一种模拟船桥碰撞的试验装置的制作方法

文档序号:11196996阅读:1116来源:国知局
一种模拟船桥碰撞的试验装置的制造方法

本发明涉及船桥碰撞技术领域,具体涉及一种模拟船桥碰撞的试验装置。



背景技术:

在设计通航水域桥梁时,必须考虑受到船撞的问题,否则,可能导致桥梁结构在遭到船撞时被破坏甚至倒塌,造成巨大的经济损失、人员伤亡以及非常负面的社会影响。据统计,1960年至2007年,世界上有34座重要桥梁因船撞而倒塌,造成了346人死亡,因此,通过试验模拟船舶撞击桥墩探讨桥墩安全性能方面的缺陷是我们所关注的重点。船桥撞击试验是一种破坏性试验,若采用实尺模型,对试验装置和试验场地要求比较高,成本消耗巨大,不利于研究的开展,计算机仿真对船桥碰撞研究成本低、研究周期短,为研究桥墩的安全性能提供了方便。

目前,模拟船舶撞击桥墩的试验装置主要有两种:(1)重物通过自由落体运动撞击被测桥墩,如落锤试验装置;(2)通过摆锤试验装置,重物绕一点旋转撞击被测试物。两种试验装置形式虽不同,但作用机理十分的相似,在试验中,撞击物往往采用刚度较大的质量块,碰撞接触面一般是平面或者是半球形曲面,无法模拟真实船舶撞击桥墩的过程,因为在真实船舶撞击桥墩的过程中,由于接触力的作用船舶的接触面会发生一定的变形;在试验过程中采用的碰撞物刚度往往很大,碰撞物视为刚体,没有变形,造成接触面的接触力比真实接触力大;这类试验装置无法模拟带有球艏船只的碰撞过程,在相同质量和相同速度的情况下,不同类型的船只碰撞桥墩,桥墩的破坏情况和损伤程度有很大的差异,特别是对于有球艏的和无球艏的船只,碰撞结构有较大的差异;更重要的一点是,在试验的过程中,现有的船桥碰撞试验装置没有考虑桥墩上部结构和下部结构对碰撞过程桥墩破坏的影响,不能真实的模拟桥墩所受的边界条件,并且在船桥碰撞实例中,并非全是船舶正面撞击桥墩中心,对于单墩双跨桥墩,其横向刚度远大于纵桥向刚度,船舶正面偏心撞击桥墩对桥墩的损伤可能会更大,目前的试验装置无法模拟该种碰撞情况,但这种情况真实存在。



技术实现要素:

本发明要解决的技术问题是克服现有技术存在的不足,提供一种结构简单、使用方便、工作稳定可靠、能够准确模拟船桥碰撞的真实情况、获得真实准确的试验结果的模拟船桥碰撞的试验装置。

为解决上述技术问题,本发明采用以下技术方案:

一种模拟船桥碰撞的试验装置,包括安装在底座的船首模型、目标桥墩和用于驱动船首模型撞击目标桥墩的动力装置,所述底座上安装有用于引导船首模型撞击目标桥墩的导向组件,还包括主梁、安装在底座上的下连接座和安装在底座上且分设于目标桥墩两侧的两个临近桥墩,所述目标桥墩的下端连接于下连接座上,所述主梁支承安装在目标桥墩和两个临近桥墩的上端。

上述的模拟船桥碰撞的试验装置,优选的,所述试验装置还包括用于在重力方向上对目标桥墩施加压力的轴力补偿组件。

上述的模拟船桥碰撞的试验装置,优选的,所述轴力补偿组件包括拉绳、定滑轮、弹性伸缩部件和伸缩式调力部件,所述定滑轮安装在下连接座上,所述拉绳的一端与目标桥墩的上端相连,另一端绕过定滑轮与伸缩式调力部件相连,所述弹性伸缩部件压设安装在伸缩式调力部件和下连接座之间并能通过伸缩式调力部件调节压缩量。

上述的模拟船桥碰撞的试验装置,优选的,所述轴力补偿组件还包括用于检测拉绳拉力大小的传感器。

上述的模拟船桥碰撞的试验装置,优选的,所述下连接座包括承台、安装在底座上的基座和安装在基座上的多个桩基,所述承台支承在多个桩基的上端,各桩基通过紧固件与承台固定连接或者直接嵌固在承台中,所述目标桥墩的下端通过紧固件与承台固接。

上述的模拟船桥碰撞的试验装置,优选的,所述临近桥墩的顶部两侧安装有用于模拟真实桥梁对临近桥墩作用力的等效配重块。

上述的模拟船桥碰撞的试验装置,优选的,所述主梁通过第一垫石支承在目标桥墩的上端;各临近桥墩的上端设有盖梁,所述主梁通过第二垫石支承在各临近桥墩的盖梁上。

上述的模拟船桥碰撞的试验装置,优选的,所述导向组件包括导轨,所述导轨通过调节机构以可调节安装高度和导向路径的方式安装在底座上,所述船首模型设有滚轮并通过滚轮与导轨导向配合。

上述的模拟船桥碰撞的试验装置,优选的,所述调节机构包括第一支座、第二支座、滑设在底座上的调节座以及将调节座固定的固定件,所述调节座设有若干组绕调节座上的固定轴线间隔布置的第一安装孔,所述第一支座通过紧固件安装在其中一组第一安装孔中,所述第二支座安装在底座上;所述第一支座和第二支座均设有若干沿竖直方向间隔布置的第二安装孔,所述第二支座的至少一组第二安装孔中通过紧固件安装有两根横梁,所述导轨的一端通过紧固件与第一支座的一组第二安装孔相连,所述导轨的另一端夹设在两根横梁之间。

上述的模拟船桥碰撞的试验装置,优选的,所述动力装置包括高压气源、安装在底座上的炮管和与炮管滑动密封配合的活塞式推杆,所述高压气源与炮管相连并能驱使活塞式推杆伸出以推动船首模型沿导向组件向目标桥墩运动;所述活塞式推杆伸出至最大长度时,船首模型与目标桥墩和/或活塞式推杆之间具有间距。

与现有技术相比,本发明的优点在于:本发明模拟船桥碰撞的试验装置可采用真实船首的缩尺模型,考虑了在碰撞过程中船首的结构构造变形对桥墩破坏程度的影响,能够真实的模拟船舶碰撞桥墩的过程,且充分考虑了桥墩的上部结构、下部结构和周边桥墩等边界条件在船桥撞击时对桥墩破坏形式的影响,使桥墩的受力与真实情况相同,进而能够得出更为真实准确的试验结果,为探究桥墩安全性能提供更为真实准确的数据。另外,本发明采用轴力补偿组件解决了由于重力加速度无法缩尺而造成的目标桥墩轴向力荷载不足这一难题。导向组件的导轨可调节安装高度和导向路径,可实现模拟船首模型从不同角度、不同位置和不同高度撞击目标桥墩,能够实现模拟实际可能存在的不同碰撞情况。该试验装置还具有结构简单、制作成本低、使用方便、工作稳定好的优点。

附图说明

图1为试验装置的立体结构示意图。

图2为试验装置的主视结构示意图。

图3为试验装置的侧视结构示意图。

图4为拉绳与目标桥墩的连接结构示意图。

图5为等效配重块安装在临近桥墩上的结构示意图。

图6为导轨调整导向路径后的立体结构示意图。

图7为导轨调整导向路径后的俯视结构示意图。

图8为导轨调整导向路径后与第二支座相连的立体结构示意图。

图例说明:

1、船首模型;11、滚轮;2、目标桥墩;3、动力装置;31、高压气源;32、炮管;33、活塞式推杆;4、导向组件;41、导轨;42、第一支座;43、第二支座;431、横梁;44、调节座;401、第一安装孔;402、第二安装孔;5、主梁;6、下连接座;61、承台;62、基座;63、桩基;7、临近桥墩;8、轴力补偿组件;81、拉绳;82、定滑轮;83、弹性伸缩部件;84、伸缩式调力部件;85、传感器;86、预应力锚板;9、等效配重块;100、底座;201、第一垫石;202、盖梁。

具体实施方式

以下结合附图和具体实施例对本发明作进一步详细说明。

如图1至图3所示,本实施例的模拟船桥碰撞的试验装置,包括底座100,底座100上安装有船首模型1、双柱式目标桥墩2、用于驱动船首模型1撞击目标桥墩2的动力装置3和用于引导船首模型1撞击目标桥墩2的导向组件4,进一步的,试验装置还包括主梁5、安装在底座100上的下连接座6和安装在底座100上的两个临近桥墩7,两个临近桥墩7分设于目标桥墩2两侧,目标桥墩2的下端连接于下连接座6上,主梁5支承安装在目标桥墩2和两个临近桥墩7的上端。上述船首模型1采用与真实船体构造相同的缩尺模型,实际情况中不同类型船只的船首结构相差较大,可根据试验需要更换不同类型的船首模型1。动力装置3给船首模型1提供动力,驱使船首模型1沿导向组件4运动并撞击目标桥墩2,以此模拟真实船舶撞击桥墩。下连接座6模拟目标桥墩2的下部结构,主梁5模拟目标桥墩2的上部结构,临近桥墩7模拟与目标桥墩2相邻的桥墩。

本实施例的试验装置考虑了在碰撞过程中真实船首的结构构造变形对桥墩破坏程度的影响,能够真实的模拟船舶碰撞桥墩的过程,且充分考虑了桥墩的上部结构、下部结构和周边桥墩等边界条件在船桥撞击时对桥墩破坏形式的影响,使桥墩的受力与真实情况相同,进而能够得出更为真实准确的试验结果,为探究桥墩安全性能提供更为真实准确的数据。

本实施例中,下连接座6包括承台61、基座62和四个桩基63,基座62通过紧固件安装在底座100上,四个桩基63分别通过紧固件安装在基座62上,承台61支承在四个桩基63的上端,各桩基63通过紧固件与承台61固定连接,或者各桩基63直接嵌固在承台61中,目标桥墩2的下端通过紧固件与承台61固接。该种结构的下连接座6能够更好的模拟桥墩下部结构的刚度,其结构简单、易于制作、方便调节。

本实施例中,如图1和图5所示,临近桥墩7的顶部两侧安装有用于模拟真实桥梁对临近桥墩7作用力的等效配重块9,该等效配重块9模拟真实桥梁中临近桥墩7的受力情况,进而更为真实的模拟目标桥墩2所受的边界条件,能够进一步提高试验结果的真实准确性。

本实施例中,主梁5通过第一垫石201支承在目标桥墩2的上端(参见图4);各临近桥墩7的上端设有盖梁202,主梁5通过第二垫石支承在各临近桥墩7的盖梁202上(参见图5),这样更为真实的模拟了真实桥梁的结构构造,利于提高目标桥墩2所受边界条件的真实准确性。

本实施例中,桩基63采用工字钢进行等效模拟真实桩,其侧向刚度与真实桩的侧向刚度成一定比例。主梁5采用两根钢梁模拟上部结构的侧向作用,钢梁的侧向刚度与真实结构的侧向刚度成一定比例。临近桥墩7也采用工字钢制作。导向组件4的导向方向与目标桥墩2的轴线方向垂直。

本实施例中,试验装置还包括用于在重力方向上对目标桥墩2施加压力的轴力补偿组件8。由于在缩尺模型中,重力加速度无法完成缩尺,轴力补偿组件8可以弥补由于缩尺造成的目标桥墩2轴力的差额部分,使缩尺模型的轴力与真实轴力对应,从而解决了由于重力加速度无法缩尺而造成的目标桥墩2轴向力荷载不足这一难题。

本实施例中,轴力补偿组件8包括拉绳81、定滑轮82、弹性伸缩部件83和伸缩式调力部件84,定滑轮82安装在下连接座6上,拉绳81的一端与目标桥墩2的上端相连,拉绳81的另一端绕过定滑轮82与伸缩式调力部件84相连,弹性伸缩部件83压设安装在伸缩式调力部件84和下连接座6之间并能通过伸缩式调力部件84调节压缩量。具体的,弹性伸缩部件83压设安装在伸缩式调力部件84的伸缩端和下连接座6之间,调节伸缩式调力部件84的伸缩端的伸出,可压缩弹性伸缩部件83,弹性伸缩部件83压缩后提供一个稳定的力迫使拉绳81拉伸,使拉绳81对目标桥墩2的上端形成稳定的下拉力,从而实现补偿目标桥墩2的轴力并能维持轴力的稳定。调节伸缩式调力部件84的伸缩端的伸缩量,可调节弹性伸缩部件83的压缩度,进而调节拉绳81拉力的大小,也即调节对目标桥墩2补偿的轴力大小。

进一步的,轴力补偿组件8还包括用于检测拉绳81拉力大小的传感器85,通过传感器85检测拉绳81拉力大小,便于调节目标桥墩2的轴力至所需大小。如图4所示,本实施例的传感器85具体采用如下安装方式,在目标桥墩2的顶部侧面安装预应力锚板86,预应力锚板86具有上下贯通的贯通孔,拉绳81自下向上穿过贯通孔与传感器85相连,传感器85直接抵靠在预应力锚板86的上端,这样拉绳81所受的拉力直接通过传感器85作用在预应力锚板86上,传感器85能够检测出拉绳81所受拉力的大小。优选的,轴力补偿组件8设置两组,两组轴力补偿组件8对称设置在目标桥墩2两侧,这样能够保证目标桥墩2受力的均匀性和平衡性。

本实施例中,伸缩式调力部件84采用千斤顶,千斤顶通过支承座支承在底座100上。弹性伸缩部件83由多个依次叠合的碟形弹簧组成,拉绳81穿过各碟形弹簧,上述拉绳81采用钢丝绳。本实施例的轴力补偿组件8具有结构简单、调节方便、易于实现、稳定性好的优点。

本实施例的船首模型1具有内腔,内腔中安装有质量块,通过改变质量块的数量和重量,能够调节船首模型1的质量。

本实施例中,如图1、图2、图6、图7和图8所示,导向组件4包括导轨41,导轨41通过调节机构以可调节安装高度和导向路径的方式安装在底座100上,船首模型1设有滚轮11并通过滚轮11与导轨41导向配合,滚轮11与导轨41导向配合引导船首模型1运动。通过调节机构调节导轨41的安装高度和导向路径,可实现模拟船首模型1从不同角度、不同位置和不同高度撞击目标桥墩2,进而能够实现模拟实际可能存在的不同碰撞情况,例如模拟船首偏心碰撞桥墩的情况。

本实施例的调节机构包括第一支座42、第二支座43、滑设安装在底座100上的调节座44以及将调节座44固定在底座100上的固定件,调节座44上设有若干组绕调节座44上的固定轴线间隔布置的第一安装孔401,第一支座42通过紧固件安装在其中一组第一安装孔401中,第二支座43通过紧固件安装在底座100上;第一支座42和第二支座43均设有若干沿竖直方向间隔布置的第二安装孔402,第二支座43的两组第二安装孔402通过紧固件安装有两根横梁431,导轨41的一端通过紧固件与第一支座42的一组第二安装孔402相连,导轨41的另一端夹设在两根横梁431之间。上述调节座44具体是与设于底座100上的滑槽滑动配合,上述固定件采用螺栓,调节螺栓可以将调节座44和底座100固定,或者松开调节座44使其沿滑槽移动,从而可以调整调节座44在底座100上的安装位置;上述第一支座42通过紧固件安装在各组第一安装孔401中时,第一支座42在调节座44上的安装角度不同。该调节机构的结构简单、易于制作、调节方便、稳定性好。

将调节座44调节并固定在底座100上的不同位置,同时将第一支座42通过紧固件安装在相应的一组第一安装孔401中,能改变第一支座42相对于第二支座43的安装位置和安装角度,进而调节导轨41的导向路径,实现调节引导船首模型1撞击目标桥墩2的位置为和角度,采用两根横梁431夹紧固定导轨41的方式,便于配合第一支座42方便快速的调整调节导轨41的导向路径;将导轨41的一端通过紧固件与第一支座42上的不同组第二安装孔402相连,同时将两根横梁431通过紧固件安装在第二支座43上的对应组第二安装孔402中,能改变导轨41的安装高度,实现调节引导船首模型1撞击目标桥墩2的不同高度位置。

本实施例中,动力装置3包括高压气源31、安装在底座100上的炮管32和安装炮管32中并与炮管32滑动密封配合的活塞式推杆33,高压气源31与炮管32相连,高压气源31能向炮管32内充入高压气体,以驱使活塞式推杆33伸出以推动船首模型1沿导向组件4向目标桥墩2运动;活塞式推杆33伸出至最大长度时,船首模型1与目标桥墩2和/或活塞式推杆33之间具有间距,使活塞式推杆33推动船首模型1并伸出至最大长度后,船首模型1与活塞式推杆33分离并运动一段距离后才与目标桥墩2碰撞。采用气压推动式的动力装置3,能够提供稳定可靠的推力,且能够方便的对推力进行调节,该动力装置3结构简单、易于控制。

优选的,高压气源31采用高压气瓶,高压气瓶的出口通过阀门与炮管32的内腔相连,通过阀门控制是否向炮管32内充气。炮管32和高压气瓶固接在一起,在第一支座42上通过与第二安装孔402配合的紧固件安装有安装座板,炮管32和高压气瓶通过连杆连接于安装座板上,调节安装座板通过紧固件安装在第一支座42上的不同组第二安装孔402中,能改变安装座板的安装高度,进而可调节炮管32和高压气瓶的安装高度,以适应不同安装高度的导轨41。

以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1