真空绝热材以及利用频率响应法来评价上述真空隔热材料的内部真空度的装置及其方法

文档序号:5531162阅读:79来源:国知局
专利名称:真空绝热材以及利用频率响应法来评价上述真空隔热材料的内部真空度的装置及其方法
技术领域
本发明的实施例涉及真空绝热材料以及利用频率响应法来评价上述真空绝热材料的内部真空度的装置及其方法。
背景技术
真空绝热材料由多孔性填充物(芯材)和包覆该多孔性填充物的隔断性外皮(外皮材料)形成,通过去除外皮内部的气体来维持几年以上的真空状态,从而具有非常低的热导率。上述真空绝热材料的绝热性依赖于内部的真空,因此随着真空度的下降,绝热性也会下降。因而重要的是,通过评价上述真空绝热材料的内部的真空度来确认产品是否为劣质品。但是,以往采用了如下方法:针对真空绝热材料表面,利用热流量以及电位差,将输入的热流以及电位值换算成热阻值来评价真空度。这种现有的真空度评价方法根据用于识别热流以及电位值的传感器的灵敏度以及测定环境而其可靠性有可能下降。而且,现有的真空度评价方法只能根据与热阻值的相关关系来评价真空度,而不是直接评价内部真空度,因此需要对真空绝热材料表面施加较强的物理性应力,并且需要较长的评价时间。

发明内容
技术问题本发明一实施例提供一种真空绝热材料,其可以在对真空绝热材料表面施加冲击力(Impact Force)时,使得冲击力根据真空绝热材料的表面平滑度以及表面硬度分散或减小。本发明一实施例提供真空绝热材料的内部真空度评价装置以及方法,所述装置可以在对真空绝热材料的表面施加冲击力(Impact Force)之后测定固有频率,并通过真空绝热材料的真空度与固有频率间的关系来评价真空绝热材料的内部的真空度。根据本发明的一实施例,可以仅由根据内部真空度的不同而不同的真空绝热材料本身的刚性来评价真空度,而不需要对真空绝热材料表面施加较强的物理性应力,且不需要耗费较长的评价时间,因而提供可有效地用于真空绝热材料的质量检测的真空绝热材料的内部真空度评价装置以及方法。本发明所要解决的问题不局限于如上所述的问题,本发明所属技术领域的普通技术人员可以从下文中的内容明确了解到未提及的其他问题。解决问题的手段本发明一实施例的真空绝热材料为了上述真空绝热材料的表面平滑度以及表面硬度而具有如下结构:在上述外皮材料与上述芯材之间形成比基准厚度更薄的刚体或比基准刚度更强的气体吸附材料(Getter)的结构;或者在形成于上述外皮材料与上述芯材之间的上述气体吸附材料的上部形成比上述基准厚度更薄的刚体的结构。上述基准厚度优选在0.5mm 1.5mm的范围内。上述基准刚度优选在2H 4H的范围内。本发明一实施例的真空绝热材料的内部真空度评价装置包括:锤部,其对上述真空绝热材料的与刚体或气体吸附材料部分对应的表面施加冲击力,以使真空绝热材料振动;位移测定部,其用于测定施加到上述真空绝热材料的冲击所引起的质点的位移;频率分析部,其利用上述位移的测定值来测定上述真空绝热材料的固有频率;以及真空度评价部,其利用上述固有频率来评价上述真空绝热材料的内部的真空度。上述频率分析部通过对上述位移的测定值进行傅立叶变换来获取频谱、并分析上述频谱来测定上述真空绝热材料的固有频率。上述真空度评价部可以将由上述频率分析部测定的固有频率与基准频率进行比较,并根据上述比较的结果来评价上述真空绝热材料的真空度。上述基准频率为按大小以及重量的针对正常真空绝热材料产品的固有频率的平均值,其具有规定范围。如果所测定的上述固有频率脱离上述基准频率的范围,上述真空度评价部就评价上述真空绝热材料的真空度为不良;如果所测定的上述固有频率在上述基准频率的范围内,上述真空度评价部就评价上述真空绝热材料的真空度为优良。本发明一实施例的真空绝热材料的内部真空度评价装置还包括测力传感器,该测力传感器用于测定根据上述锤部的打击而传递到上述真空绝热材料的力的大小;上述频率分析部可以通过将上述位移的测定值换算成根据上述位移与上述力之间的关系式来计算出的机械顺从性(Mechanical Compliance)值、并在频域对上述所换算的机械顺从性值进行分析从而测定上述真空绝热材料的固有频率。上述位移测定部可以包括激光式位移计传感器,其在与上述真空绝热材料相隔一定距离的状态下用激光测定位移。本发明另一实施例的真空绝热材料的内部真空度评价装置包括:锤部,其用于打击真空绝热材料的与刚体或气体吸附材料部分对应的表面来施加冲击力;加速度测定部,其用于测定施加到上述真空绝热材料的冲击所引起的质点的加速度;频率分析部,其利用上述加速度的测定值来测定上述真空绝热材料的固有频率;以及真空度评价部,其利用上述固有频率来评价上述真空绝热材料的内部的真空度。上述频率分析部可以通过对上述加速度的测定值进行傅立叶变换来获取频谱,并分析上述频谱来测定上述真空绝热材料的固有频率。上述加速度测定部可以包括激光式加速度计传感器,其在与上述真空绝热材料相隔一定距离的状态下用激光测定加速度。本发明一实施例的真空绝热材料的内部真空度评价方法可以包括如下的步骤:用锤子打击真空绝热材料的与刚体或气体吸附材料部分对应的表面来施加冲击力的步骤;对于施加到上述真空绝热材料的冲击所引起的质点的位移进行测定的步骤;利用上述位移的测定值来测定上述真空绝热材料的固有频率的步骤;以及利用上述固有频率来评价上述真空绝热材料的内部的真空度的步骤。
测定上述真空绝热材料的固有频率的步骤可以包括:对上述位移的测定值进行傅立叶变换来获取频谱的步骤;以及分析上述频谱来测定上述真空绝热材料的固有频率的步骤。评价上述真空绝热材料的内部的真空度的步骤可以包括:如果所测定的上述固有频率脱离基准频率的范围,就评价上述真空绝热材料的真空度为不良的步骤;以及如果所测定的上述固有频率在上述基准频率的范围内,就评价上述真空绝热材料的真空度为优良的步骤。本发明一实施例的真空绝热材料的内部真空度评价方法还可以包括如下的步骤:对于根据上述锤子的打击而传递到上述真空绝热材料的力的大小进行测定的步骤;将上述位移的测定值换算成根据上述位移与上述力之间的关系式来计算出的机械顺从性(Mechanical Compliance)值的步骤;以及通过在频域对上述机械顺从性值进行分析从而测定上述真空绝热材料的固有频率的步骤。测定上述位移的步骤可以包括利用激光式位移计传感器来在与上述真空绝热材料相隔一定距离的状态下用激光测定上述质点的位移的步骤。本发明另一实施例的真空绝热材料的内部真空度评价方法包括如下的步骤:用锤子打击真空绝热材料的与刚体或气体吸附材料部分对应的表面来施加冲击力的步骤;对于施加到上述真空绝热材料的冲击所引起的质点的加速度进行测定的步骤;利用上述加速度的测定值来测定上述真空绝热材料的固有频率的步骤;以及利用上述固有频率来评价上述真空绝热材料的内部的真空度的步骤。测定上述真空绝热材料的固有频率的步骤可以包括:对上述加速度的测定值进行傅立叶变换来获取频谱的步骤;以及分析上述频谱来测定上述真空绝热材料的固有频率的步骤。测定上述质点的加速度的步骤可以包括利用激光式加速度计传感器来在与上述真空绝热材料相隔一定距离的状态下用激光测定上述质点的加速度的步骤。本发明再另一实施例的真空绝热材料的内部真空度评价方法包括如下的步骤:利用用于产生力的振动器对上述真空绝热材料的与刚体或气体吸附材料部分对应的表面施加力的步骤;对于施加到上述真空绝热材料的所引起的质点的加速度进行测定的步骤;利用上述加速度的测定值来测定上述真空绝热材料的固有频率的步骤;以及利用上述固有频率来评价上述真空绝热材料的内部的真空度的步骤。测定上述真空绝热材料的固有频率的步骤可以包括:对上述加速度的测定值进行傅立叶变换来获取频谱的步骤;以及分析上述频谱来测定上述真空绝热材料的固有频率的步骤。测定上述质点的加速度的步骤可以包括利用激光式加速度计传感器来在与上述真空绝热材料相隔一定距离的状态下用激光测定上述质点的加速度的步骤。有关其他实施例的具体事宜包含在详细的说明以及附图中。下文中的参照附图详细说明的实施例会让本发明的优点和/或特征以及实现这些优点和/或特征的方法变得更加明确。但是,本发明不局限于在下文中所公开的实施例,可以由相互不同的各种方式来体现,本实施例只用于使本发明的公开内容更加完整,有助于本发明所属技术领域的普通技术人员完整地理解本发明的范畴,本发明仅由权利要求书的范畴而定义。说明书全文中相同的附图标记表示相同的结构部件。发明效果根据本发明一实施例的真空绝热材料,可以在对真空绝热材料表面施加冲击力(Impact Force)时,使得冲击力根据真空绝热材料的表面平滑度以及表面硬度分散或减小。根据本发明一实施例的真空绝热材料的内部真空度评价装置以及方法,可以在对真空绝热材料的表面施加冲击力(Impact Force)之后测定固有频率,并通过真空绝热材料的真空度与固有频率间的关系来评价真空绝热材料的内部的真空度。根据本发明一实施例的真空绝热材料的内部真空度评价装置以及方法,可以仅由根据内部真空度的不同而不同的真空绝热材料本身的刚性来评价真空度,而不需要对真空绝热材料表面施加较强的物理性应力,且不需要耗费较长的评价时间,因而可有效地使用于真空绝热材料的质量检测。


图1是用于说明本发明一实施例的真空绝热材料的结构的图。图2是用于说明本发明另一实施例的真空绝热材料的结构的图。图3是用于说明本发明再另一实施例的真空绝热材料的结构的图。图4是用于说明本发明一实施例的真空绝热材料的内部真空度评价装置的图。图5是用于说明本发明一实施例的真空绝热材料的内部真空度评价方法的流程图。图6是用于说明本发明另一实施例的真空绝热材料的内部真空度评价方法的流程图。
具体实施例方式在本发明的一实施例中,提供一种真空隔热材料的内部真空度评价装置,其在对真空绝热材料产品表面加以冲击(impact)时,通过测定冲击力(Impact Force)与质点的位移或加速度来分析固有频率,从而能够评价上述真空绝热材料的内部的真空度。就上述真空绝热材料而言,内部的真空度(vacuum level)越大或应力越低,芯材(core material)内部的空气就容易排出(vent)而从大气状态置换成真空状态,由此芯材在收缩之后其刚性增加。特别是,在外皮材料的情况下,以外皮材料薄膜内部的中间层为基准,利用真空绝热材料的内部与外部的应力之差而与芯材粘合得牢固。但是,在上述真空绝热材料的内部的真空被解除的情况下,随着空气流入芯材内部而刚性会降低,并通过芯材本身的复元而柔韧性会增加。特别是,在芯材和外皮材料内部形成空气层,由此阻尼(damping)值增加,从而刚性会降低。由此,将由冲击力(Impact Force)引起的质点的位移换算成机械顺从性(mechanical compliance)(位移/力)值,在频域进行分析,便能求出固有频率,并能够通过分析固有频率来评价上述真空绝热材料的内部的真空度。在通过频率分析法来分析上述固有频率的情况下,上述真空绝热材料的内部的真空解除所造成的阻尼率(damping ratio)的增加使得上述固有频率发生变化。此时,假设上述真空绝热材料的薄膜(外皮材料)和芯材因内部真空压力而形成为单体(单一质量)如此,本发明一实施例中可确认到,因上述真空绝热材料的内部的真空解除所造成的阻尼系数的增大,而固有频率发生变化,由此评价上述真空绝热材料的内部的真空度。在本发明一实施例中,在对上述真空绝热材料的表面施加冲击力(Impact Force)时,可根据上述真空绝热材料的表面平滑度以及表面硬度来分散或减小冲击力(ImpactForce) 0由此,在本发明一实施例中有利的是,在上述真空绝热材料的内部,将钢、铝等薄的刚体插入到外皮材料与芯材之间,对该部分施加冲击力。但是,由于薄的刚体而在上述真空绝热材料的表面有可能形成突出部。由此,在本发明一实施例中,通过制造坚硬(hard)的气体吸附材料(Getter)、或者使薄的刚体位于气体吸附材料上端,从而最大限度地减少上述真空绝热材料表面的突出厚度。并且,在本发明一实施例中,利用位移计或加速度计的传感器来测定位移或加速度,对于位移计或加速度计的传感器来说,与以压电式附着在上述真空绝热材料的表面的传感器相比,能够用激光在一定距离内测定位移或加速度的传感器更为有利。但是,在本发明一实施例中,将压电式传感器附着于上述真空绝热材料的表面来使用的情况下,附着于上述真空绝热材料的表面的平滑度较好的部位,这有利于测定位移以及加速度。在本发明一实施例中,按上述真空绝热材料的大小和重量分别测定正常产品的固有频率之后,对平均固有频率值设定通过窗口(Window)操作获取的频域,由此可以进行上述真空绝热材料的内部的真空度评价。下面,将参照附图对本发明的实施例进行详细的说明。图1是用于说明本发明一实施例的真空绝热材料的结构的图。如图1所示,本发明一实施例的真空绝热材料100包括外皮材料110、芯材120以及刚体130。在用冲击锤102对通常的真空绝热材料100的表面施加冲击力(Impact Force)时,可根据上述真空绝热材料100的表面平滑度以及表面硬度来分散或减小冲击力。因此,在本发明一实施例中,优选地,在上述真空绝热材料100内部,将钢(Steel)、铝(Al)等薄的刚体130插入到上述外皮材料110与上述芯材120之间。由此,根据本发明一实施例,可以通过对与插入了上述刚体130的部分对应的表面施加冲击力,利用位移计或加速度计的传感器101测定位移或加速度,从而评价上述真空绝热材料100内部的真空度。在此,上述刚体130比基准厚度更薄,此时,上述基准厚度优选在0.5mm 1.5mm的范围内。上述刚体130比上述基准厚度更薄的理由是因为,如果上述刚体130厚,则向真空绝热材料的表面突出,而在施工上述真空绝热材料100时表面变得不平坦,由此会发生粘合等的问题。图2是用于说明本发明另一实施例的真空绝热材料的结构的图。如图2所示,本发明再另一实施例的真空绝热材料200包括外皮材料210、芯材220以及气体吸附材料230。如图1所示,上述刚体130插入于上述外皮材料110与上述芯材120之间,此时,如果上述刚体130稍微变厚,则有可能在上述真空绝热材料100表面形成突出部。
由此,在本发明另一实施例中,制造坚硬(Hard)的气体吸附材料(Getter) 230,来代替图1的刚体130插入到上述外皮材料210与上述芯材220之间。由此,根据本发明另一实施例,可以使上述真空绝热材料200表面的突出厚度最小化。在此,上述气体吸附材料230比基准刚度更强,此时,上述基准刚度优选在2H 4H的范围内。上述气体吸附材料230比上述基准刚度更强的理由是因为,在对与插入了上述气体吸附材料230的部分对应的表面施加冲击力时,有可能会发生如下现象:因上述气体吸附材料230的阻尼(Damping)效应而冲击力分散或减小。图3是用于说明本发明再另一实施例的真空绝热材料的结构的图。如图3所示,本发明再另一实施例的真空绝热材料300包括外皮材料310、芯材320、刚体330以及气体吸附材料340。如上所述,在图1中,上述刚体130插入于上述外皮材料110与上述芯材120之间,此时,如果上述刚体130稍微变厚,则有可能在上述真空绝热材料100表面形成突出部。由此,在本发明再另一实施例中,将上述刚体330和上述气体吸附材料340插入到上述外皮材料210与上述芯材220之间,并制造坚硬(Hard)的上述气体吸附材料340,使薄的刚体330位于该气体吸附材料340上。由此,根据本发明再另一实施例,可以使上述真空绝热材料300表面的突出厚度最小化。在此,上述刚体330比基准厚度更薄,此时上述基准厚度优选在0.5mm 1.5mm的范围内。上述刚体330比上述基准厚度更薄的理由是因为,如果上述刚体330厚,则会向真空绝热材料表面突出,而在施工上述真空绝热材料300时表面变得不平坦,由此会发生粘合等的问题。并且,上述气体吸附材料340比基准刚度更强,此时,上述基准刚度优选在2H 4H的范围内。上述气体吸附材料340比上述基准刚度更强的理由是因为,在对与插入了上述气体吸附材料340的部分对应的表面施加冲击力时,有可能会发生如下现象:因上述气体吸附材料340的阻尼(Damping)效应而冲击力分散或减小。如上所述,在本发明的实施例中,通过在真空绝热材料的外皮材料与芯材之间插入薄的刚体和硬的气体吸附材料中的至少一个,可以提供能够更准确地评价真空绝热材料的内部的真空度的环境。图4是用于说明本发明一实施例的真空绝热材料的内部真空度评价装置的图。参照图4,本发明一实施例的真空绝热材料的内部真空度评价装置400包括锤部410、位移测定部420、频率分析部430以及真空度评价部440。上述锤部410用于打击真空绝热材料401来施加冲击力。上述锤部410可通过使用者的直接操作对上述真空绝热材料401施加冲击力。另夕卜,上述锤部410还可以根据驱动设备的启动进行动作而对上述真空绝热材料401施加冲击力。在此,上述驱动设备是用于驱动上述锤部的设备,用于对上述真空绝热材料401施加一定大小的力。并且,上述驱动设备还可以根据所输入的值对上述真空绝热材料401施加各种大小的力。在上述锤部410可以内置有测力传感器412。与此不同,上述测力传感器412可以进行多种变形,例如独立于上述锤部410来进行设置等。
上述测力传感器412发挥如下作用:对于根据上述锤部410的打击而传递到上述真空绝热材料401的力的大小进行测定。由上述测力传感器412所测定的力的大小传递到上述频率分析部430,上述频率分析部430可以在测定上述真空绝热材料401的固有频率时反映出上述所测定的力的大小。上述位移测定部420用于测定施加到上述真空绝热材料401的冲击所引起的质点(material point)的位移。S卩,上述位移测定部420发挥如下作用:对于上述真空绝热材料401的被施加冲击的地点(区域)的位移进行测定。作为参考,质点是指被视为物体的总质量汇集的理想点,力学上是指有质量但不存在体积的物体。上述位移测定部420优选由激光式位移计传感器来实现,所述激光式位移计传感器在与上述真空绝热材料401相隔一定距离的状态下用激光测定位移。但是,上述位移测定部420并不局限于此,还可以进行各种变形,例如可以由在附着于上述真空绝热材料401表面的状态下测定位移的压电式位移计传感器来实现等。上述频率分析部430利用上述位移的测定值来测定上述真空绝热材料401的固有频率。即,上述频率分析部430可以通过对上述位移的测定值进行快速傅立叶变换(FFT,Fast Fourier Transform)来获取频谱。并且,上述频率分析部430可以通过分析上述频谱来测定上述真空绝热材料401的固有频率。另一方面,如上所述,上述频率分析部430可以在测定固有频率时反映出由上述测力传感器412测定的力的大小。S卩,上述频率分析部430可以将上述位移的测定值换算成根据上述位移与上述力之间的关系式来计算出的机械顺从性(Mechanical Compliance)值(位移/力)。并且,上述频率分析部430可以通过在频域对上述所换算的机械顺从性值进行分析从而测定上述真空绝热材料401的固有频率。上述真空度评价部440利用上述所测定的固有频率来评价上述真空绝热材料401内部的真空度。为此,上述真空度评价部440可以将由上述频率分析部430所测定的固有频率与基准频率进行比较。上述真空度评价部440可根据上述比较的结果来评价上述真空绝热材料401的真空度。S卩,如果上述所测定的固有频率脱离上述基准频率的范围,则上述真空度评价部440就评价上述真空绝热材料401的真空度为不良。相反,如果所测定的上述固有频率在上述基准频率的范围内,上述真空度评价部440就评价上述真空绝热材料401的真空度为优良。在此,上述基准频率是指相对于正常产品的真空绝热材料401的固有频率。在正常产品的真空绝热材料401的情况下,固有频率也会存在若干差异。因此,可以考虑这种差异来预先设定上述基准频率,使其具有预定范围的值。另一方面,本发明另一实施例的真空绝热材料的内部真空度评价装置在整体上与图4的真空度评价装置400类似。只是,本发明另一实施例的真空绝热材料的内部真空度评价装置与图4的真空度评价装置400不同之处在于,为了测定真空绝热材料的固有频率而测定质点的加速度。由此,在本发明的另一实施例中,只对测定加速度的加速度测定部进行说明。
上述加速度测定部发挥如下作用:对于施加到上述真空绝热材料的冲击所引起的质点的加速度进行测定。即,上述加速度测定部用于测定上述真空绝热材料的被施加冲击的地点(区域)的加速度。上述位移测定部优选由激光式加速度计传感器来实现,所述激光式加速度计传感器在与上述真空绝热材料相隔一定距离的状态下用激光测定加速度。但是,上述加速度测定部并不局限于此,还可以进行各种变形,例如可以由在附着于上述真空绝热材料的状态下测定加速度的压电式加速度计传感器来实现等。图5是用于说明本发明一实施例的真空绝热材料的内部真空度评价方法的流程图。在此,上述真空绝热材料的内部真空度评价方法可以利用图4的真空绝热材料的内部真空度评价装置400来进行。参照图5,在步骤510中,上述真空绝热材料的内部真空度评价装置用锤子打击真空绝热材料来施加冲击。此时,如上所述,上述锤子的动作可以通过安装于上述真空绝热材料的内部真空度评价装置上的机械设备自动进行,也可以由使用者手动进行。然后,在步骤520中,上述真空绝热材料的内部真空度评价装置对于施加到上述真空绝热材料的冲击所引起的质点的位移进行测定。即,上述真空绝热材料的内部真空度评价装置发挥如下作用:对于上述真空绝热材料的被施加冲击的地点(区域)的位移进行测定。此时,上述位移的测定优选利用激光式位移计传感器来进行,所述激光式位移计传感器在与上述真空绝热材料相隔一定距离的状态下用激光测定位移。接着,在步骤530中,上述真空绝热材料的内部真空度评价装置利用上述位移的测定值来测定上述真空绝热材料的固有频率。S卩,上述真空绝热材料的内部真空度评价装置对上述位移的测定值进行快速傅立叶变换(FFT, Fast Fourier Transform)来获取频谱。并且,上述真空绝热材料的内部真空度评价装置可以通过分析上述频谱来测定上述真空绝热材料的固有频率。另一方面,上述真空绝热材料的内部真空度评价装置利用内置在上述锤子中的测力传感器来测定施加到上述真空绝热材料的力的大小。上述真空绝热材料的内部真空度评价装置可以在测定上述真空绝热材料的固有频率时反映出由上述测力传感器测定的力的大小。即,上述真空绝热材料的内部真空度评价装置可以将上述位移的测定值换算成根据上述位移与上述力之间的关系式来计算出的机械顺从性(Mechanical Compliance)值(位移/力)。并且,上述真空绝热材料的内部真空度评价装置可以通过在频域对上述所换算的机械顺从性值进行分析从而测定上述真空绝热材料的固有频率。接着,在步骤540中,上述真空绝热材料的内部真空度评价装置利用上述所测定的固有频率来评价上述真空绝热材料的内部的真空度。为此,上述真空绝热材料的内部真空度评价装置可以将所测定的上述固有频率与基准频率进行比较。上述真空绝热材料的内部真空度评价装置可根据上述比较的结果来评价上述真空绝热材料的真空度。S卩,如果所测定的上述固有频率脱离上述基准频率的范围,上述真空绝热材料的内部真空度评价装置就评价上述真空绝热材料的真空度为不良。相反,如果所测定的上述固有频率在上述基准频率的范围内,上述真空绝热材料的内部真空度评价装置就评价上述真空绝热材料的真空度为优良。图6是用于说明本发明另一实施例的真空绝热材料的内部真空度评价方法的流程图。参照图6,在步骤610中,真空绝热材料的内部真空度评价装置用锤子打击真空绝热材料来施加冲击。此时,用于打击上述真空绝热材料的工具除了如上所述的锤子之外还可以使用振动器。然后,在步骤620中,上述真空绝热材料的内部真空度评价装置对于施加到上述真空绝热材料的冲击所引起的质点的加速度进行测定。即,上述真空绝热材料的内部真空度评价装置发挥如下作用:对于上述真空绝热材料的被施加冲击的地点(区域)的加速度进行测定。此时,上述加速度的测定优选利用激光式加速度计传感器来进行,所述激光式加速度计传感器在与上述真空绝热材料相隔一定距离的状态下用激光测定加速度。接着,在步骤630中,上述真空绝热材料的内部真空度评价装置利用上述加速度测定值来测定上述真空绝热材料的固有频率。S卩,上述真空绝热材料的内部真空度评价装置对上述加速度测定值进行快速傅立叶变换(FFT, Fast Fourier Transform)来获取频谱。并且,上述真空绝热材料内部真空度评价装置可以通过分析上述频谱来测定上述真空绝热材料的固有频率。接着,在步骤640中,上述真空绝热材料内部真空度评价装置利用所测定的上述固有频率来评价上述真空绝热材料内部的真空度。为此,上述真空绝热材料内部真空度评价装置可以将所测定的上述固有频率与基准频率进行比较。上述真空绝热材料内部真空度评价装置可根据上述比较的结果来评价上述真空绝热材料的真空度。S卩,如果所测定的上述固有频率脱离上述基准频率的范围,上述真空绝热材料内部真空度评价装置就评价上述真空绝热材料的真空度为不良。相反,如果所测定的上述固有频率在上述基准频率的范围内,上述真空绝热材料内部真空度评价装置就评价上述真空绝热材料的真空度为优良。如上所述,本发明的实施例是利用频率响应法的真空绝热材料的非破坏评价法,是通过分析随着真空绝热材料内部的真空度的变化而发生变化的固有频率来评价真空绝热材料内部的真空度。因此,根据本发明的实施例,可以仅由根据内部真空度的不同而不同的真空绝热材料本身的刚性来评价真空度,而不需要对真空绝热材料表面施加较强的物理性应力,且不需要耗费较长的评价时间,因而可有效地用于真空绝热材料的质量检测。以上对本发明具体实施例进行了说明,但理所当然地在不脱离本发明的范围的情况下可以进行各种变形。因此,本发明的范围应由权利要求书的范围及其等同物来确定,并非由所述实施例来确定。如上所述,参照限定的实施例以及附图对本发明进行了说明,但本发明并不局限于上述实施例,对于本发明所属技术领域的普通技术人员来说,可根据所述内容进行各种修改以及变形。由此,本发明的思想应仅由所记载的权利要求书来体现,其等同物或等价变形都应视为属于本发明思想的范畴内。
权利要求
1.一种真空绝热材料,其包括外皮材料以及芯材,其特征在于,为了上述真空绝热材料的表面平滑度以及表面硬度而具有如下结构: 在上述外皮材料与上述芯材之间形成比基准厚度更薄的刚体或比基准刚度更强的气体吸附材料的结构;或者 在形成于上述外皮材料与上述芯材之间的上述气体吸附材料的上部形成比上述基准厚度更薄的刚体的结构。
2.根据权利要求1所述的真空绝热材料,其特征在于,上述基准厚度在0.5mm 1.5mm的范围内。
3.根据权利要求1所述的真空绝热材料,其特征在于,上述基准刚度在2H 4H的范围内。
4.一种真空绝热材料的内部真空度评价装置,其特征在于,包括: 锤部,其对权利要求1所述的真空绝热材料的与刚体或气体吸附材料部分对应的表面施加冲击,以使上述真空绝热材料振动; 位移测定部,其用于测定施加到上述真空绝热材料的冲击所引起的质点的位移; 频率分析部,其利用上述位移测定值来测定上述真空绝热材料的固有频率;以及 真空度评价部,其利用上述固有频率来评价上述真空绝热材料的内部的真空度。
5.根据权利要求1述的真空绝热材料的内部真空度评价装置,其特征在于,上述频率分析部通过对上述位移测定值进行傅立叶变换来获取频谱,并分析上述频谱来测定上述真空绝热材料的固有频率。
6.根据权利要求1述的真空绝热材料的内部真空度评价装置,其特征在于,上述真空度评价部将由上述频率分析部测定的固有频率与基准频率进行比较,并根据上述比较的结果来评价上述真空绝热材料的真空度。
7.根据权利要求6所述的真空绝热材料的内部真空度评价装置,其特征在于,上述基准频率为按大小以及重量的针对正常真空绝热材料产品的固有频率的平均值,其具有一定范围。
8.根据权利要求6所述的真空绝热材料的内部真空度评价装置,其特征在于, 如果所测定的上述固有频率脱离上述基准频率的范围,上述真空度评价部就评价上述真空绝热材料的真空度为不良; 如果所测定的上述固有频率在上述基准频率的范围内,上述真空度评价部就评价上述真空绝热材料的真空度为优良。
9.根据权利要求1所述的真空绝热材料的内部真空度评价装置,其特征在于, 还包括测力传感器,该测力传感器用于测定根据上述锤部的打击而传递到上述真空绝热材料的力的大小; 上述频率分析部通过将上述位移测定值换算成根据上述位移与上述力之间的关系式来计算出的机械顺从性值、并在频域对上述所换算的机械顺从性值进行分析从而测定上述真空绝热材料的固有频率。
10.根据权利要求1所述的真空绝热材料的内部真空度评价装置,其特征在于,上述位移测定部包括激光式位移计传感器,该激光式位移计传感器在与上述真空绝热材料相隔一定距离的状态下用激光测定位移。
11.一种真空绝热材料的内部真空度评价装置,其特征在于,包括: 锤部,其用于打击权利要求1所述的上述真空绝热材料的与刚体或气体吸附材料部分对应的表面来施加冲击; 加速度测定部,其用于测定施加到上述真空绝热材料的冲击所引起的质点的加速度; 频率分析部,其利用上述加速度的测定值来测定上述真空绝热材料的固有频率;以及 真空度评价部,其利用上述固有频率来评价上述真空绝热材料的内部的真空度。
12.根据权利要求11所述的真空绝热材料的内部真空度评价装置,其特征在于,上述频率分析部通过对上述加速度的测定值进行傅立叶变换来获取频谱,并分析上述频谱分析来测定上述真空绝热材料的固有频率。
13.根据权利要求11所述的真空绝热材料的内部真空度评价装置,其特征在于,上述加速度测定部包括激光式加速度计传感器,该激光式加速度计传感器在与上述真空绝热材料相隔一定距离的状态下用激光测定加速度。
14.一种真空绝热材料的内部真空度评价方法,其特征在于,包括如下的步骤: 用锤子打击权利要求1所述的上述真空绝热材料的与刚体或气体吸附材料部分对应的表面来施加冲击的步骤; 对于施加到上述真空绝热材料的冲击所引起的质点的位移进行测定的步骤; 利用上述位移测定值来测定上述真空绝热材料的固有频率的步骤;以及 利用上述固有频率来评价上述真空绝热材料的内部的真空度的步骤。
15 .根据权利要求14所述的真空绝热材料的内部真空度评价方法,其特征在于,测定上述真空绝热材料的固有频率的步骤包括: 对上述位移测定值进行傅立叶变换来获取频谱的步骤;以及 分析上述频谱来测定上述真空绝热材料的固有频率的步骤。
16.根据权利要求14所述的真空绝热材料的内部真空度评价方法,其特征在于,评价上述真空绝热材料的内部的真空度的步骤包括: 如果所测定的上述固有频率脱离基准频率的范围,就评价上述真空绝热材料的真空度为不良的步骤;以及 如果所测定的上述固有频率在上述基准频率的范围内,就评价上述真空绝热材料的真空度为优良的步骤。
17.根据权利要求14所述的真空绝热材料的内部真空度评价方法,其特征在于,还包括如下的步骤: 对于根据上述锤子的打击而传递到上述真空绝热材料的力的大小进行测定的步骤;将上述位移测定值换算成根据上述位移与上述力之间的关系式来计算出的机械顺从性值的步骤;以及 通过在频域对上述机械顺从性值进行分析从而测定上述真空绝热材料的固有频率的步骤。
18.根据权利要求14所述的真空绝热材料的内部真空度评价方法,其特征在于,测定上述位移的步骤包括: 利用激光式位移计传感器来在与上述真空绝热材料相隔一定距离的状态下用激光测定上述质点的位移的步骤。
19.一种真空绝热材料的内部真空度评价方法,其特征在于,包括如下的步骤: 用锤子打击权利要求1所述的上述真空绝热材料的与刚体或气体吸附材料部分对应的表面来施加冲击力的步骤; 对于施加到上述真空绝热材料的冲击所引起的质点的加速度进行测定的步骤; 利用上述加速度的测定值来测定上述真空绝热材料的固有频率的步骤;以及 利用上述固有频率来评价上述真空绝热材料的内部的真空度的步骤。
20.根据权利要求19所述的真空绝热材料的内部真空度评价方法,其特征在于,测定上述真空绝热材料的固有频率的步骤包括: 对上述加速度的测定值进行傅立叶变换来获取频谱的步骤;以及 分析上述频谱来测定上述真空绝热材料的固有频率的步骤。
21.根据权利要求19所述的真空绝热材料的内部真空度评价方法,其特征在于,测定上述质点的加速度的步骤包括: 利用激光式加速度计传感器来在与上述真空绝热材料相隔一定距离的状态下用激光测定上述质点的加速度的步骤。
22.—种真空绝热材料的内部真空度评价方法,其特征在于,包括如下的步骤: 利用用于产生力的振动器对权利要求1所述的上述真空绝热材料的与刚体或气体吸附材料部分对应的表面施加力的步骤; 对于施加到上述真空绝热材料的所引起的质点的加速度进行测定的步骤; 利用上述加速度的测定值来测定上述真空绝热材料的固有频率的步骤;以及 利用上述固有频率来评价上述真空绝热材料的内部的真空度的步骤。
23.根据权利要求22所述的真空绝热材料的内部真空度评价方法,其特征在于,测定上述真空绝热材料的固有频率的步骤包括: 对上述加速度的测定值进行傅立叶变换来获取频谱的步骤;以及 分析上述频谱来测定上述真空绝热材料的固有频率的步骤。
24.根据权利要求22所述的真空绝热材料的内部真空度评价方法,其特征在于,测定上述质点的加速度的步骤包括: 利用激光式加速度计传感器来在与上述真空绝热材料相隔一定距离的状态下用激光测定上述质点的加速度的步骤。
全文摘要
本发明一实施例的真空绝热材料为了上述真空绝热材料的表面平滑度以及表面硬度而具有如下结构在外皮材料与芯材之间形成比基准厚度更薄的刚体或比基准刚度更强的气体吸附材料的结构;或者在形成于上述外皮材料与上述芯材之间的上述气体吸附材料的上部形成比上述基准厚度更薄的刚体的结构。
文档编号F16L59/06GK103140709SQ201180047590
公开日2013年6月5日 申请日期2011年9月21日 优先权日2010年9月29日
发明者全胜敏, 黄承锡, 韩程弼 申请人:乐金华奥斯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1