扁平粘合电极的可再充电电化学电池及其制备方法

文档序号:6894818阅读:142来源:国知局
专利名称:扁平粘合电极的可再充电电化学电池及其制备方法
技术领域
本发明涉及粘合的多层平板电化学电池装置的制备方法,例如涉及可再充电蓄电池和超级电容器的制备方法。更具体地说,本发明提供了一种方法,使这类电化学装置中采用的迭层平板电极和微孔隔板部件之间具有持久的层间粘合力。
背景技术
广泛采用的原电池和二次电池,可再充电的锂离子电化学电池是本发明所述的电化学装置的典型范例。这类电池包括与插入的隔板部件共存的组装在一起的相应正极和负极构成部件的多层膜或膜片,所述的隔板部件包括透离子材料的电绝缘层或电绝缘膜。该多层电化学电池结构一般装有迁移离子的电解质组合物,这种电解质组合物通常呈液态并且部分位于隔板部件中,目的是确保在电化学电池充放电循环期间电极部件之间具有基本的离子电导率。
实现该目的的一种类型的隔板是微孔型聚烯烃膜,正如US3,351,495;5,565,281;和5,667,911描述的,它们既可以是单层结构,也可以是多层结构。当采用这些多孔膜作为可再充电电化学电池隔板时,不仅在其多孔结构中有效地滞留了大量的液态电解质组合物,而且还带来了额外的好处,即它们具有自动的热切断特性,防止未被控制的热量在电化学电池内聚积,例如可能存在的其它情况,例如在电池过充电期间,导致有危险的爆炸。这种固有的安全保护机理源于这样的一个事实制备隔膜时采用的聚烯烃的熔点范围处于电化学电池热聚积危险区的较低端。因此,即使产生烧坏电池的热量,但多孔聚烯烃隔膜被加热到熔点,其孔结构塌陷,从而切断了电池内的基本离子电导率并在危险情况发生前终止了电化学反应。
迄今为止,包装电化学电池结构的材料经常采用的是金属容器,例如,无论是长条形的管(圆柱形),还是扁平状的管(菱形),一般来说,它们不仅取决于所含的液态电解质组分,还取决于维持单个电池电极和插入的隔板部件之间紧密的物理接触所施加的较高迭层压力。除了电解质的组成外,如上所述的,这种紧密接触对电化学电池工作期间电极间的有效离子迁移来说是必需的。
但是,近几年来,由锂离子蓄电池和类似的电化学储能电池供电的电子装置的多样化和持续的小型化造成了对电池包装形状和尺寸的更多要求,例如更宽的、超薄型、具有明显柔软度的轻质包装。例如,若干种最终用途要求应用柔软的聚合物薄膜片型包装材比早期的刚性壁型高压金属壳容器的需求大。但是,这些柔软性更好的包装材会逐渐降低基本上自生的压力以实现和维持确保整个电化学电池中所述的基本紧密的层间接触。
为了缓和上述自生迭加压力降低造成的不利影响,确保电化学电池部件间的接触,开发者已经开发了在电极和隔板层之间直接进行迭层粘合,以保证它们之间的基本紧密接触。这种创新的典范是采用聚合物基电极和隔板部件的电化学电池,例如US5,296,318;5,456,000;5,460,904和5,540,741中描述的。
在制造那些电池时,采用与有效液态电解质组合物兼容的聚合物组分,例如氯乙烯、丙烯腈、甲基丙烯酸甲酯、环氧乙烷、1,1-二氯乙烯,和1,1-二氟乙烯的聚合物和共聚物,尤其是与六氟丙烯共聚的聚偏1,1-二氟乙烯(PVdF)作为电极和隔板部件的粘合剂,不仅提高了基本离子电导率,而且也向那些在相当低的迭层温度下增强其层间粘合性的电池部件提供了常用组分。这种迭加多层的可再充电电化学电池即使被包装在柔性的轻质聚合物膜壳体内,也可以高效地工作并且具有稳定的高电容量和呈现出优异的放电速率特性。
尽管这种迭层的电化学电池和类似的储能装置在小型化应用中具有突出的优点,但是,主要采用无孔的聚合物基质和膜制造的电池已经丧失了采用微孔聚烯烃隔膜实现所需热切断的那些装置所具备的特点。而且,由聚烯烃膜显示出的下表面能使得它们具有较高的防粘特性,从而防止它们与许多聚合物电极层组分发生强有力的永久迭层粘合,尤其是在未引起熔融的适当温度范围内,因此,聚烯烃膜的多孔结构发生热塌陷。
为了克服其它理想微孔聚烯烃隔膜的防粘特性,电化学电池的制造商们在向电极和隔板部件界面处引入特定配方的粘合聚合物组分方面已经作了一些尝试,例如由Abraham等人在《电化学协会杂志》(Journal ofElectrochemical Society)第142(3)期,第683-687页(1995)和US5,837,015和5,853,916中描述的。但是,已经发现使用这种粘合组合物无论是通过外涂、浸渍、挤压,还是其它方法都出现了明显的堵塞或在其它方面影响聚烯烃膜的多孔结构,大大降低了电解质的流动性和离子电导率。另外,加入大量的这类粘合材料,增大了电池中非反应性组分所占的份额,从而降低了制成的各种储能装置的比容量。
为使电池的电极和隔板之间具有适当的界面粘合而进行的一些典型尝试是US5,681,357和5,716,421中公开的方法。在这些专利文献中,当在电化学电池的制备中打算通过热迭层将隔膜与电极一起使用时,借助一种有机溶剂的溶液向微孔隔膜上施加了一层PVdF均聚物,而所述的电极含有类似聚合物的粘合剂基质组合物。显而易见,施加的聚合物层不能太厚,否则堵塞膜的空隙,而是应该提供一层与理想的电极层组合物的基质聚合物粘合剂兼容的中间过渡层。已经证明该方法本身在低于临界值的迭层温度下不足以使电池部件层间具有令人满意的界面粘合,这里所指的临界值是导致隔板孔塌陷,而使得有效离子电导率下降并且降低电容量。填充到膜或层孔隙中的填充聚合物层太薄,就形成了任何物质的界面粘合。
为了克服这一难题,人们提出了一种粘合方法,包括在壳体内在压力下加热组装的多层结构的单一部件,壳体内还注入了含锂盐的有机电解质溶液,该溶液的作用是用作填充聚合物和电极组合物中聚合物的互形粘合性溶剂。但是,该方法存在几个问题,这些问题与组装和电池性能有关。首先,在密封的壳体内很难进行有效地控制和对多层折迭的或缠绕的电极/隔板组件施加均匀的压力,而使各层,尤其是折迭部位进行强粘合。第二,为防止电极和集流器龟裂和剥离,使用了极薄的电极层和集流器。第三,加热活化电化学电池中的液态电解质直至足以进行粘合的高温为止,这一过程对电池的长期电化学性能产生了消极的影响,并常常导致对多层箔包装材料和制备这类平板电化学电池时通常使用的馈通箔片造成永久性的物理和化学毁坏。
人们对使微孔聚烯烃隔板和聚合物复合电极部件之间具有一定的粘合强度同时维持隔板部件的开孔结构的其它一些方法进行了尝试。US5,981,107提出了一种方法,即向微孔聚烯烃隔板的两侧施加了数个小园点(含N-甲基吡咯烷酮(NMP)的PVdF液态粘合剂)。然后在加压下向PVdF聚合物组成的两电极之间插入该隔板,接着干燥涂覆的粘合剂。显而易见,分散的粘合剂图案保持了一个开孔区,在该区内电解质可以自由地留存;但是,由于NMP是PVdF和其共聚物的有效溶剂,它们大量地溶解掉电极中的粘合剂聚合物并引起这种聚合物局部地填充隔板的微孔,由此降低隔板的有效离子电导率。另外,提供的粘合剂聚合物组分徒然地增大了电池的质量,从而降低了电池的有效储能容量。
US6,024,773公开了一种类似的方法,包括用NMP或其它强溶剂的PVdF流动溶液均匀涂覆隔板部件的两侧,在电极部件之间插入该隔板,将三层一起加压,在升高的温度下干燥组件,形成层状制品。在该方法中,上面提到的问题更加突出。
因此,现有技术中对制造高电容量、热切断保护、插有微孔聚烯烃隔膜的电化学电池的改进和经济方法仍有需求。对将微孔聚烯烃隔膜有效地粘合成高电容量、高放电速率、热切断保护的粘合电极的可再充电电化学电池的简便、价廉和容易控制的方法仍有需求。

发明内容
本发明提供了一种平板、高电容量、高放电速率、热切断保护的电化学电池的简便制备方法,该方法使用了聚合物基质的电极和经济的市场上易得的微孔聚烯烃隔膜。更具体地说,本发明提供了一种便于电化学电池部件迭层的方法,该方法未采用其它的聚合物粘合剂组合物,并且是在迭层温度和使聚合物基质电极部件和未改性的微孔隔膜之间形成牢固界面结合的压力下进行,其温度和压力还要足够的低,以避免电池隔板部件的多孔膜结构发生热和机械塌陷或发生其它的堵塞。
在本发明的方法中,提供有正极和负极部件,所述正极和负极部件分别包括活性电极材料的塑性聚合物基质组合物层,例如可插入锂离子的碳和过渡金属氧化物,例如LiCoO2和LiMn2O4。这种优选含聚偏1,1-二氟乙烯聚合物或共聚物的电极组合物通常是高压实或高致密层,例如是在压制或迭层压力下形成的,并且可以额外地涂覆在子组件上或迭加到子组件上,所述子组件带有固态或网状的金属箔集流器部件。
在诸如5,456,000和5,587,253的许多美国专利说明书中公开了这类电化学电池电极部件,将它们引入本文作为参考。这些聚合物电极组合物电池部件开始与包含类似聚合物基质的电池隔板部件一起使用,形成热迭层的电池结构,这种电池结构很大程度上取决于电极的基质聚合物和隔板组成的兼容性,以提供强的界面迭层粘合。
现在令人惊奇地发现在本发明中,塑性的聚合物电池电极部件也能与可热切断的微孔聚烯烃电池隔板部件材料形成基本的界面电池粘合,其中已经预先将所述的电极部件单独与包含类似或兼容性基质聚合物的隔板部件迭层。通过直接的热迭层法而无需使用其它的粘合剂聚合物组合物或者进行其它的处理就能实现这种粘合,并且热迭层的温度足够的低,不用考虑电解质的滞留或现行微孔膜的切断特性。事实上,这种效果是这些早期电极组合物特性的最新发现,利用工业上生产的设备或方法,无需大的改变就能实现。在制备最终的可再充电蓄电池时,热辊压器迭层或板式加压和利用电解质溶液的后迭层电池活化都是行之有效的。
对按本发明方法制备的蓄电池结构也实用的方法是利用液态溶剂或超临界流体挤压电极组合物中的增塑剂,进行迭层的辅助处理。除了上述公知的控制迭层结构聚合物电极组合物吸附后来提供的电解质溶液外,这种挤压或对组合物的其它处理方式致使增塑剂蒸发,使得电极基质聚合物的韧性随着电极/隔板部件界面间的迭层粘合强度的增大而增强。将制成的多层粘合电池包装在柔性的盒或包装袋中,其内装有一定量含锂盐的电解质溶液,目的是活化上述实施方式中的电池,使制备工作蓄电池中的优选最终步骤持续下去。
本发明使用的增塑剂是用于电极组合物基质聚合物的具有适度挥发性的主增塑剂,所述增塑剂包括碳酸亚烃酯、邻苯二甲酸二烷基酯、琥珀酸二烷基酯、己二酸二烷基酯、癸二酸二烷基酯、磷酸三烷基酯、聚烷撑二醇醚和它们的混合物。适当地选择这类增塑剂将根据电极部件组合物中使用的具体基质聚合物而定,本领域熟练的技术人员无需进行过多的试验就可确定。同样可以大致地确定组合物中增塑剂的数量,只要除了制备中所需的柔韧性外,例如具有合适的集流器迭层和菱形折迭,在电极/隔板界面区域在低于切断极限值的温度下具有合适的粘合剂流动度,而无需在环境条件下大量挤压增塑剂就行。
聚偏1,1-二氟乙烯(PVdF)聚合物或聚偏1,1-二氟乙烯-六氟丙烯(PVdF-HFP)共聚物电极部件组合物普遍使用的一种优选增塑剂是碳酸内烯酯(PC)。如同根据基质聚合物所做的各种其它选择一样,该增塑剂的有效比例不仅取决于基质聚合物本身,而且还受到组合物中其它组分的数量和性质的极大影响,例如活性电极材料的体积和颗粒尺寸。例如具有PVdF-HFP的正极配方中PC的有效数量按电极基质聚合物组分的重量计可在60-300%内改变。因此,从单个电池制造商视野中的数种可变组合物来看,各种配方中增塑剂的数量优选由制造商根据经验确定。
在各种已知的使用方法中,通过浇注、挤压等方式制备本发明使用的电极部件,理想情况下以淀积或迭加到金属箔集流器上的高致密聚合物组合物层的形式使用,例如在液态电解质锂离子电池中使用的那些形式,或者作为未挤压或挤压的致密塑性锂离子电极使用,例如早期公开的美国专利中描述的那些形式。为了便于后续的流体处理,至少一种电极最好具有穿孔金属栅极、筛、金属非织造材料、或蚀刻或穿孔的箔形式网状金属集流器。
对塑性聚合物基质电极电池部件和未按本发明进行处理的隔板部件的迭层最好是在一定温度和压力条件下的加热压辊间进行,其温度和压力足够的低,低到不会明显地影响多孔结构,即温度低于隔膜的切断温度。尽管对于本领域熟练的技术人员来说,显而易见选择最佳的温度和压力条件将取决于具体的层压机构造和其使用的型号,但是进行层压的有效温度为70-130℃,优选100-125℃,更优选约110℃,并且线负荷约为20-180于克/厘米(kg/cm),优选约55-125kg/cm。
尽管未对普通的微孔隔板的防粘材料聚烯烃表面预先进行昂贵的预涂覆或施加聚合物粘合组合物,但是发现本发明的结果是在电极和隔板部件界面处形成了令人惊奇的牢固粘合。特别值得注意的是这些电池部件的界面粘合能够长久地存在于溶剂型电池电解质组合物中,即便在蓄电池的存放温度高于约80℃的情况下。单独使塑性聚合物电极组合物与未经处理的微孔聚烯烃隔膜之间具有强界面粘合的奇异功效提供了一种新型、便捷的方法,利用该方法可以制备长期寻求、永久粘合的可再充电电化学蓄电池,该电池具有极好的特性和长期的使用寿命。


下面将借助附图详细描述本发明图1是在有效利用本发明方法进行迭层过程中电化学电池电极和隔板部件的横截面图;图2是在本发明方法的迭层条件下具有粘合剂界而粘合的微孔隔膜和接触塑性电极部件放大部分的横截面图;图3是根据本发明方法制备的可再充电蓄电池循环期间较高恒电压分布的曲线图;图4是循环图3可再充电蓄电池时电池容量稳定性的曲线图;图5是根据本发明方法制备的可再充电蓄电池提供的热保护灵敏性曲线图;图6是改变本发明方法制备的可再充电蓄电池循环速率时电容量利用的曲线图。
具体实施例方式
参见图1,一种制备可再充电锂离子蓄电池的优选方法包括将电池正极部件12、一种插入式电子绝缘的透离子隔板部件16和电池负极部件18组装在一起,其中的电池正极部件12包括聚合物组合物层13和相关的集流器11,集流器11可预先与层13一起迭加成电极子组件,其中的电池负极部件18包括聚合物组合物层17和相关的集流器19。然后在加热和压力下迭层组件,例如借助加热的辊(未示出)按箭头所指的方向相对地加压。
一种优选的隔板,和本发明涉及的一种隔板包括微孔聚烯烃膜16,该膜可以由图2放大的横截面中的表面区域表示,在分散有互连孔24的整个膜上分布有聚烯烃体22。这种电化学电池的隔板孔内不仅吸入了电解质溶液(提供锂离子迁移的有效介质),而且多孔结构还对烧坏电池的热聚积提供保护性,其中的聚烯烃随着温度的升高而软化,致使多孔结构在规定的预警戒界限处塌陷。这种塌陷堵塞了孔并阻止离子透过,其结果抑制了电池中的电化学活性。
图2中在界面区域25处与隔板16接触的放大横截面表示的那部分是正极部件13的截面,其中通过迭层步骤的热量,掺入的主增塑剂软化基质聚合物,形成一种粘合剂组合物27,该粘合剂组合物27与隔板16的聚烯烃22一起构成了一层液态粘合剂界面。由于电极组合物27中增塑剂的影响,迭层的温度可以保持在隔板部件16的切断极限值以下,这一点可以从微孔膜的聚烯烃体22中表现的轮廓清晰的孔24清楚地看出。尽管只描述了正极部件13截而处清晰可见的清晰度,但是应该清楚在负极部件17处同时发生了同样的活化。
在对制成的迭层电池结构进行最终的冷却之前,界面粘合剂组合物27中的增塑剂能从结构中排出,使迭层的粘合性增牢和增强,以及电池的体重降低。另外,或作为另一方案,可将迭层浸渍在对电极基质聚合物影响小的挤压溶剂中,挤压溶剂例如是二乙醚或甲醇,以便除去滞留在电极部件层中的增塑剂。然后将制成的迭层电池密封在密封膜包装盒或包装袋中,制成一种可操作的再充电蓄电池,其内充填有一定量的活化迭层结构的电介质盐溶液。
本发明中使用的实用隔板部件材料是市场上可以买到的未经改性的微孔聚烯烃膜,例如由Celgard,Inc.销售的Celgard 2300产品,该产品包括两种与插入的聚乙烯膜共存的微孔聚丙烯膜,以构成适度粘合的迭层。同样可以买到的实用微孔产品是Teklon膜(Entek International,Lebanon,OR)和Setela膜(Tonen Corp.,日本)。在这些隔板材料的每一种材料中,分散在整个隔板上具有内连孔的聚烯烃结构体容易吸收并且包含电介质溶液,以保证电化学电池中基本的离子电导率,同时也使电池具有可切断热塌陷的安全特性。
根据电极的具体组成可以容易地改变对主增塑剂和其在隔板部件以及选择聚合物电极基质组合物中的含量。就后一方案而言,可以考虑对电极部件进行预处理,以便在电极部件制备中,例如浇注、致密化、子组件迭层等的电极部件层的加工中,将视作处理助剂的极少但最佳量的增塑剂考虑进去。尽管碳酸丙烯酯是用作本发明目的的优选增塑剂,但是,选择数种其它类型的增塑剂也是可行的。具体增塑剂和溶液组成的选择在电池制备技术的标准范围内进行就可以了。
根据上述讨论的本发明的各种实施方案,下面的实施例旨在进一步教导熟练的技术人员综合选择有效实施本发明的各种组分、组成和处理过程。
实施例I制备聚合物基质正极在一个密封的容器中,在45℃下,将由79克磨细的销售级LiCoO2,6.5克PVdF-六氟丙烯(PVdF-HFP)共聚物(Kynar PowerFLEX LBG,Elf AtochemNA),3.5克Super P导电碳(MMM Carbon,Belgium),11克碳酸丙烯酯(PC)增塑剂(Aldrich),和90克丙酮(J.T.Baker)组成的组合物混合1小时。在实验室捏合机中进一步均匀化后,采用间隙为约0.3毫米的刮刀将形成的浆料浇注在聚酯载膜上。利用热空气流蒸发掉丙酮,从载体上取下形成的自支承电极组合物层。采用在约145℃温度下加热的双辊层压机将该电极层的一部分与尺寸类似的多孔铝箔栅极(MicroGrid,Delker Corp.)层压在一起,其中的铝箔栅极已经按US5,840,087的描述进行了预处理。在层压处理过程中,为确保活性材料颗粒接触,聚合物电极组合物层被压实或致密化。作为电极子组件的另一种制备方法,将按上述方法制备的两种电极组合物层共同地迭加在铝栅极的两面上,制成一种带有埋入式铝集流器部件的正极部件结构。
对于本发明来说实用的另一种正极部件和许多目前销售的电化学电池包括的这类典型部件类似地用90克LiCoO2,5克PVdF均聚物(Kynar 741,ElfAtochem NA),5克Super P碳,和60毫升NMP的组合物制备。将制成的浆料涂覆在0.03毫米的铝箔上,浆层厚度约为0.3毫米,在循环的热空气中进行干燥。然后将经涂覆的箔压制成约0.1毫米的厚度,形成正极部件。当在下列实施例中用提供的另一方法制备的电极代替上述电极部件时,基本上具有相同的物理和电化学结果。
实施例II制备聚合物基质负极按实施例I的方法处理72克MCMB 25-28微珠中间相人造石墨(Osaka GasCo.,日本),7.5克PVdF-HFP共聚物(Kynar PowerFLEX LBG),2.5克SuperP导电碳,18克PC增塑剂和70克丙酮的混合物。采用在约135℃温度下加热的双辊层压机将形成的电极膜的一部分与尺寸类似的多孔铜箔栅极(MicroGrid,Delker Corp.)层压在一起。作为另一种实施方案,可按实施例I描述的方法使铜栅极埋在两电极膜之间或者采用电极组合物浆料涂覆铜箔。
实施例III组装粘合的申极申化学申池将实施例I和II的电池电极部件12、18和图1所示的Celgard 2300微孔隔板部件16组装在一起,在约110℃和10千克/厘米的辊压下,在一市售的加热双辊层压机装置中层压组装件,制备一实用迭层的可再充电锂离子电化学蓄电池。冷却后,将迭层电池结构浸渍在二乙醚中几分钟,挤压组合物中的增塑剂,进行空气干燥,并置于循环空气流的约70℃炉中1小时,除去水分和任何残余的增塑剂。然后将粘合很好的单一电池结构在氦气氛中包装在密封的多层箔/聚合物包装袋中,袋内装有一定量在环状和无环碳酸酯混合物中的1M LiPF6活化溶液。
随后借助一伸长的导体使电池与计算机控制的蓄电池循环控制装置连接,在使用CC-CV(恒流后恒压)充电程序的各种公用条件下进行测试,即以0.7C的速率进行充电,达到4.2V的上限极限放电电压,接着在4.2V的CV下保持1小时,其中1C表示在5小时放电速率下与满电池容量相当的电流。如图3和4所示,电化学电池在持续的循环过程中呈现出较高的灵敏特性和特别稳定的电容量。
在循环测试完成后,使包装的电化学电池与加热板接触,以使其温度升至约140℃,即超过聚烯烃隔膜设定的切断温度的温度,同时连续地记录在频率为1kHz时AC电流下的欧姆电阻。如图7所示,在约132-135℃的电池温度下,迭层电池的电阻从约0.1欧姆的工作水平迅速地增至约100欧姆,表明隔板的微孔结构在迭层处理期间得到保持并且迭层的微孔隔板能够有效地起到蓄电池热切断部件的作用。
在使用CC(C/5,C/2,1C,2C和3C)放电系列的类似程序下测试一系列复式电池。图6示出了电池特别有效的电容量利用率。
实施例IV申池部件界面的粘合强度在几个压力值(5.5-18千克/厘米)和温度(110-125℃)下,采用双辊层压机在实施例I和II的致密电极/集流器组装件之间迭加未经处理的Celgard 2300微孔膜的迭层部分,制备本发明蓄电池结构的试验样品。在用二乙醚挤压增塑剂后,在70℃下的空气炉中干燥迭层试样1小时,将其切割成75×25毫米的试验条,其中具有两个延伸在试样一窄端的埋置栅极。
采用Instron 5542型抗拉试验仪,以200%/分钟的应变速率试验隔板-电极界面处的剥离强度。结果表明,按本发明方法制备的试样界面对实际记录的剥离强度处于24-88gf/cm数量级,该结果取决于电极的组成和类型以及具体的迭层条件。重要的是,该值大大超出Celgard 2300三个单隔板层之间的剥离强度,三个隔板层的剥离强度值分别在6-12gf/cm的范围内。但是,这些数据在确定实际电极/隔板界面粘合强度时不具有说服力,因为在大多数情况下,所出现的粘合失败不是发生在界而处,而更多情况下是发生在各电极组合物层的体内。因此,显而易见,由本发明提供的电极/隔板界面粘合实际上超过了单个电极组合物层的强度。
按类似的方式制备其它的剥离试验试样,并按蓄电池的加工方式将其置于密封的塑性迭层包装袋中,袋内装有在环状和无环碳酸酯的混合物中的1MLiPF6溶液。试样在80℃的空气炉中静置过夜,在现有技术的大多数粘合方法失败的条件下模拟蓄电池在高温下储存条件的极限。这些试样同样也具有优异界面粘合性,它们与适当环境条件下存放试样时记录的相同。
实施例V电池部件迭层数实施例用90克LiCoO2,5克PVdF均聚物(Kynar 741,Elf Atochem),5克Super P碳,和60毫升NMP的组合物制备许多目前销售的电化学电池包括的这类部件的典型正极部件。将制成的浆料涂覆在0.03毫米的铝箔上,浆层厚度约为0.3毫米,在循环的热空气中进行干燥。然后将经涂覆的箔压制成0.1毫米的厚度,形成正极部件。按与实施例II的类似方法,采用90克MCMB 25-28微珠石墨、7克PVdF聚合物和3克Super P碳的混合物制备负极部件。
将这些未经塑化的电池电极部件与未经处理的Celgard 2300微孔隔膜组装在一起,在实施例III的迭层处理条件下进行加工,辊压高达约18千克/厘米,几种温度高到微孔塌陷,即约135℃的切断温度。这些试样电极和隔板部件组合物之间的界面粘合处于临界状态,最好情况下,具有足够界面粘合性的电极/隔板组中都没有一个得到合乎需求的剥离强度数据。在按照本发明制备可再充电蓄电池时,采用塑化基质聚合物电极部件的方法影响了基质聚合物电极部件和未经处理的微孔隔板部件之间的迭层效果,在这些结果是很显然的。
可以预料对于本领域的熟练技术人员来说根据上述的说明书和实施例就很容易地理解本发明的其它实施方案和改变方案,在所附的限定本发明内容的权利要求书中也包括这类的实施方案和改变方案。
权利要求
1.一种粘合电极的可再充电电化学电池的制备方法,包括组装中间插有一层隔板部件的正极和负极层状部件,所述电极部件的每一个部件含有聚合物基质组合物,所述隔板具有微孔聚烯烃膜,该膜在高于其极限温度的温度下具有孔塌陷特性,使所述部件的每一部件的其相应界面与相邻部件粘合,形成整体的多层平板电化学电池结构,其特征在于a)制备用于其基质聚合物的含主增塑剂的每一所述聚合物电极部件组合物;b)将所述电极部件的组合物表面与相邻的所述隔膜的多孔表面组装在一起;c)在压力和温度下,对所述组装件进行层压,所述的温度低于所述的极限值,并足以使所述的增塑剂软化所述组合物中的基质聚合物,在所述组合物中与所述隔膜表面形成热塑性粘合界面;和d)冷却所述的粘合界面,从而在所述的相邻电极和隔板表面之间形成粘合界面粘合。
2.根据权利要求1的方法,包括将所述的增塑剂至少部分地从所述的粘合界面上除去的其它步骤。
3.根据权利要求2的方法,其中所述的增塑剂通过蒸发法除去。
4.根据权利要求2的方法,其中所述的增塑剂通过溶剂或超临界流体挤压法除去。
5.根据权利要求1的方法,其特征在于a)所述的基质聚合物选自氯乙烯、丙烯腈、甲基丙烯酸甲酯、环氧乙烷、1,1-二氯乙烯,和1,1-二氟乙烯的聚合物和共聚物;和b)所述的主增塑剂选自碳酸亚烃酯、邻苯二甲酸二烷基酯、琥珀酸二烷基酯、己二酸二烷基酯、癸二酸二烷基酯、磷酸三烷基酯、聚烷撑二醇醚和它们的混合物。
6.根据权利要求5的方法,其中a)所述的基质聚合物选自1,1-二氟乙烯的聚合物和共聚物;和b)所述的主增塑剂选自碳酸亚烃酯和它们的混合物。
7.根据权利要求6的方法,其中所述的主增塑剂主要由碳酸丙烯酯组成。
8.根据权利要求7的方法,其中所述电极组合物中所述碳酸丙烯酯增塑剂的数量是所述基质聚合物的约60-300%(重量)。
9.粘合电极可再充电电化学电池,包括其中间插有一层隔板部件的正极和负极层状部件的组装件,所述电极部件的每一个部件含有聚合物基质组合物,所述隔板具有微孔聚烯烃膜,该膜在高于其极限温度的温度下具有孔塌陷特性,使所述部件的每一部件的其相应界面与相邻部件粘合,形成整体的多层平板电化学电池结构,其特征在于所述隔板部件和电极部件之间的界面粘合主要由所述电极部件的基质聚合物构成。
全文摘要
将包括聚合物基质正极层状部件,聚合物基质负极层状部件,和插入的微孔聚烯烃隔板层状部件的锂离子蓄电池,通过加热和加压而无需施加层间粘合剂就层压成整体的柔性电池结构。在电极层组合物中包含用于电极部件基质聚合物的主增塑剂。在不考虑微孔隔板热切断能力的适当温度下进行的迭层处理期间,增塑剂将聚合物软化成热塑性粘合剂,它们在电极/隔板界面区中与未经处理的聚烯烃表面形成有效粘合。随着残余的迭层热量,增塑剂从组合物中排出,或被溶剂或超临界流体挤压出来,从而能确保电极聚合物单独与聚烯烃隔板形成牢固的永久性粘合。
文档编号H01M10/38GK1488179SQ01807278
公开日2004年4月7日 申请日期2001年3月23日 优先权日2000年3月29日
发明者安东尼·S·格兹泽, 让-马里耶·塔拉斯孔, 安东尼 S 格兹泽, 镆 に 箍 申请人:威伦斯技术公司(内华达州)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1