无人直升机姿态非线性控制方法及验证平台的制作方法

文档序号:6303718阅读:223来源:国知局
无人直升机姿态非线性控制方法及验证平台的制作方法
【专利摘要】本发明属于微小型旋翼式无人飞行器自主飞行控制研究领域,为使无人直升机实现快速、准确的镇定控制,并且该控制器对模型先验知识依赖较低,对系统的不确定性具有良好的鲁棒性。为此,本发明采用的技术方案是,无人直升机姿态非线性控制方法,包括如下步骤:一、首先,采用扫频的方法进行实验建模,给出如下的动力学模型:二、无人直升机系统辨识:三、无人直升机姿态控制。本发明主要应用于微小型旋翼式无人飞行器自主飞行控制。
【专利说明】无人直升机姿态非线性控制方法及验证平台
【技术领域】
[0001]本发明属于微小型旋翼式无人飞行器自主飞行控制研究领域,主要针对一种单旋翼无人飞行器的控制算法设计,包括无人直升机姿态动力学模型的获得,非线性鲁棒姿态控制律的设计,姿态飞行控制实验,具体讲,涉及无人直升机姿态非线性控制方法及验证平台。
【背景技术】
[0002]小型无人直升机是指不需要人驾驶或者操作的,能够自主飞行完成指定任务的特殊飞机。由于其具有垂直起降、安全性高、机动性好、空中悬停等优点,使得其在民用和军用上都有广泛的应用前景,例如低空海域的勘测、复杂地形的侦查、远距离航拍、农药的喷洒等。但由于无人直升机复杂的动力学特性,以及系统本身具有多变量、非线性、强耦合的特点,使得无人直升机的动态特性分析与控制设计较为困难。
[0003]目前国内已经有很多高校和科研机构都在进行无人直升机方面的研究。如针对小型无人直升机的非线性模型,应用反步法实现了无人直升机垂向和航向指令的相应跟踪。但值得指出的是,论文中仅仅进行了相应的数值仿真验证,并没有进行相应的实验验证(期干IJ:控制理论与应用;著者:于明清,徐锦法,刘建业;出版年月:2012年;文章题目:小型无人直升机控制率设计与仿真;页码:792-796)。又如考虑到直升机飞行过程可能遭受到的多种不确定因素的干扰,采用了一种滑模降阶的方法。并针对CE150型直升机模型给出了相应的数值仿真结果。然而文中为了消除滑模控制中可能产生的抖震现象,用饱和函数代替其符号函数,并且未进行相应的实验验证。(期刊:控制理论与应用;著者:蒋沅,曾令武,代冀阳;出版年月:2013年3月;文章题目:一类非线性直升机模型的滑模降阶控制器设计;页码:第30卷第3期330-338)
[0004]另一方面,国外研究人员在小型无人直升机的控制方面也取得了一定的成果。如叙利亚阿勒颇大学的直升机研究组利用基于近似反馈线性化的方法进行控制器设计,有效的抑制了外部扰动。但是反馈线性化的使用忽略了直升机特有的飞行动态,只能在特定的飞行状态下才能得到较好的控制效果(期刊:Control Systems Technology IEEETransactions on;著者:L6onard F, Martini A, Abba G ;出版年月:2012 年;文章题目:Robust nonlinear controls of model—scale helicopter under latral and verticalwind gusts;页码:154-163)。美国南加利福尼亚大学的无人直升机科研组,通过使用旋转矩阵,结合反步法设计了无人直升机的姿态控制器,其数值仿真显示在姿态控制方面达到了较好的控制效果(期刊:Control Systems Technology IEEE Transactions on;著者:Raptis I A, Valavanis K P, Moreno W A ;出版年月:2011 年;文章题目:A novelnonlinearbackstepping controller design for helicopters using the rotationmatrix ;页码:465_473)。但由于反步法的使用引入了系统状态的多次微分,增大了系统的运算量,因此该论文只提供了其数值仿真结果。
[0005]从控制方法来讲,上述科研机构及高校都针对无人直升机提出了较好的解决方案。但是大多停留在仿真实验中,并且对系统模型的依赖程度较高,对于实际飞行是否可用仍然未知。涉及到滑模控制器设计时,大多为了消除滑模控制中可能产生的抖震现象,用饱和函数代替符号函数。

【发明内容】

[0006]本发明旨在解决现有技术的不足,为使无人直升机实现快速、准确的镇定控制,并且该控制器对模型先验知识依赖较低,对系统的不确定性具有良好的鲁棒性。为此,本发明采用的技术方案是,无人直升机姿态非线性控制方法,包括如下步骤:
[0007]一、首先,采用扫频的方法进行实验建模,给出如下的动力学模型:
[0008]
【权利要求】
1.一种无人直升机姿态非线性控制方法,其特征是,包括下列步骤: 一、首先,采用扫频的方法进行实验建模,给出如下的动力学模型:
2.如权利要求1所述的无人直升机姿态非线性控制方法,其特征是,基于(20)中滤波误差的开环动态方程,设计控制器为: u = B-1 (uo+ n),(21) 其中ujt)为基于滑模的非线性鲁棒控制,辦f)是基于神经网络的前馈部分,用于补偿系统的不确定性,这里U。(t)设计为:
3.一种无人直升机姿态非线性控制验证平台,其特征是,包括:小型电动遥控直升机;航姿参考系统;上位机主控制器;底层控制器;其中,主控制器选用PC/104,分为三个模块:数据采集模块,该模块负责惯性导航单元的数据采集与处理;飞行控制模块,该模块负责控制器算法的运行;数据通讯模块,该模块负责主控制器与底层控制器之间的数据传输;其中,选用DSP作为底层控制器,该底层控制器配有主控模块、数据采集模块、通讯模块及手自动切换模块,其中,主控模块负责控制算法的运算,数据采集模块负责传感器MTI的数据采集,通讯模块负责DSP与上位机信息交互,手自动切换模块负责接收机PPM信号捕捉和舵机PWM信号输出。
【文档编号】G05B23/02GK103885450SQ201410074443
【公开日】2014年6月25日 申请日期:2014年3月3日 优先权日:2014年3月3日
【发明者】鲜斌, 古训, 张垚, 刘祥 申请人:天津大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1