光伏打电池及其制作方法

文档序号:7149703阅读:260来源:国知局
专利名称:光伏打电池及其制作方法
背景技术
PV电池随着未来全球能源需求增加,对于具有成本效益且可靠的替代能源需求增加。太阳发出的能量可提供这种替代能源。由于太阳能电池或光伏打电池(PV电池)可将日光直接转换成电力,可以低操作成本提供长期电能,且不会造成与能量产生有关污染,故被视为由太阳获得能量的主要考虑对象。目前,PV电池为卫星及太空交通工具提供长期电能。PV电池也被成功地用于小型地面用途。
更广泛使用太阳能电池作为更大规模电源的主要障碍包括该电池成本(制造成本及/或材料成本)、太阳能电池的操作效率、或成本与效率兼而有之。
典型PV电池的操作单结电池典型单结光伏打电池中,诸如硅的材料用原子来掺杂,该原子是来自于具有比衬底(例如硅)出现的电子多一个或少一个电子的元素,结果导致层间的pn结。当光子碰撞该电池时,那些具有大于或等于该半导体能带隙Eg(该能带隙随着使用的材料、pn结深度等改变)的能量的光子将能够从N型硅激发电子到P型硅中,从而当所述电子在电场的作用下跨过pn结时产生电流。
该电流可通过串联和/或并联阵列收集成不同的电流和电压。
单结太阳能电池的效率通常基于限定的Eg。当电池暴露于太阳能光谱时,能量小于Eg的光子实质上对电池的输出无贡献,能量高于Eg的光子对电池输出贡献能量Eg,而超过Eg的能量则基本上以热量的形式浪费掉。
用于PV电池的硅、衍生物及其它材料太阳能电池常用材料包括高纯度硅,该高纯度硅由单晶锭切割成为晶圆,或生长成薄结晶片(crystalline sheet)或薄结晶带(crystalline ribbon)。但因锭块生长、切割、掺杂及抛光等成本以及硅材料本身不必要的成本部分造成其成本并不实际。因为太阳能电池厚度只需要是数倍于光波长,所以大量材料被浪费掉,并且相应地降低了能量效率。
另一种形成薄层太阳能电池的方法涉及由熔融硅拉制薄板。
形成薄层太阳能电池的又一方法涉及将气态硅材料成沉积为薄膜。
也使用多晶电池,其本质上比单晶电池效率要低,但制造上也更廉价。
硅电池典型地具有最大值AM1.5,1太阳能效率(sunefficiency)约为22.3%。也使用其它材料来提高效率,例如具有最大AM1.5,1太阳能效率约22.3%的砷化镓,但这些材料也昂贵。
多结电池另一种提高效率的办法是依赖多重光谱转换,其中数个电池以能带隙递减的顺序堆叠。顶部电池吸收对应于该电池的Eg的紫外光的辐射以及光子。下方的多个电池(典型为一个或两个)吸收具有连续降低的能量的多种光子,这些能量对应于所述电池的能带隙。通过这种方式,可堆叠各不相同的电池(即,具有不同Eg值)而让效率最大化,效率大于约30%。对两个串联带隙而言,理想最高效率为50%,Eg1=1.56 eV及Eg2=0.94eV。对三个带隙而言,理想最高效率为56%,Eg1=1.75eV、Eg2=1.18eV及Eg3=0.75eV。使用多于三个带隙的系统显示出效率的增加很缓慢,例如在有36带隙时,最大效率为72%。
前述级联电池结构本质上比单结电池更昂贵。级联结构典型地生长于其它电池层顶上,或分开生长并有位置转移。例如,使用外延剥离来制造薄膜,其中光伏打材料可结合离型层生长以有助其剥离。但是在另一个电池上生长或堆叠两或三个电池的常规方法,将导致生成很昂贵的电池,特别就每瓦特为基准的成本而言。而且,为了传输来自级联结构的电池能量,必须形成互连器件,该互连器件典型地形成于该堆叠电池的边缘,这是对具有成本效益的级联太阳能电池的关键限制。
相应地,太阳能电池领域仍然需要将太阳能转换效率与允许批量生产的可负担的制造相结合的太阳能电池,因而降低每单位功率成本。
发明简述前文讨论及其它现有技术的问题及缺陷可通过本发明的若干方法及装置予以克服或减弱,从而达到本发明的目的。光伏打电池是由多层衬底制成。该多层衬底通常包括第一层,其适合让光伏打电池形成于其中或其上,其中该第一层选择性附着或接合至第二层。一种形成光伏打电池或多个光伏打电池的方法通常包含选择性粘着第一层至第二衬底。
在一个实施例中,多层衬底包括第一层,该层适合让光伏打电池形成于其中或其上,第一层选择性附着或接合至第二衬底层。
选择性接合通常包括一个或多个强接合区以及一个或多个弱接合区。太阳能电池或光伏打电池,或其部分,可形成于一个或多个弱接合区内或弱接合区上。因第二层用来提供支持以及热稳定性,故第一层可以非常薄(例如小于10、5、2或甚至1微米)。如此,制造薄层太阳能电池,同时维持第一衬底层的机械完整性及热完整性,是可能的,制作薄层太阳能电池经常需要在苛刻的操作条件下完成。随后,具有太阳能电池或太阳能电池组件的第一层易于通过例如剥离或其它方便的方法从第二层去除。因太阳能电池或其组件是形成于第一层的弱接合区内或弱接合区上,故于去除期间受最低程度影响,且更好的是根本没有受影响,因此极少或无需随后的结构修复或处理。
从下面的详细描述以及附图,本领域的技术人员将认识及理解上文讨论的及本发明其它的特征和优点。
附图简单说明

图1A示意显示用于处理此处所述光伏打电池的多层衬底;图1B示意显示用于处理此处所述光伏打电池的多层衬底的另一实施例;图2-13显示将图1A及1B中的结构的各层选择性地附着在一起的各种处理技术;图14-20显示用于图1A及1B结构的各种接合几何形状;图21-32显示各种解除接合技术;图33显示光伏打电池组的一个实施例;图34A-34C显示级联光伏打电池;图35显示使用级联光伏打电池的光伏打电池组的另一实施例;以及图36显示光伏打电池组级联阵列的实施例。
实施例的详细描述本发明涉及有效制造各类型太阳能电池。在讨论太阳能电池的特定制造方式前,首先对起始衬底做讨论,如同申请号为09/950,909,申请日为2001年12月9日,名称为“薄膜及其制做方法”的美国待审专利中所述,该专利申请作为参考在此处引入。众所周知,称为选择性接合多层衬底这种衬底,允许在晶圆上处理一个或多个太阳能电池,但允许该晶圆的电池层易于被去除,最好是无需机械研磨或其它回蚀技术,因而与已知太阳能电池制造技术相比,实现显著的成本节省且可靠的优点。
实质上任何类型的太阳能电池都可以从此处的教示获益。后文“太阳能器件”一词将表示各类型太阳能电池。
选择性接合器件层的形成参照图1A,示出了选择性接合的多层衬底100。该多层衬底100包括层1,其具有暴露表面1B,以及选择性地接合至层2的表面2A的表面1A。层2还包括相对面2B。层1通常作为要在其中或其上处理一个或多个器件的层,所述器件包括但不限于此处描述的光伏打器件。层2通常作为于层1内或之上处理一个或多个器件时的支持衬底。
或者,现在参照图1B,可在该多层衬底的特定深度形成氧化埋层。例如氧化埋层通常形成于器件层1及器件层2的界面,以形成包括一基衬底、一氧化埋层以及一半导体层的SOI结构。
可在将该器件层选择性接合至表体衬底之前形成该氧化层。在一个实施例中,如本领域的技术人员已知,可在期望深度形成氧化层。随后在氧化层上方的层可被去除,去除方式例如裂解蔓延(cleavage propagation)、离子注入,接着是机械分离(例如正交于结构100平面、平行于结构100平面、在剥离方向的裂解蔓延,或其组合),或去除方式是离子注入,接着进行加热、光照及/或压力引致的层分裂。然后,被去除层(或分离地衍生层)可选择性地接合至其上有氧化层的衬底层2的顶面。
或者,可在该器件层选择性地接合至表体衬底之后形成氧化层。例如,在一个实施例中,氧化层是在选择性地接合器件层至体衬底后,经过氧注入至期望的氧化埋层深度而形成。
层1及2可由多种源来获得,包括晶圆或沉积而形成薄膜及/或衬底结构的流体材料。若起始材料是晶圆形式,则任一种常规处理都可用于获得层1及/或层2。例如,层2可以由晶圆组成,层1可以包含同一晶圆或不同晶圆的一部份。组成层1的晶圆部分可由机械减薄(例如机械研磨、切削、抛光;化学机械抛光;抛光阻挡;或包括前述至少一种的组合)、裂解蔓延、离子注入,继之以机械分离(例如正交于结构100平面、平行于结构100平面、于剥离方向或其组合的裂解蔓延)、离子注入和随后的热、光及/或压力引致的层分裂、化学蚀刻或类似的方法等来获得。此外,层1及层2的任一或二者可由例如化学气相沉积、外延生长法或类似的方法等来沉积或生长。
通常,为了形成选择性接合的多层衬底100,层1、或层2或层1和2二者都经处理来界定弱接合区5及强接合区6。然后将二层接合在一起,其中弱接合区5处于允许处理有用的器件或结构的条件。从而,方便了对带有有用器件(如光伏打电池)的层1的去除,而对有用器件潜在的损伤被最小化或消除。
通常,层1与层2兼容。也就是说,层1及2组成兼容的热、机械和/或结晶性质。在特定优选实施例中,层1与2为相同材料。当然,可采用不同材料,但最好选择有兼容性的。
层1的一个或多个区被确定为用作为衬底区,在其内或其上可形成一个或多个结构(如光伏打器件)。如这里进一步的描述,这些区可具有任何期望样式。层1的选定区经处理来将接合最小化,形成弱接合区5。或者,层2对应区可经处理(与层1的处理结合或替代层1的处理)来将接合减至最低。其它替代方法包括在除选定用来形成所述结构的区域以外的区域来处理层1和/或层2,从而增强在强接合区6的接合强度。
处理了层1和/或层2后,将这两层对准且接合。如这里进一步描述的,所述接合可由任一种适当方法来完成。此外,所述对准可以是机械、光学的或其组合。须了解在此阶段的对准可能并不是很关键,因为通常在层1上没有形成任何结构。但是,如果层1和2经过处理,则需要进行对准以最小化选择衬底区的变化。
形成多层衬底100,这样使用者可使用常规制造技术或其它作为各种相关技术发展的已知技术来处理任何结构或器件。特定的制造技术将衬底衬底置于极端条件下,例如高温、高压、苛性化学品或其组合。因此,优选形成多层衬底100以承受这些条件。
可在区3内或其上形成有用的结构或器件,区3部分或完全与弱接合区5重叠。相应地,在部分或完全与强接合区6重叠的区4中或在区4上通常没有任何结构。在多层衬底100的层1内或其上形成有用器件如光伏打器件器件后,随后将层1解除接合。可采用任一种已知技术解除接合,例如剥离或用其他方法使层1由层2脱离,而无需直接对该有用器件使用有害的离层技术。由于有用器件通常不是形成在区4内或区4上,故这些区域可接受解除接合处理,例如离子注入和/或蚀刻,而未损害形成在区3内或其上的结构。
接合区的形成为了形成弱接合区5,表面1A、2A或两者可在弱接合区5所在位置被处理而基本上未形成接合或形成弱接合。或者,弱接合区5可保持未处理,因而处理强接合区6而引致强接合。区4部分或完全与强接合区6重叠。为了形成强接合区4,表面1A、2A或两者可在强接合区6的所在位置被处理。或者,强接合区6可保持未处理,因而处理弱接合区5而引致弱接合。而且,区5和6两者可由不同技术来处理,其中处理方式在定性或定量方面有差异。
在对弱接合区5及强接合区6二者之一的组或这两组都处理后,层1与2接合在一起而形成基本上完整的多层衬底100。如所形成的多层衬底100,在处理其内或其上的光伏打器件或其它有用器件期间,可以经受严苛的环境,特别是在层1的区3内或区3上。
“弱接合”或“弱键结”等词通常表示层间或部分层间的可以容易地被解除的接合,解除接合技术例如为剥离、其它机械分离、热、光、压力、真空或包括前述解除接合技术中的至少一个的组合。这些解除接合技术最小限度地损伤或有损于层1和2,特别是在弱接合区5的附近。
对弱接合区5及强接合区6二者之一的组或这两组的处理可由多种方法来实现。该处理的重要方面为弱接合区5比强接合区6更为容易解除接合(在如这里进一步描述的接下来的解除接合步骤中)。如此减少或防止在解除接合期间对区3造成损伤,在区3内或其上包括太阳能电池或光伏打电池。此外,包括了强接合区6使得,特别是在电池处理期间,增强了多层衬底100的机械完整性。相应地,当去除层1和层1内或层1上的太阳能电池或光伏打电池后,可最小化或完全消除层1的后续处理。
对弱接合区5及强接合区6二者之一的组或这两组的处理可通过多种方法执行。该处理的重要方面是弱接合区5比强接合区6更为容易解除接合(于随后解除接合步骤中更易解除接合,容后详述)。这减少或防止于解除接合期间对区3造成损伤,区3上可能包括有用的结构。此外,包含强接合区6提高了多层衬底100的机械完整性,特别是在结构处理期间。如此,当移除层1和层1内或层1上的有用的结构后,可最小化或完全去除层1的后续处理。
强接合区对弱接合区的接合强度比(SB/WB)通常大于1。依据强接合区及弱接合区的特定结构,以及强接合区及弱接合区的相对面积而定,SB/WB值可趋近于无限大。即,若强接合区面积和强度都足够来维持处理期间的机械及热稳定性,则弱接合区的接合强度可趋近于零。但SB/WB比可能有显著的变化,因为,如本领域已知的,强接合强度(典型为硅及硅衍生物如氧化硅晶圆)可由约500毫焦耳/平方米(mj/m2)变化到超过5000毫焦耳/平方米(例如参考Q.Y.Tong,U.Goesle,半导体晶圆接合,科学与技术,104-118页,约翰威利父子公司,纽约州纽约,1999年,在这里作为参考引入)。但是,依据材料、弱接合区内或弱接合区上欲处理的光伏打电池类型、选用的接合与解除接合技术、强接合面积与弱接合面积之比、晶圆或类似物上的强接合与弱接合结构或样式等而定,弱接合强度甚至可能变化更显著。例如若使用离子注入作为各层解除接合步骤,则在离子注入后和/或在注入区相关的微气泡逸出后,有用的弱接合区接合强度与强接合区接合强度相当。相应地,依据选用的解除接合技术,以及对可能在弱接合区内或之上形成的有用结构或器件的选择,接合强度SB/WB比通常大于1,且最好大于2、5、10或更大。
弱接合区5及强接合区6二者之一的组或这两组承受的特定处理类型通常是依据选用的材料来决定。此外,层1及2的接合技术的选择至少部分地是依据选用的处理方法来决定。此外,随后的解除接合是依据多项因素而定,例如处理技术、接合方法、材料、有用结构的类型或存在、或包含至少一种前述因素的组合。在特定实施例中,选用的处理、接合以及随后解除接合的组合(即,可由最终使用者在区3形成有用结构体而进行,或另外作为高阶器件的中间组件而进行),可免除对裂解蔓延将层1与层2解除接合、或机械减薄来去除层2的需求,或最好将裂解蔓延与机械减薄二者都免除。相应地,下方衬底可以以最小化的处理或无需处理而供再度使用,因为根据常规知识,裂解蔓延或机械减薄会损伤层2,若未经进一步处理则层2基本上变无用。
一项处理技术可能依赖弱接合区5与强接合区6间表面的粗糙度。该表面粗糙度可于表面1A(图4)、表面2A(图5)或两表面1A及2A修改。通常,弱接合区5的表面粗糙度7(图4和5)比强接合区6更高。半导体材料中,例如弱接合区5具有大于约0.5纳米(nm)的表面粗糙度,强接合区4具有较低表面粗糙度,通常小于约0.5纳米。另一例中,弱接合区5具有大于约1纳米的表面粗糙度,而强接合区4具有更低表面粗糙度,通常低于约1纳米。又一例中,弱接合区5具有大于约5纳米的表面粗糙度,而强接合区4具有较低表面粗糙度,通常低于约5纳米。表面粗糙度可由蚀刻(例如氢氧化钾或氢氟酸溶液)或沉积处理(如低压化学气相沉积(LPCVD)或等离子增强化学气相沉积(PECVD))来修改。与表面粗糙度关联的接合强度在例如Gui等人,“Selective Wafer Bonding by SurfaceRoughness Contol(通过表面粗糙度控制来进行选择性晶圆接合)”,Electrchemical Society(电化学学会),148(4)G225-G228(2001)来更充分描述,在这里作为参考引入。
以类似方式(其中在4和5图中以相似参考编号表示位置相似区域),多孔区7可形成于弱接合区5,而强接合区6仍保持不处理。如此,由于弱接合区5的多孔性质,在弱接合区5所在位置,层1最少地接合至层2。孔隙度可在表面1A(图4)、或表面2A(图5)或表面1A及2A两处修改。通常,弱接合区5在多孔区7处具有比强接合区6更高的孔隙度(图4和5)。
另一项处理技术依赖于在所述蚀刻区选择性地蚀刻弱接合区5(在表面1A(图4)、2A(图5)或1A及2A两者),接着在该蚀刻区沉积光阻或其它含碳材料(例如包括以聚合物为主的可分解材料)。再度以相似参考编号标示图4和5中位置相似的区域。当层1与层2接合时,最好是在足够分解载体材料的温度下接合,弱接合区5包括位于其中的多孔碳材,因此与强接合区6的层1与2间的接合相比,弱接合区5的层1与层2间的接合是很微弱的。本领域的技术人员知道,根据环境来选用的分解材料须不会放出气体、结垢、或以其它方式污染衬底层1或2、或污染任何在区3内或区3上形成的有用结构。
另一处理技术可采用照射来获得强接合区6和/或弱接合区5。此项技术中,层1和/或2使用中子、离子、粒子束或其组合来照射,视需要达成强接合和/或弱接合。例如粒子He+、H+或其它适合的离子或粒子等、电磁能或激光束可照射于强接合区6(在表面1A、2A或1A及2A两者)。需要理解,此种照射方法与用来将层分离的离子注入方法不同,通常其差异在于剂量和/或注入能量要小得多(例如约为用于分离层的剂量的百分之一至千分之一量级)。
另一项处理技术包括在表面1A、2A或1A及2A两者上使用含有固体成分以及可分解成分的料浆。该固体成分例如为氧化铝、氧化硅(SiO(x))、其它固态金属或金属氧化物、或其它可将层1与2的接合最小化的材料。该可分解成分例如为聚乙烯醇(PVA)或其它合适的可分解聚合物。通常料浆8施加在弱接合区5的表面1A(图2)、表面2A(图3)或表面1A及2A两表面。随后层1和/或2最好在惰性环境下加热来分解所述聚合物。相应地,多孔结构(由料浆的固体组分组成)留在弱接合区5,而当接合时,层1与2不会在弱接合区5接合。
另一项处理技术涉及蚀刻弱接合区5表面。在该蚀刻步骤期间,柱9被限定于弱接合区5的表面1A(图8)、2A(图9)或1A及2A两表面上。可通过选择性蚀刻来界定所述柱,而将柱留下。柱形状可为三角形、棱柱形、矩形、半球形或其它合适的形状。或者,所述柱可生长或沉积于所述蚀刻区。由于弱接合区5可供材料接合的接合位置更少,故弱接合区5的总接合强度远比强接合区6的接合强度更微弱。
另一项处理技术涉及包括通过例如蚀刻、加工或两者的结合(依据使用的材料而定)在层1(图12)及层2(图13)的弱接合区5形成的无效区10。相应地,当第一层1接合至第二层2时,与强接合区6相比,无效区10将使接合最小化,这有助于随后的解除接合。
另一项处理技术涉及在弱接合区5的表面1A(图2)、2A(图3)或1A及2A两者使用一个或多个金属区8。例如包括但非限于铜、金、铂的金属或其任一种组合或任一种合金可沉积于弱接合区5。当层1与2接合时,弱接合区5将微弱接合。强接合区可维持未处理(其中接合强度差异提供需要的有关弱接合区5及强接合区6的强接合对弱接合的比率),或可如前文或后文所述处理来增强粘着性。
又一项处理技术涉及在强接合区6的表面1A(图10)、2A(图11)或1A及2A两者使用一种或多种粘结促进剂11。合适的粘结促进剂包括但非限于TiO(X)、氧化钽或其它粘结促进剂。或者,粘结促进剂可基本上用于表面1A和/或2A的全部表面上,其中金属材料置于弱接合区5的粘结促进剂与表面1A或2A间(依据粘着促进剂所在位置而定)。因此当接合时,金属材料将防止在弱接合区5的强接合,而留在强接合区6的粘结促进剂将促进强接合。
另一项处理技术涉及提供疏水区和/或亲水区的变动区域。因为例如硅等材料可能在室温下自发接合,故亲水区对强接合区6特别有用。在室温以及在升高的温度下,疏水与亲水接合技术都是已知的,例如如同在Q.Y.Tong,U.Goesle,Seimiconductor WaferBonding(半导体晶圆接合),Science and Technology(科学与技术),49-135页,John Wiley and Sons,New York,NK1999中所述,这里作为参考引入。
另一项技术涉及经过选择性照射的一层或多层剥脱层。例如一或多剥脱层可位于表面1A和/或2A上。未经照射时,剥脱层的作用如同粘结剂。当弱接合区5曝光照射如紫外光照射时,粘结特性被最小化。可在弱接合区5内或其上形成有用的结构,随后紫外光照射步骤或其它解除接合技术可用来在强接合区6分离层1与2。
另一处理技术包括在热处理时,在弱区3的层1(图6)、层2(图7)或层1及2两者形成多个微气泡13的注入离子12(图6和7)。因此当层1与2接合时,弱接合区5的接合将比强接合区6的结合弱,因此随后有助于在弱接合区5的层1与2解除接合。
另一项处理技术包括离子注入步骤以及随后的蚀刻步骤。在一个实施例中,执行此项技术使得基本上在表面1B的全部面积上进行离子注入。随后,弱接合区5经选择性蚀刻。在Simpson等人的“Implementation Induced Selective Chemical Etching ofIndium Phosphide(注入感应磷化铟的选择性化学蚀刻)”,Electrochemical and Solid-State Letter(电化学与固态快报),4(3)G26-G27的文章中参照去除缺陷的损伤选择性蚀刻对该方法做了说明,这里作为参考引入。
另一项处理技术可实现将一层或多层选择性地定位于具有辐射吸收特性和/或反射特性之弱接合区5和/或强接合区6,该技术是基于窄或宽频带波长范围。例如,选择性地定位于强接合区6的一层或多层当暴露于特定辐射波长时具有粘结特性,因此该层吸收辐射,在强接合区6接合层1与层2。
本领域的技术人员认识到可采用其它处理技术,以及包含至少一种前述技术的组合的技术。采用的任一项处理的关键特性是形成一或多弱接合区及一或多强接合区,提供大于1的SB/WB接合强度比。
接合区几何形状在层1与2界面的弱接合区5及强接合区6的几何形状可依据下列因素而改变,这些因素包括但不限于成形在区3上或其内的光伏打电池或其它有用结构的类型、选用的解除接合/接合类型、选用的处理技术及其它因素。区5、6可为同心(图14,16和18)、条状(图15)、辐射状(图17)、棋盘状(图20)、棋盘状与环状的组合(图19)或其任何种组合。当然本领域的技术人员认识到可选用任一种几何形状。此外,弱接合面积与强接合面积之比可有变化。通常,该比例提供充分接合(即,在强接合区6),以致于不包含所述多层结构100的整体,特别是在结构体处理期间。最好是,该比值也让用于结构处理的有用区(即,弱接合区5)最大化。
选择性接合实质上如前述在弱接合区5和/或强接合区6所在位置处理表面1A和2A中的一个或两表面后,层1与2接合在一起而形成基本上完整的多层衬底100。层1和2可通过多项技术和/或物理现象之一接合在一起,该技术和/或物理现象包括但不限于共熔(eutectic)、熔解、阳离子性、真空、范德瓦尔力、化学粘结、疏水现象、亲水现象、氢键、库伦力、毛细力、极短范围力(veryshort-ranged forces)或包含至少一项上述接合技术和/或物理现象的组合。当然,对于本领域的技术人员很明显,接合技术和/或物理现象在部分程度上是依靠采用的一或多种处理技术、欲在其上或其内形成的光伏打器件和/或其它有用的结构的类型或存在、预期的解除接合方法或其它因素来决定。
多层衬底100(具有或不带氧化埋层)因此用来作为形成光伏打电池的起始衬底,特别是在区3内或区3上,在表面1A与2A界面,区3与弱接合区5部分或充分重叠。除了光伏打电池外,可组合形成的其它有用的结构包括一或多种有源或无源元件、器件、器具、工具、信道、其它有用的结构或包含至少一种前述有用的结构的任意组合。
解除接合在层1的一个或多个选定区3形成一个或多个光伏打电池或包括其它有用的结构的组合后,层1可通过多种方法解除接合。须认识到,由于结构形成在区4内或区4上,区4与弱接合区5部分或充分重叠,故层1的解除接合可使与解除接合相关的对结构造成的典型损伤,例如结构缺陷或畸变,最小化或者将其消除。
解除接合可通过多种已知技术来完成。通常,解除接合,至少在部分程度上,是依靠处理技术、接合技术、材料、有用结构的存在或类型、或其它因素来决定。
大致参照图21-32,解除接合技术是基于为了在参考深度(通常等于层1厚度)形成微气泡的离子或粒子注入技术。离子或粒子可由氧、氢、氦或其它粒子14获得。注入后,继之以曝光于强电磁辐射、热、光(例如红外线或紫外线)、压力或包含至少前述一种的组合,以促成粒子或离子形成微气泡15,且最终膨胀而离层层1及2。注入以及可选的热、光和/或压力也可继之以机械分离步骤(图23,26,29,32),例如在正交于层1及2平面的方向、平行层1及2平面方向、相对于层1及2平面的另一种夹角、在剥离方向(图23,26,29,32中以虚线指示)或它们组合的方向进行机械分离。用于分离薄层的离子注入的进一步细节描述于,例如Cheung等人,美国专利号6,027,988,名称为“通过等离子浸没式离子注入从体衬底分离薄膜的方法”,这里作为参考引入。
特别参照图21-23和24-26,层1与2间的界面可被选择性注入,特别是在强接合区6注入而形成微气泡17。通过这种方式,在区3(在区3中或区3上具有一个或多个有用结构)的粒子16的注入被最小化,从而减少对区3中的一个或多个有用的结构可能造成的可修护或不可修护的损害。选择性注入可通过强接合区4(图24-26)的选择性离子束扫描或区3的掩膜(图21-23)进行。选择性离子束扫描指的是结构100和/或用来引导将要注入的离子或粒子的器件的机械操作。如本领域的技术人员已知,可采用多种装置及技术来进行选择性扫描,这些技术包括但不限于聚焦离子束和电磁波束。此外,各种掩膜材料以及技术在本领域也是已知的。
参照图27-29,注入实质上可以在整个表面1B或2B进行。根据靶和注入材料以及期望注入的深度而定,可以在适当的程度进行注入。从而,若层2比层1厚得多,则通过表面2B进行注入是不实际的;但若层2为适当注入厚度(例如,是在可行的注入能量范围内),则希望通过表面2B进行注入。这使得对区3的一个或多个有用的结构造成可修复或不可修复的损伤的可能性最小化或者消除了。
在一个实施例中,且参照图18及图30-32,在层1与2之间界面的外围形成强接合区6。相应地,为了将层1与2解除接合,例如,可通过区4注入离子18来在层1与2的界面形成微气泡。最好使用选择性扫描,其中结构100可旋转(以箭头20指示),扫描器件21可旋转(以箭头22指示)或采用它们的组合。在该实施例中,进一步的优势是提供给最终用户选择形成于其中或其上的有用结构的灵活性。强接合区6的尺寸(即宽度)适合于维持多层衬底100的机械及热完整性。优选为将强接合区6的尺寸最小化,从而将用于结构处理的弱接合区5的面积最大化。例如在8寸晶圆中,强接合区6可为约1微米。
此外,层1与2解除接合可通过其它常规方法,例如蚀刻(平行于表面)来开始,例如,形成穿过强接合区6的蚀刻。在这样的实施例中,处理技术特别兼容,例如,其中强接合区6使用氧化层来处理,氧化层具有比表体材料(即,层1及2)高得多的蚀刻选择性。由于选用的处理可阻止在接合步骤中层1接合至层2,弱接合区5优选为在弱接合区5所在位置将层1与2解除接合,而无须蚀刻。
或者,裂解蔓延可用来引发层1与层2的解除接合。再次,最好仅要求在强接合区6所在位置解除接合,原因在于弱接合区5的接合有限。此外,如通常所知,解除接合,可通过蚀刻(正交于表面)来引发,最好限于区4所在位置(即,与强接合区6部分或充分重叠)。
在另一实施例中,现在参照图85,示出了解除接合的方法。该方法包括提供多层衬底;在WB区处理一个或多个有用结构(未显示);在SB区优选为以锥角(例如45度角)蚀刻去除;让器件层,最好是只有被蚀刻的SB区接受低能量离子注入;以及剥离或以其它方式便于去除位于WB区的器件层部分。注意到,虽然显示WB区的两器件层部分被去除,须了解如此也可用来便于一器件层部分的释放。在机械上,WB区的锥形缘有助于去除。有益地,与穿透最初器件层厚度需要的注入能相比,可以采用低得多的离子注入能。
材料层1及2可以是相同或不同材料,包括但不限于塑料(如聚碳酸酯)、金属、半导体、绝缘体、单晶、非晶、无晶(noncrystalline)、有机材料、或包含至少一种前述各类型材料的组合。例如,特定类型材料包括硅(如单晶、复晶、无晶、多晶硅及其衍生物例如Si3N4、SiC、SiO2)、GaAs、InP、CdSe、CdTe、SiGe、GaAsP、GaN、SiC、GaAlAs、InAs、AlGaSb、InGaAs、ZnS、AlN、TiN、其它IIIA-VA族材料、IIB族材料、VIA族材料、蓝宝石、石英(晶体或玻璃)、钻石、氧化硅和/或硅酸盐基材料、液晶材料、聚合材料(绝缘、传导性或半传导性)或包含至少一种前述材料的任意组合。当然,其它类型材料的处理可由这里所述的用来提供具有预定组成的多层衬底100的处理中获益。
多层衬底的益处本发明以及获得的多层衬底,或由多层衬底衍生而得的薄膜的主要优点是结构形成在区3内或区3上,区3与弱接合区5部分或充分重叠。这样基本上当层1从层2去除时,是的对光伏打电池或其它结构造成损伤的可能性最小化或者消除了。解除接合步骤通常需要注入(例如具有离子注入)、施力、或其它将层1与2解除接合所需技术。由于在特定实施例中,结构位于区3内或区3上,该区3无需局部注入、施力或可能可修复或不可修复地损伤结构的其它处理步骤,因此可去除层1以及从层1获得的结构而无需后继处理来修复结构。通常没有结构在与强接合区6部分或充分重叠的区4上,因此该区4可接受注入或施力而不会对结构造成损伤。
层1可呈自支撑膜或支撑膜形式被去除。例如常采用操纵架附着于层1,让层1可由层2去除,而仍然维持由操纵架来支撑。通常,操纵架可用来随后在期望衬底、另一处理的薄膜或者操纵架上的其余部分放置薄膜或薄膜的一部分(例如,具有一个或多个有用结构)。此种操纵架在本领域是已知的。一种操纵架述于PCT申请号PCT/US02/31348,申请日为2002年10月2日,名称为“操纵脆性对象的器件和方法及其制造方法”,这里作为参考引入全文。
本方法的一项优点是组成层2的材料可再度使用以及回收利用。例如,通过一种已知方法,可采用单一晶圆来获得层1。得到的层1可如上面描述的那样接合至其余部分(层2)。当薄膜被解除接合时,重复进行的处理,使用层2其余部分获得薄膜来用作下一层1。如此重复直到利用层2剩余部分来获得层1薄膜不再可行或不再实际为止。
在多层衬底内或多层衬底上的光伏打电池的处理可在区3内或区3上形成太阳能电池或光伏打电池,区3与弱接合区5部分或充分重叠。相应地,与强接合区6部分或充分重叠的区4通常在它内部或它上面不具有电池。因此,如所述,形成多层衬底100,这样任何类型的太阳能电池或光伏打电池都可使用常规制造技术或其它随着各种相关技术的发展将变已知的技术来处理。特定制造技术使衬底经受极端条件,例如高温、高压、苛刻化学品或其组合。因此,优选形成多层衬底100以经受这些条件。
在处理多层衬底100的层1内或层上的太阳能电池或光伏打电池后,层1随后可解除接合。解除接合可通过任一种已知技术例如剥离,而无需让太阳能电池直接经受有害离层技术。因为太阳能电池通常不形成在区4内或区上,故区4可接受解除接合处理例如离子注入,而不会对形成在区3内或区3上的电池造成损害。
使用前述多层衬底进行处理,具有太阳能电池或光伏打电池的解除接合层包含极薄层。因为具有电池的层由易于解除接合的衬底来支撑,故与厚500微米的电池相比,该层厚度可薄至5微米或甚至2微米。
光伏打电池包括任何用于太阳能-电力直接转换的器件。到目前为止,由于光伏打电池相关制造成本过高的限制,而使其无法用于满足全球大规模的电力需求。可以预期,任何已知类型的光伏打电池、或随着光伏打电池领域的进展而发展出的电池都可以根据本发明来处理。光伏打电池的类型包括但不限于pn结;背面场;紫色(violet)型;制作结构(textured);V形沟槽多结;有机型;基于光合成的能量转换。
典型的pn结光伏打电池包括通过用一种元素的原子掺杂到衬底(即,要解除接合的层)中而形成在表面(例如,通过扩散)的浅pn结,该原子来自于具有比衬底出现的电子多一个或少一个电子的元素。金属或其它导电材料用于形成正面欧姆接触条或指状物(fingers)、以及覆盖整个背面的背欧姆接触。从而,在弱接合区,可形成pn结并将其金属化。弱接合区(在层1、层2或两者皆有)可于掺杂前进行金属化。在处理后,该层可如上面描述的那样被解除接合,可对其极少或未造成损害地去除太阳能电池或光伏打电池。
另一实施例中,在电池中可以结合可选择层,通常用来吸收或反射紫外线波长。此外,也可包括胆固醇性液晶层来吸收或反射红外线波长。
除上述pn结电池外,也可在多层衬底100上处理其它类型的太阳能电池。一种可形成在弱接合区内或弱接合区上的太阳能电池为“背面场”(BSF)型电池。该型电池中,如上面描述的那样形成其正面。电池背面,没有了金属欧姆接触,而是在邻近接触的地方包含极重掺杂区。可以在弱接合区的层1和2接合之前形成该掺杂区。
又另一类型可在弱接合区内或弱接合区上处理的电池称做“紫”电池,该型电池以较低表面掺杂浓度和较小结深度来制造。该型电池在高光子能量时提供改善的响应。
又另一类型可在弱接合区内或弱接合区上处理的电池称做“制作结构“电池,其带有锥体状表面。锥体状表面可通过(100)-方向硅表面各向异性蚀刻制造。使用时,入射于锥体侧面的光将被反射至另一锥体而不是被耗损,因而可大为提高操作效率。
另一类型可在弱接合区内或弱接合区上处理的电池称做V形沟槽多结太阳能电池,其中多个独立的pnn(或ppn)梯形二极管元件串联。二极管元件形状可通过热生长的二氧化硅层各向异性蚀刻(100)硅来界定。
当然,本领域的技术人员了解这些及已知类型以及未来将发展的其它太阳能电池类型可在多层衬底100的弱接合区内或弱接合区上处理。
现在参照图33,太阳能电池组100包括电池110A、110B及110C。每个电池包括金属化层及pn结,如上面描述的那样形成。电池110A、110B及110C在电池的一远侧(即,对各个电池皆为同侧)上的的顶面112A、112B、112C(换言之,太阳能捕捉面)堆叠且在层上接合。该配置可获得大的太阳能捕捉表面积,特别是与太阳能电池组100的厚度相比。电池可由廉价且柔韧的衬底来支撑,例如,玻璃、聚碳酸酯、玻璃、塑料、聚胺基甲酸酯、木材、纸张、金属(例如,具有绝缘体)。
参照图34A,通常可使用多个太阳能电池组340、350及360来形成级联太阳能电池300,每个电池组适合不同光谱范围的转换。顶电池组340吸收紫外线辐射以及对应该电池Eg的光子。中间电池组350吸收比电池组340更低的能带隙Eg。最下方电池组360吸收比电池组350的带更低的能带隙Eg。通过这种方式,较大部分能带隙可被转成能量。不同的电池(即,具有不同Eg值)可堆叠而使效率最大化,大于约30%。
各电池组互连,传输产生的电能至一组共用输出端子。层间互连可位于各层间,位于层的侧面或兼而有之。使用‘909申请案所述技术以及PCT申请案号PCT/US02/31348所述操纵架(申请日为2002年10月2日,名称为“操纵脆性对象的器件和方法,及其制造方法”,这里作为参考引入全文),可以通常基于常规系统,用成本有效益且可靠的方式形成各层间的互连。
例如,在以机械方式堆叠的级联太阳能电池中,各种太阳能电池叠层以形成宽光谱的光伏打电池。现在参照图34B,示出了Si/InGaP薄膜机械堆叠级联太阳能电池的基本方案。薄膜InGaP太阳能电池将安装在硅底层电池上。最理想地,让顶层电池对于太阳能光谱的蓝光部分的吸收最大化。此外,最好优化接触样式以及抗反射涂层的设计以使电池表面的光阻挡最小化。相应地,机械堆叠级联太阳能电池需以最少效率耗损的方式来构造,该效率耗损是由于薄膜的操作损伤或不良光学耦合所造成。使用这里所述的在多层衬底的弱接合区处理光伏打电池的技术,以及使用适当操纵架器件,可使操作损伤以及不良光学耦合等问题最小化或者消除。
现在参照图34C,描绘了单片级联太阳能电池。特别地,作为示例,显示单片InxGa1-xAs/InxGa1-xP-on-Ge级联电池结构。对单片级联太阳能电池而言,独立的级联元件间的互连典型地使用隧道结来实现(如图34C所示),该隧道结的操作需要高掺杂度。该结将有助于电池间电子的流动,前及后接触将提供电流的收集。
参照图35,使用数个级联太阳能电池300形成级联太阳能电池组。级联太阳能电池300可如图33所述(有关单光谱转换电池)来对准且接合至顶面边缘。因此,使用该配置,整体结构可极薄,例如厚度小于15微米。同时,因为在电池间直接接触的互连方案,该配置可以降低被互连布线阻挡的面积,从而增加吸收阳光的有源区。整个级联太阳能电池组400可视需要由价廉的衬底来支撑。例如,因太阳能电池层极薄且本身具柔韧性,故可使用柔韧性衬底。
另一实施例中,现在参照图36,可形成不同的太阳能电池组540、550及560,各自预期用于通常不同的能带隙(即,如参照图33所述)。然后将各层堆叠及互连以形成级联太阳能电池组500。
用于形成太阳能电池的材料通常可为业界已知以及前文有关多层衬底各层所述的任意材料。通常,可考虑具有能带隙1至2eV的半导体作为太阳能电池材料。这种材料包括但不限于硅(单晶、多晶、非晶薄膜)、III-V半导体、CdS、GaAs、InP、CdTe、CuInSe2或类似物等以及包含至少一种前述物质的组合。此外,在有机光伏打电池中可以使用有机材料来形成将光子能转成电荷所需要的激励结构,例如福乐林斯(fullerenes)、导电聚合物、并五苯(pentacene)、液晶六-周六苯并冠烯(HPBC)、二萘嵌苯染料,这些材料可单独或彼此组合或与其它适当材料组合来使用。
薄膜太阳能电池中,支撑层包括电有源或无源衬底,例如玻璃、塑料、陶瓷、金属、石墨或冶金硅。从而,如这里所述,一个太阳能电池或太阳能电池组可形成在制造用的支撑衬底的弱接合区,而且随后解除接合且粘着至或以其它方式放置在最终使用的支撑层。
本领域的技术人员显然知道在材料成本与期望效率间必须求得平衡。然而,采用这里所述技术,由于可使用极薄层的太阳能电池,故可显著降低材料成本,让该平衡有利地向着有很好光谱转换效率的较高成本太阳能材料。
由本发明可获得显著效果。由于制造方法允许使用极薄层材料,以及解除接合后允许再度使用衬底,因而可以以极低成本达成超过40%效率。
虽然已经示出并且描述了优选实施例,但可在不背离本发明的精神和范围的情况下对其做出各种修改及替代。相应地,应该了解已经示意性地而不是限制性地对本发明进行了描述。
权利要求
1.一种光伏打电池结构,包含一pn结,形成于太阳能电池材料层的一个或多个区上,其中该太阳能电池材料层从支撑层去除。
2.根据权利要求1的光伏打电池,其中该太阳能电池材料层和所述支撑层基本上是相同材料。
3.根据权利要求1的光伏打电池,其中该太阳能电池材料层在所述pn结形成前接合至该支撑层。
4.根据权利要求1的光伏打电池,其中该太阳能电池材料层在所述pn结形成前选择性地接合至该支撑层。
5.一种光伏打电池组,包含根据权利要求1的第一光伏打电池,以及根据权利要求1的第二光伏打电池,每个光伏打电池包括一太阳能捕捉面、背面、第一远侧以及第二远侧,其中所述第一光伏打电池的太阳能捕捉面的第一远侧接合至所述第二光伏打电池背面的第二远侧。
6.根据权利要求5的光伏打电池组,进一步包含第三光伏打电池,其中所述第二光伏打电池的太阳能捕捉面的第一远侧接合至该第三光伏打电池背面的第二远侧。
7.一种制造光伏打电池的方法,包括在选择的位置接合光伏打电池层至一衬底层,以界定一个或多个弱接合区以及一个或多个强接合区;在所述一个或多个弱接合区处理一或多个光伏打电池。
8.根据权利要求7的方法,进一步包括通过将所述一个或多个强接合区解除接合而去除所述一个或多个光伏打电池。
9.根据权利要求8的方法,进一步包括去除所述衬底层的一层,以及在选择的位置将该被去除的衬底层接合至所述衬底剩余的层,以界定一个或多个弱接合区以及一个或多个强接合区,从而重复利用所述衬底层。
10.一种制造光伏打电池的方法,包括提供一种多层衬底,所述多层衬底具有一个器件层以及一个衬底层,该器件层选择性接合至该衬底层,以界定一个或多个弱接合区以及一个或多个强接合区;在所述器件层的一个或多个弱接合区处理一个或多个光伏打电池;通过将强接合区解除接合而从所述衬底层去除所述器件层,随后允许去除所述器件层,而对所述器件层中经过处理的光伏打电池的损伤最小化或者没有损伤。
11.根据权利要求7或10的方法,其中所述光伏打电池包括一种选自pn结、背面场、紫光型、制作结构、V形沟槽多结、有机型、基于光合成的能量转换以及包括前述至少一种的组合组成的组的电池。
12.一种制造光伏打电池的方法,包括提供具有第一器件层以及第一衬底层的第一多层衬底,该第一器件层选择性地接合至该第一衬底层以界定一个或多个弱接合区以及一个或多个强接合区;在所述第一器件层中的一个或多个弱接合区处理第一光伏打电池通过将强接合区解除接合而从所述第一衬底层去除所述第一器件层,随后使得可以去除所述第一器件层,而对所述第一器件层内经处理的光伏打电池产生最小损伤或者不产生损伤;提供具有第二器件层以及第二衬底层的第二多层衬底,该第二器件层选择性地接合至该第二衬底层以界定一个或多个弱接合区以及一个或多个强接合区;在所述第二器件层中的一个或多个弱接合区处理第二光伏打电池;通过将强接合区解除接合而从所述第二衬底层去除所述第二器件层,随后使得可以去除第二器件层,而对所述第二器件层内经处理的光伏打电池损伤产生最小损伤或者不产生损伤;以及在所述多个层的远侧堆叠且接合所述第一器件层至所述第二器件层以形成一个光伏打电池组。
13.一种制造级联光伏打电池的方法,包括提供根据权利要求7、10或12的方法形成的第一光伏打电池,其具有能带隙Eg(1);以及将具有能带隙Eg(2)的根据权利要求7、10或11的方法形成的第二光伏打电池堆叠至该第一光伏打电池顶上,其中Eg(1)比Eg(2)更大,因而提供了一种级联光伏打电池。
14.根据权利要求4的光伏打电池,其中所述选择性接合包括弱接合区和强接合区,其中在所述太阳能电池材料层上的的弱接合区形成所述pn结,从而通过处理所述强接合区和最少地占入所述弱接合区来使太阳能电池材料层从支撑层解除接合,并从而使得在弱接合区形成的光伏打电池在解除接合之后需要很少的或者不需要修复。
全文摘要
由多层衬底制造的一种光伏打电池。多层衬底通常包括第一层,其适合在其中或其上形成光伏打电池,其中该第一层选择性附着或接合至第二层。一种形成一个光伏打电池或多个光伏打电池的方法,通常包含选择性粘着第一层至第二衬底。
文档编号H01L31/068GK1639879SQ03805120
公开日2005年7月13日 申请日期2003年1月2日 优先权日2002年1月2日
发明者萨迪克·M·法里斯 申请人:瑞威欧公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1