电压调节器的制作方法

文档序号:18754708发布日期:2019-09-24 22:01阅读:574来源:国知局
电压调节器的制作方法

本发明涉及电压调节器。



背景技术:

电压调节器具备抑制输出电压的过冲的过冲抑制电路。输出电压的过冲在电压调节器的输出电压低于预先设定的输出电压的状态、即非调节状态时容易发生。

因此,过冲抑制电路具备由比较器构成的非调节检测电路,当检测到非调节状态时抑制过冲(例如,参照专利文献1日本特开2015-7903号)。

专利文献1:日本特开2015-7903号公报

然而,在专利文献1的电压调节器的情况下,在非调节检测电路的比较器中始终流动电流,因此存在难以稳定地降低消耗电流的课题。



技术实现要素:

本发明是鉴于上述课题而提出的,本发明的目的在于提供一种具备消耗电流小的过冲抑制电路的电压调节器。

本发明的一个方式的电压调节器的特征在于,包括:非调节检测电路,其具备:误差放大器,反馈电压和基准电压输入到该误差放大器,由此控制输出晶体管的栅极电压;及差动放大电路,其根据与输出晶体管的输出电流对应的电流来进行动作;及过冲抑制电路,其具备过冲检测电路,该过冲检测电路通过表示由非调节检测电路检测出非调节的信号而有效地进行过冲检测动作。

发明效果

根据本发明的电压调节器,使非调节检测电路的差动放大电路在调节状态下几乎不流动尾电流(tailcurrent),因此能够减少调节状态下的消耗电流。

附图说明

图1是示出本发明的实施方式的电压调节器的电路图。

图2是示出本发明的实施方式的电压调节器的另一例的电路图。

标号说明

1:电压输入端子;2:电压输出端子;3:接地端子;10:输出晶体管;13、14:基准电压电路;15:误差放大器;16:非调节检测电路;17:过冲检测电路。

具体实施方式

下面,参照附图,对本发明的实施方式进行说明。

图1是示出本发明的实施方式的电压调节器的电路图。

本实施方式的电压调节器100具备电压输入端子1、电压输出端子2、接地端子3、输出晶体管10、构成反馈电路的电阻11、12、基准电压电路13、14、误差放大器15、非调节检测电路16、过冲检测电路17、及pmos晶体管18。

非调节检测电路16具备差动放大电路和输出反相器。差动放大电路具备构成感测晶体管(sensetransistor)的pmos晶体管20、构成差动对的pmos晶体管21、22、以及构成有源负载电路且构成电流镜电路的nmos晶体管23、24。输出反相器具备nmos晶体管25和恒流源26。

过冲检测电路17和晶体管18构成过冲抑制电路。

对电压调节器100的结构要素的连接进行说明。

输出晶体管10的源极连接到电压输入端子1,漏极连接到电压输出端子2,栅极连接到误差放大器15的输出端子。电阻11和电阻12串联连接到电压输出端子2与接地端子3之间。电阻11和电阻12的连接点为输出反馈电压vfb的节点n1。误差放大器15的同相输入端子与节点n1连接,反相输入端子与基准电压电路13的输出端子连接。非调节检测电路16的第一输入端子与基准电压电路14的输出端子连接,第二输入端子与误差放大器15的输出端子连接。过冲检测电路17的第一输入端子与非调节检测电路16的输出端子连接,第二输入端子与节点n1连接,输出端子与pmos晶体管18的栅极连接。pmos晶体管18的源极连接到电压输入端子1,漏极连接到输出晶体管10的栅极。

pmos晶体管20的源极连接到电压输入端子1,栅极连接到误差放大器15的输出端子,漏极连接到pmos晶体管21、22的源极。pmos晶体管21的栅极连接到基准电压电路14的输出端子,漏极连接到nmos晶体管23的栅极和漏极。pmos晶体管22的栅极连接到误差放大器15的输出端子,漏极连接到nmos晶体管24的漏极。nmos晶体管23的源极连接到接地端子3。nmos晶体管24的栅极连接到nmos晶体管23的栅极,源极连接到接地端子3。nmos晶体管25的漏极经由恒流源26而连接到电压输入端子1,栅极连接到pmos晶体管22的漏极,源极连接到接地端子3。

在非调节检测电路16中,nmos晶体管25的漏极为输出端子,pmos晶体管21的栅极为第一输入端子,pmos晶体管22的栅极为第二输入端子。

对相关结构的电压调节器100的动作说明如下。

基准电压电路13输出以接地端子3的电压vss为基准的基准电压vref1。基准电压电路14输出以接地端子3的电压vss为基准的基准电压vref2。

在电压调节器100的电压输入端子1的输入电压vin足够高,处于调节状态时,电压输出端子2的输出电压vout被控制为根据基准电压vref1而以反馈电路的电阻11、12的电阻比来决定的期望的预先设定的输出电压。此时,误差放大器15将输出晶体管10的栅极电压控制为电压v1,以使反馈电压vfb与基准电压vref1一致。在调节状态下,电压v1成为比输入电压vin低了输出晶体管10的栅极与源极间电压的电压。基准电压vref2被设定为低于电压v1的电压。因此,在调节状态下,非调节检测电路16输出表示调节状态的高(h)电平的信号。在非调节检测电路16的信号为高电平时,过冲检测电路17以与反馈电压vfb无关地使pmos晶体管18截止的方式控制pmos晶体管18的栅极电压。

pmos晶体管20将与输出晶体管10的输出电流成比例的电流作为尾电流而输出到差动放大电路的差动对。将pmos晶体管20设计为比输出晶体管10足够小的尺寸。

在调节状态下输出电流小时,如上述的pmos晶体管20的电流值大致为零,因此几乎不流动尾电流。在不流动尾电流时,pmos晶体管21、22和nmos晶体管23、24、25截止。当nmos晶体管25截止时,通过恒流源26,非调节检测电路16的信号被固定为高(h)电平。因此,在输出电流小时,pmos晶体管20和nmos晶体管25的电流值大致为零,因此非调节检测电路16中几乎不流动电路电流。

另一方面,当输入电压vin低于针对输出电压vout预先设定的输出电压时,电压调节器100成为非调节状态。此时,反馈电压vfb低于基准电压vref1,因此,误差放大器15将输出晶体管10的栅极电压v1降低到0v附近。当电压v1为0v附近时,pmos晶体管20导通,因此流动尾电流,从而非调节检测电路16内的各个晶体管被偏置。

另外,电压v1低于基准电压vref2,因此,尾电流在差动对的pmos晶体管22侧流动,nmos晶体管25的栅极电压变高,nmos晶体管25导通。因此,非调节检测电路16输出表示非调节状态的低(l)电平的信号。

当从非调节检测电路16接收到低(l)电平的信号时,过冲检测电路17使输出电压vout的过冲检测变为有效。过冲检测电路17根据反馈电压vfb的上升来检测由于输入电压vin的变动而导致的输出电压vout的过冲。当检测到过冲时,过冲检测电路17输出使pmos晶体管18导通的信号,并提高输出晶体管10的导通电阻,从而抑制输出电压vout的过冲。

如以上说明,电压调节器100将非调节检测电路16的差动放大电路的工作电流设为与输出电流对应的电流,因此在调节状态下消耗电流变小。并且,在非调节状态下流动用于检测非调节而充分的工作电流,因此能够抑制输出电压的过冲。

另外,在非调节检测电路16中,输出电路由nmos晶体管25和恒流源26构成,在调节状态下在输出电路中不流动电流,因此能够减少消耗电流。

接下来,对实施方式的电压调节器的变形例进行说明。

图2是表示本实施方式的电压调节器的另一例的电路图。

在图2的电压调节器100中,非调节检测电路16具备恒流源27~29。此外,对于与图1所示的电压调节器100相同的结构要素赋予相同的标号,适当省略重复的说明。

恒流源27连接到nmos晶体管25的栅极与接地端子3之间。

在图2的电压调节器100中,利用恒流源27而下拉(pull-down)了nmos晶体管25的栅极,因此,即便在调节状态下输出电流非常小且差动放大电路的输出不恒定时,也能够将非调节检测电路16的输出可靠地保持在高(h)电平。

因此,图2的电压调节器100具备恒流源27,因此能够将调节状态下的非调节检测电路16的输出进一步稳定化。

恒流源28与nmos晶体管23并联地连接于nmos晶体管23的漏极与接地端子3之间。

与nmos晶体管23并联连接的恒流源28有效地抑制由于将nmos晶体管24和恒流源27并联连接而产生的差动放大电路的输入失调电压。

恒流源29与pmos晶体管20串联连接。

在非调节状态下将输出晶体管的栅极电压v1降低到0v附近,因此,在pmos晶体管20中,栅极与源极间电压变大,导通电阻变小。因此,非调节检测电路16的差动放大电路的尾电流变大,因此,电压调节器100在非调节状态下的消耗电流变大。与pmos晶体管20串联连接的恒流源29能够将在差动放大电路中流动的尾电流限制为在检测非调节状态时所需的电流值,因此能够抑制消耗电流的增加。

以上,对本发明的实施方式进行了说明,但本发明显然不限于上述实施方式,在不脱离本发明的主旨的范围内,可进行各种变更。

例如,也可以将输入到非调节检测电路16的差动对的输入电压不设为输出晶体管的栅极的电压v1,而是设为对电压v1进行电平移位而得的其他电压。另外,例如,非调节检测电路16的输出反相器具备nmos晶体管25和恒流源26,但是,在误差放大电路的输出逻辑相反的情况下,也可以由pmos晶体管和恒流源来构成非调节检测电路16的输出反相器。在该情况下,只要将用于固定非调节检测电路的输出逻辑的恒流源连接成将pmos晶体管的栅极上拉(pull-up)即可。

另外,关于基准电压电路14,可由与pmos晶体管20相同的结构的晶体管来供给工作电流。这样,电压调节器100能够进一步削减调节状态下的消耗电流。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1