机100应用在制冷装置200中的可靠性。而且,在变容气缸工作时,其吸气路径与传统的压缩机基本一致,变容气缸的性能可以得到较好的保证。
[0079]首先,结合图1a和图lb,对根据本发明一个实施例的变容式压缩机100的变容原理进行说明。图1a和图1b中示出了吸气口 A、变容气缸的压缩腔B、变容阀3、形成在变容阀3上的第一压力通道E、以及与变容阀3的一侧相通的供压通道41(也可以为一段管的形式)。其基本工作原理如下:
[0080]当向变容阀3的一侧(例如,图1a中的下侦U)通过供压通道41导入第一压力气体(例如,具有排气压力Pd)时,变容阀3在其下端面高压的作用下,将克服变容阀3的重力让变容阀3向上移动,使变容阀3隔断变容气缸的吸气通道(即下文中的吸气孔241),即吸气口A和压缩腔B之间的吸气孔241被变容阀3挡住,使吸气口 A的低压冷媒无法传递到变容气缸的压缩腔B中,即变容气缸无法吸入低压冷媒。并且,在变容阀3上移后,第一压力通道E连通供压通道41和压缩腔B,使得第一压力气体被吸入到压缩腔B中。此时,由于变容气缸上形成有滑片槽,滑片槽内设有滑片29,滑片槽的位于滑片29尾部的部分为滑片腔242,滑片腔242内为排气压力,变容气缸内的滑片29的尾部(即滑片29的远离变容气缸中心的一端)和头部(SP滑片29的邻近变容气缸中心的一端)均为排气压力,不能产生压差作用,因此,滑片29的头部与压缩腔B内的活塞27的外周壁分离,变容气缸不参与压缩工作。此时,变容式压缩机100的工作模式为部分容量工作模式。
[0081 ]当向变容阀3的上述一侧导入第二压力气体(例如,具有吸气压力Ps)时,变容阀3的下端面为低压,此时,在变容阀3自身重力的作用下,变容阀3向下移动,压缩腔B与第一压力通道E上下错开,压缩腔B与原先被变容阀3挡住的吸气口 A重新连通,低压冷媒可以通过吸气口 A进入到变容气缸的压缩腔B内。此时,由于滑片腔242内仍然为排气压力,滑片29在其尾部为排气压力和头部为吸气压力的压差作用下,滑片29的头部与活塞27的外周壁止抵,使得变容气缸正常参与压缩工作。此时,变容式压缩机100的工作模式为全容量工作模式。
[0082]综上所述,本发明是通过控制变容气缸的内部压力的方式来改变滑片29的受力状况,从而实现滑片29与活塞27的接触与分离,进而实现变容缸的工作或卸载。
[0083]下面结合上述的变容原理参考图2-图11描述根据本发明一个具体实施例的变容式压缩机100。变容式压缩机100可以为立式压缩机(如图2所示),即气缸的中心轴线垂直于安装面例如地面的压缩机。当然,变容式压缩机100也可以为卧式压缩机(图未示出),此时气缸的中心轴线与安装面例如地面大致平行。在本申请下面的描述中,以变容式压缩机100为立式压缩机为例进行说明。
[0084]如图2和图3所示,变容压缩机包括壳体1、电机5、压缩机构和储液器6。壳体I的内部空间可以为排气压力的高压空间。储液器6设在壳体I外。电机5和压缩机构均设在壳体I内,且电机5位于压缩机构的上方。电机5包括定子51和转子52,转子52可以可转动地设在定子51内。
[0085]压缩机构包括主轴承21、气缸组件、副轴承22、活塞27、滑片29和曲轴26,主轴承21设在气缸组件的上端且副轴承22设在气缸组件的下端,气缸组件包括两个气缸和设在这两个气缸之间的隔板25,每个气缸内均具有工作腔28和滑片槽,滑片槽可以沿工作腔28的径向延伸,活塞27设在工作腔28内,滑片29可移动地设在滑片槽内,滑片29的头部适于与活塞27的外周壁止抵,曲轴26的上端与转子52相连,曲轴26的下端贯穿主轴承21、气缸组件和副轴承22。当电机5工作时,转子52可以通过曲轴26带动套设在曲轴26的偏心部外的活塞27沿工作腔28的内壁滚动以对进入到工作腔28内的冷媒进行压缩。其中,隔板25可以是单独的一个零部件,也可以由多个零部件组合而成。
[0086]储液器6通过两个第一吸气管61分别与第一气缸23和第二气缸24相连,以分别向第一气缸23和第二气缸24的工作腔28内通入待压缩冷媒(即低压冷媒)。此时吸气口 A形成在变容气缸上,该吸气口 A始终与吸气压力连通。
[0087]变容式压缩机100为多缸压缩机。图2和图3中显示了双缸压缩机用于示例说明的目的,但是普通技术人员在阅读了下面的技术方案之后,显然可以理解将该方案应用到三缸或者更多缸的技术方案中,这也落入本发明的保护范围之内。在本申请下面的描述中,以变容式压缩机100为双缸压缩机为例进行说明。另外,为了便于描述,将上述两个气缸分别称为第一气缸23和第二气缸24。
[0088]第一气缸23和第二气缸24中的至少一个为变容气缸(其对应的工作腔28称为压缩腔B)。例如在图2和图3的示例中,上方的第一气缸23为常运转气缸,下方的第二气缸24为变容气缸。当变容式压缩机100运行时,无论第二气缸24是否工作,第一气缸23均处于工作状态,即第一气缸23内的滑片29与活塞27始终保持止抵,以对进入到其内的冷媒进行压缩。一般情况下,常运转气缸内的滑片29尾部可以设有弹簧件,以更好地使变容式压缩机100顺利启动。
[0089]压缩机构上形成有供压通道41,如图2和图3所示,供压通道41形成在副轴承22上,供压通道41用于供入第一压力气体或第二压力气体,第一压力气体的压力大于第二压力气体的压力。优选地,第一压力气体为变容式压缩机100压缩后具有排气压力的冷媒,第二压力气体为变容式压缩机100吸入的待压缩的具有吸气压力的冷媒。
[0090]滑片腔242与壳体I内部连通,滑片腔242内具有排气压力,即滑片29尾部的压力为排气压力。其中,滑片腔242优选与壳体I内部直接连通,此时滑片腔242的外侧敞开。由此,简化了滑片腔242的结构,而且,滑片29可以通过滑片腔242与壳体I底部油池内的润滑油直接接触,使得滑片29的润滑效果好,从而保证了变容式压缩机100长期运行的可靠性和性能。当然,本发明不限于此,滑片腔242还可以通过其它方式使其内具有排气压力。这里,需要说明的是,方向“外”可以理解为远离气缸中心的方向,其相反方向被定义为“内”。
[0091]变容阀3沿竖直方向可移动,以实现吸气口 A和压缩腔B的连通和隔断。变容阀3上形成有第一压力通道E,第一压力通道E可以为图2和图3中所示的倒L形,但不限于此,第一压力通道E与供压通道41连通,当变容阀3位于隔断位置时供压通道41通过第一压力通道E向压缩腔B内供入第一压力气体,由于第一压力气体的压力与滑片29尾部的排气压力大致相等,不产生压差,变容气缸内的滑片29的头部与活塞27分离,此时变容气缸不工作(即卸载)。而当变容阀3位于导通位置时,从储液器6过来的低压冷媒可以通过吸气口 A进入到变容气缸的压缩腔B内,而第二压力气体不能通过第一压力通道E进入压缩腔B,由于低压冷媒的压力小于滑片29尾部的排气压力,滑片29的头部会与活塞27的外周壁止抵,从而变容气缸将对进入到压缩腔B内的低压冷媒进行压缩,此时变容气缸工作。本领域内的技术人员可以理解,变容阀3还可以沿水平方向可移动(图未示出)。
[0092]由此,通过变容气缸是否参与压缩工作来调节变容式压缩机100的压缩容量,实现了变容式压缩机100的变容量工作。
[0093]压缩机构上形成有吸气孔241和容纳腔221,变容阀3可以设在隔板25、主轴承21、副轴承22、第一气缸23和第二气缸24中的至少一个上。例如,如图2和图3所示,吸气孔241的一端(例如,图2和图3中的右端)构成吸气口 A,吸气孔241适于将吸气口 A和压缩腔B连通以将冷媒通入压缩腔B,吸气孔241的另一端与容纳腔221连通,容纳腔221形成副轴承22上且贯穿副轴承22的上端面并与吸气孔241连通,其中变容阀3可移动地设在容纳腔221内,且变容阀3可向上移动至吸气孔241内以将吸气口 A和压缩腔B隔断,容纳腔221与供压通道41连通(例如,图2和图3中供压通道41与容纳腔221的下部连通),当供压通道41供入第一压力气体时变容阀3从导通位置向隔断位置移动,当供压通道41供入第二压力气体时变容阀3保持在导通位置。此时通过供压通道41供入气体压力的不同实现变容阀3的移动。
[0094]变容式压缩机100进一步包括:至少一个弹簧7,弹簧7设在变容阀3和容纳腔221的内壁之间。例如,参照图2和图3,弹簧7设在变容阀3的底部和容纳腔221的底壁之间,弹簧7可以被构造成朝向导通位置的方向常拉动变容阀3。可以理解的是,弹簧7的个数可以根据弹力的要求来具体决定。
[0095]当向容纳腔221内导入第一压力气体(具有排气压力Pd)时,变容阀3在下端面的高压作用下克服重力和弹簧7的弹性力,向上移动进入第二气缸24的吸气孔241中,隔断吸气口A与压缩腔B,如图2所示,此时压缩腔B通过变容阀3内的第一压力通道E与容纳腔221连通,供压通道41通过容纳腔221导入第一压力气体,此时第二气缸24的滑片29的头部与尾部均为排气压力,不产生压差,因此,该滑片29的头部与第二气缸24内的活塞27分离,第二气缸24不参与压缩工作,此时
当前第2页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1