一种用于超临界水冷堆的双层水棒组件结构的制作方法

文档序号:55068阅读:504来源:国知局
专利名称:一种用于超临界水冷堆的双层水棒组件结构的制作方法
技术领域
本发明属于反应堆零部件领域,特别涉及一种用于超临界水冷堆的双层水棒组件结构。具体说,是在超临界水冷堆中采用在水棒组件中增加一层水棒壁,改变工质流动方式,从而得到比采用单层水棒更加均匀的轴向温度分布,进而使组件轴向功率分布更加均匀。由此可以降低相同平均热流密度条件下的最大燃料包壳温度,也可以有足够的余量来增大平均热流密度。在超临界水冷堆中采用双层水棒结构设计,可以提高反应堆的安全性, 同时增加提升反应堆总功率的空间,具有结构简单,对原始设计改进较小的特点。
背景技术
超临界水冷堆是国际核能界公认的第四代核能堆型之一。超临界水冷堆在超过工质热工临界点的温度和压力下,为了使堆芯轴向功率分布更加均匀,在堆芯中设置了单独的中子慢化区域。目前设计中主要采用的慢化剂(工质)分为两种,分别是固体慢化剂和液体慢化剂。组件结构主要有四边形组件和六边形组件等结构。四边形组件和六边形组件的基本结构分别见图I和图2。图中圆形部分代表燃料棒,燃料棒包围的区域为水棒,水棒内流过慢化剂,慢化剂温度较低。相邻燃料棒与水棒壁围成的区域为冷却剂通道,冷却剂由于接受燃料棒传出的热量,温度较高。冷却剂在堆内的流动过程为,首先通过水棒从上向下流动,然后通过冷却剂通道,从下向上流动。
轴向温度分布会较大程度上影响堆内中子慢化性能,进而影响组件轴向功率分布。目前大多数采用水棒结构的组件多采用单层水棒,虽然这种设计中使用了较小热导率的材料作为水棒壁材料,但是由于材料工艺以及成本问题,水棒中慢化剂仍然会有较大程度的温升。上世纪90年代,日本研究人员曾提出过双层圆管水棒的设计,但是没有应用在多种形式的超临界组件设计中。近几年,各核能先进国家均对超临界水堆组件进行了深入的研究,出现了多种组件改进设计。在中子慢化方面,需要有新的组件改进来改善水棒中慢化剂的温度分布趋势,减小慢化剂的平均温升,使组件轴向方向得到较均匀的中子慢化。

发明内容
本发明的目的是针对目前超临界水冷堆组件设计中单层水棒中组件轴向温升较大,使组件轴向中子慢化不均匀,而提出的一种用于超临界水冷堆的双层水棒组件结构;其特征在于,所述双层水棒组件结构是在基本结构为四边形或六边形的组件中增加一层水棒壁,使工质在水棒中沿着相反的方向流动,然后进入冷却剂通道;
采用双层水棒组件的结构为吊篮与组件外壁12间通道2两端分别连通上腔室I 和下腔室9,工质入口 3连接在通道2上部,双层水棒的水棒内管壁13下端与下腔室9连通,水棒外管壁14上端与上腔室I连通,水棒外管壁14与组件外壁12及燃料棒11表面之间形成燃料通道7,燃料棒11竖着排列在燃料通道7内;水棒外管5下端与下联箱8连通; 水棒内管6与上腔室I相通;工质出口管10穿过通道2分别与组件外壁12上部和燃料通道7上部密封连接。[0006]所述四边形组件基本结构包含I根水棒和16根燃料棒即每边包含5根燃料棒;组件每边包含4根或6根燃料棒的基本结构根据上述每边包含5根燃料棒的结构扩展改变得到。2X2四边形组件包含4根水棒和45根燃料棒;根据2X2四边形组件的扩展方式得到 3X3、4X4、5X5或6X6的四边形组件。
所述六边形组件基本结构是仿照四边形组件基本结构得到,六边形组件基本结构包含I根水棒和12根燃料棒,六边形组件基本结构经过与四边形组件相同的扩展方式得到其他形式的六边形组件。
所述组件中水棒内管壁13采用热导率较大的不锈钢材料;水棒外管壁14采用热导率较小的二氧化锆材料,组件外壁12用来固定整个组件的结构;燃料棒11用来产生热量。
所述双层水棒组件结构改善堆芯轴向功率分布的方法是工质在堆芯中折返流动三次,分别通过水棒内管6、水棒外管5和燃料通道7。具体流动方式为工质通过入口 3进入堆内,分为两部分从吊篮4与组件外壁12间通道2中流过,一部分向上流动进入上腔室 1,另一部分向下流动进入下腔室9。进入下腔室9的工质通过水棒内管6向上流动进入上腔室I。上腔室中的工质混合后经过水棒外管5向下流动进入下联箱8,然后从下向上通过燃料通道7,接收由燃料棒11产生的热量,接收燃料棒热量的工质最终通过工质出口管10 流出堆芯。从而得到比采用单层水棒更加均匀的轴向温度分布,进而使组件轴向功率分布更加均匀。由此可以降低相同平均热流密度条件下的最大燃料包壳温度,也可以有足够的余量来增大平均热流密度;在超临界水冷堆中采用双层水棒结构设计,可以提高反应堆的安全性。
本发明的有益效果是是在超临界水冷堆中采用双层的水棒结构,增加一层水棒壁,改变工质流动方式,从而得到比采用单层水棒更加均匀的轴向慢化剂温度分布,进而使组件轴向功率分布更加均匀。由此可以降低相同平均热流密度条件下的最大燃料包壳温度,也可以有足够的余量来增大平均热流密度。在超临界水冷堆中采用双层水棒结构设计, 可以提高反应堆的安全性,同时增加提升反应堆总功率的空间,具有结构简单,便于制造, 效果明显,对原始设计改进较小的特点,可以用于将来的批量生产。


图I是现有设计中六边形组件;
图2是现有设计中四边形组件;
图3是采用双层水棒组件的堆芯工质流动方式图;
图4是四边形双层水棒燃料组件基本结构的水平剖面图;
图5是四边形双层水棒燃料组件基本结构的三维图;
图6是2X2四边形双层水棒燃料组件图的水平剖面图;
图7是六边形双层水棒燃料组件基本结构的水平剖面图。
图中,I是上腔室;2是吊篮与组件外壁间通道;3是工质入口 ;4是吊篮;5是水棒外管;6是水棒内管;7是燃料通道;8是下联箱;9是下腔室;10是工质出口管;11是燃料棒;12是组件外壁;13是水棒内管壁;14是水棒外管壁。
具体实施方式
本发明提出的一种组件中增加一层水棒壁,使慢化剂在水棒中沿着相反的方向流动,然后进入冷却剂通道的双层水棒结构。下面结合附图予以说明。
图3是采用双层水棒组件的堆芯工质流动方式图,说明了增加一层水棒壁后,堆芯中工质的流动方式。图3中,吊篮4与组件外壁12(压力容器)间通道2两端分别连通上腔室I和下腔室9,工质入口 3连接在吊篮4与组件外壁12间通道2上部,双层水棒的水棒内管壁13下端与下腔室9连通,水棒外管壁13上端与上腔室I连通,水棒外管壁14与组件外壁12及燃料棒11表面之间形成燃料通道7 (如图4、图5所示)燃料棒11竖着排列在燃料通道7内;水棒外管5下端与下联箱8连通;水棒内管6与上腔室I相通;工质出口管10穿过通道2分别与组件外壁12上部和燃料通道7上部密封连接。
所述双层水棒组件结构改善堆芯轴向功率分布的方法是工质在堆芯中折返流动三次,分别通过水棒内管6、水棒外管5和燃料通道7。具体流动方式为工质通过入口 3进入堆内,分为两部分从吊篮4与组件外壁12间通道2中流过,一部分向上流动进入上腔室 1,另一部分向下流动进入下腔室9。进入下腔室9的工质通过水棒内管6向上流动进入上腔室I。上腔室中的工质混合后经过水棒外管5向下流动进入下联箱8,然后从下向上通过燃料通道7,接收由燃料棒11产生的热量,接收燃料棒热量的工质最终通过工质出口管10 流出堆芯。从而得到比采用单层水棒更加均匀的轴向温度分布,进而使组件轴向功率分布更加均匀。由此可以降低相同平均热流密度条件下的最大燃料包壳温度,也可以有足够的余量来增大平均热流密度;在超临界水冷堆中采用双层水棒结构设计,可以提高反应堆的安全性。
图4是四边形双层水棒燃料组件基本结构的水平剖面图。四边形组件基本结构是四边形组件的基础,是其最小单元,四边形组件可由基本结构扩展而成。四边形组件基本结构包含I根水棒和16根燃料棒。工质流动方式与图3所示一致。水棒内管6中工质从下向上流动,水棒外管5中工质从上向下流动,燃料通道7中工质从下向上流动。水棒内管壁 13采用热导率较大的材料,如不锈钢等;水棒外管壁14采用热导率较小的材料,如二氧化锆等;组件外壁12用来固定整个组件的结构。燃料棒11用来产生热量。图5是四边形双层水棒燃料组件基本结构的三维图。组件每边包含4或6根燃料棒的基本结构可根据图4 和图5结构改变得到。
图6是2X2四边形双层水棒燃料组件图的水平剖面图。2X2四边形组件是由四边形组件基本结构扩展得到。2X2四边形组件包含4根水棒和45根燃料棒。工质流动方式与图3所示一致。
图7是六边形双层水棒燃料组件基本结构的水平剖面图。六边形组件基本结构是仿照四边形组件基本结构的结构得到。六边形组件基本结构包含I根水棒和12根燃料棒。 工质流动方式与图3所示一致。六边形组件基本结构与四边形组件的扩展方式相似而得到其他形式的六边形组件。
权利要求
1.一种用于超临界水冷堆的双层水棒组件结构,其特征在于,所述双层水棒组件结构是在基本结构为四边形或六边形的组件中增加一层水棒壁;具体是在吊篮(4)与组件外壁 (12)间的通道(2)两端分别连通上腔室(I)和下腔室(9),工质入口(3)连接在通道(2) 上部,双层水棒的水棒内管壁(13)下端与下腔室(9)连通,水棒外管壁(14)上端与上腔室 (I)连通,水棒外管壁(14)与组件外壁(12)及燃料棒(11)表面之间形成燃料通道(7),燃料棒(11)竖着排列在燃料通道(X)内;水棒外管(5)下端与下联箱(8)连通;水棒内管(6) 与上腔室(I)相通;工质出口管(10)穿过通道(2)分别与组件外壁(12)上部和燃料通道 (7)上部密封连接。
2.根据权利要求
I所述用于超临界水冷堆的双层水棒组件结构,其特征在于,所述四边形组件基本结构包含I根水棒和16根燃料棒即每边包含5根燃料棒;组件每边包含4根或6根燃料棒的基本结构根据上述每边包含5根燃料棒的结构扩展改变得到。2X2四边形组件包含4根水棒和45根燃料棒;根据2X2四边形组件的扩展方式得到3X3、4X4、5X5 或6X6的四边形组件。
3.根据权利要求
I所述用于超临界水冷堆的双层水棒组件结构,其特征在于,所述六边形组件基本结构是仿照四边形组件基本结构得到,六边形组件基本结构包含I根水棒和 12根燃料棒,六边形组件基本结构经过与四边形组件相同的扩展方式得到其他形式的六边形组件。
4.根据权利要求
I所述用于超临界水冷堆的双层水棒组件结构,其特征在于,双层水棒燃料组件中水棒内管壁(13)采用热导率较大的不锈钢材料;水棒外管壁(14)采用热导率较小的二氧化锆材料,组件外壁(12)用来固定整个组件的结构;燃料棒(11)用来产生热量。
5.—种双层水棒组件结构改善堆芯轴向功率分布的方法,其特征在于,在双层水棒结构中,工质在堆芯中折返的流动三次,即分别通过水棒内管¢)、水棒外管(5)和燃料通道(7),使工质在水棒中沿着相反的方向流动,然后进入冷却剂通道;具体流动方式为工质通过工质入口(3)进入堆芯内,分为两部分从吊篮(4)与组件外壁(12)间通道(2)中流过, 一部分向上流动进入上腔室(I),另一部分向下流动进入下腔室(9),进入下腔室(9)的工质通过水棒内管(6)向上流动进入上腔室(I),与上腔室(I)中的工质混合后经过水棒外管(5)向下流动进入下联箱(8),然后从下向上通过燃料通道(7),接收由燃料棒(11)产生的热量;接收由燃料棒热量的工质最终通过工质出口管(10)流出堆芯,从而得到比采用单层水棒更加均匀的轴向温度分布,进而使组件轴向功率分布更加均匀;由此降低相同平均热流密度条件下的最大燃料包壳温度,堆芯有足够的余量来增大平均热流密度,同时增加提升反应堆总功率的空间;该结构提高反应堆的安全性。
专利摘要
本发明公开了属于反应堆零部件领域的一种用于超临界水冷堆的双层水棒结构,该结构是在超临界水冷堆中采用双层的水棒结构,增加一层水棒壁,即吊篮与组件外壁间通道两端分别连通上腔室和下腔室,双层水棒的水棒内管壁下端与下腔室连通,水棒外管壁上端与上腔室连通,水棒外管壁与组件外壁及燃料棒表面之间形成燃料通道,燃料棒竖着排列在燃料通道内;因此改变工质流动方式,从而得到比采用单层水棒更加均匀的轴向温度分布,进而使组件轴向功率分布更加均匀。由此可以降低相同平均热流密度条件下的最大燃料包壳温度,该结构可以提高反应堆的安全性,同时增加提升反应堆总功率的空间。具有结构简单,对原始设计改进较小的特点。
文档编号G21C5/16GKCN102592688SQ201210054434
公开日2012年7月18日 申请日期2012年3月2日
发明者周涛, 孙灿辉, 程万旭, 陈娟 申请人:华北电力大学导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1