发光元件及发光元件的制造方法

文档序号:6810126阅读:146来源:国知局
专利名称:发光元件及发光元件的制造方法
技术领域
本发明涉及发光元件及其制造方法。
背景技术
发光二极体或半导体雷射等发光元件所使用的材料及元件构造经过多年的发展,在元件内部的光电转换效率已渐渐接近理论上的极限。因此,为了获得更高亮度的元件,元件的光取出效率变得十分重要。例如,以AlGaInP混晶形成发光层部的发光元件,通过采用薄的AlGaInP(或GaInP)活性层被带隙(band gap)大的n型AlGaInP包覆层与p型AlGaInP包覆层夹住形成夹层状的双异质(double hetero)构造,可实现高亮度的元件。该AlGaInP双异质构造,是利用AlGaInP混晶与GaAs进行晶格整合,使由AlGaInP混晶所构成的各层利用磊晶(epitaxial)成长而形成于GaAs单结晶基板上。再者,当以其作为发光元件时,一般多以GaAs单结晶基板直接作为元件基板。然而,由于形成发光层部的AlGaInP混晶的带隙比GaAs大,故会有发出的光被GaAs基板吸收而不易获得充分的光取出效率的问题。为解决上述问题,虽已提出在基板与发光层部间插入由半导体多层膜所构成的反射层的方法(如日本专利特开平7-66455号公报),然而因其利用积层的半导体层折射率不同的特性,仅能反射有限的角度范围内入射的光,故在原理上无法期待其可大幅提升光取出效率。
在此,日本专利特开2001-339100号公报等许多公报中揭示将成长用的GaAs基板剥离,另一方面,将以半导体构成的作为补强用的元件基板透过反射用的Au层而贴合在剥离面的技术。该Au层具有反射率高、且反射率的入射角相依性小的优点。
为了在发光元件获得发光强度,尽量使大电流通过发光层部较佳。因此要求元件基板具有耐得住上述电流的导电性。然而,在以半导体构成元件基板时,虽然使大电流通过发光层部,但未必具有充分的导电性。
本发明的课题在于提供在具有透过金属层使发光层部与半导体元件基板贴合的构造的发光元件中,具有良好导电性的发光元件及其制造方法。
发明的公开方案为了解决上述问题,在本发明的发光元件,以具有发光层部的化合物半导体层的第一主表面作为光取出面,在该化合物半导体的第二主表面侧,透过具有反射面的主金属层结合元件基板而构成;该反射面是使来自该发光层部的光往该光取出面侧反射,其特征在于该元件基板,是以导电型为p型的Si基板所构成;且在该元件基板的主金属层侧的主表面正上方,形成以Al为主成分的接触层。
再者,在本说明书中的「主成分」与「主体」是表示质量含有率最高的成分。并且,本说明书中的「主金属层」,是指位于化合物半导体层与接触层间的金属层,其形成反射面且具有使化合物半导体层与接触层结合的作用。因此,后述的扩散阻止层与发光层部侧接合金属层并不属于主金属层。
依上述本发明的发光元件的构成,元件基板系以导电型为p型的Si(以下亦称为p型Si或p-Si)基板所构成,在该主金属层侧的主表面正上方形成以Al(铝)为主成分的接触层。由于使Al与p型Si形成良好的欧姆接合,特别是p型Si的电阻率在1/1000Ω·cm~10Ω·cm的范围时,可有效地抑制发光元件的串联电阻及顺方向电压的过度上升。在此情形,Al与p型Si的合金化热处理,以例如300℃~650℃的温度进行,由此可提高接触电阻的降低效果。
再者,上述发光元件中,该发光层部的p型化合物半导体层位在光取出面侧,而发光层部的n型化合物半导体层位在主金属层侧,且该n型化合物半导体层系透过该主金属层而与p型的Si基板结合。在以往的发光元件(在成长用基板上以成长发光层者为主体)中,在发光层中,发光层的导电型位置关系有以下的限制位于基板侧的层,其导电型必须与基板所具有的导电型相同(例如当基板为p型,其亦为p型),且位于与其相反侧(光取出面侧)的层,其导电型必须与基板所具有的导电型不同(例如当基板为p型时,其为n型)。然而,在本发明的发光元件中,化合物半导体层与元件基板系透过主金属层而结合,即使以p型Si基板与n型化合物半导体层的不同导电型的组合,因为主金属层介于其间而可使通电无障碍,故在本发明的发光元件的构成中,发光层的导电型位置关系并未受到如上所述的限制。因此,即使元件基板以p型Si基板所构成,在发光层部的p型Si基板侧(主金属层侧)可配置n型化合物半导体层,而在光取出面侧配置p型化合物半导体层。
再者,上述发光层部可以具备双异质构造,该构造系由p型包覆层(p型化合物半导体层)、n型包覆层(n型化合物半导体层)、以及在p型包覆层与n型包覆层间形成的活性层所构成。通过采用上述构造,由两包覆层间注入的电洞与电子因为封闭在活性层的狭小空间内的状态下而再结合的效率高,故可形成高亮度的元件。再者,为了通过反射来提高光取出效率,亦可将n型包覆层与主金属层直接接触而形成。另外,为了降低动作电压,亦可在n型包覆层与主金属层间插入高浓度杂质的薄膜。
接着,本发明的发光元件中,在该接触层与主金属层间插入导电性材料构成的扩散阻止层,阻止该接触层的Al成分向主金属层扩散。本发明的发光元件,在其制作过程中,在透过主金属层将元件基板与化合物半导体层贴合时,亦或在接触层上形成主金属层或其一部份时,由于发生作为接触层主成分的Al成分向主金属层扩散、反应(例如,共晶或金属间化合物的生成等冶金反应),而会有使主金属层变质的情形。在此,以上述的结构,通过扩散阻止层阻挡由接触层向主金属层扩散的Al成分,可有效抑制因为与Al成分反应而使主金属层变质的情形。其结果,可有效抑制主金属层所形成的反射面的反射率降低、及主金属层与化合物半导体层间的贴合强度下降等不良情形的发生,并且,亦不易产生因该等不良状况所导致的发光元件的产品合格率的降低。
该主金属层中至少包含该扩散阻止层界面的部分,是以Au为主成分构成的Au系层的情形,该扩散阻止层,具体而言,能以Ti及Ni中任一者为主成分的扩散阻止用金属层。由于以Ti或Ni为主成分的金属,其对于Al成分向Au系层的扩散抑制效果特别好,故可在本发明中采用。又,该扩散阻止用金属层的厚度以1nm~10μm较佳。若厚度小于1nm则防止扩散的效果不够;若超过10μm则因为效果已饱和而浪费制造成本。再者,具体而言,扩散阻止用金属层亦可使用工业用的纯Ti或纯Ni,但在未影响防止Al成分向Au系层扩散的扩散防止效果的范围内,可含有副成分。例如,添加适量的Pd,具有提升以Ti或Ni为主成分的金属的耐蚀性的效果。也可使用Ti与Ni的合金。
接着,在本发明的发光元件中,可通过上述Au系层来形成反射面。因为Au系层其化学性质安定,不易因氧化等造成反射率变差,故适合作为形成反射面的材质。又,如上所述,即使在接触层与Au系层间有形成冶金反应的情况下,通过在接触层与Au系层间插入扩散阻止层,而能以Au系层形成具良好反射率的反射面。
再者,以Au系层形成反射面时,在Au系层与化合物半导体层间,以Au为主成分的发光层侧接合金属层可以分散的形式配置于Au系层的主表面上。Au系层成为往发光层部的通电路径的一部份。然而,若将Au系层与由化合物半导体层所构成的发光层部直接接合,则接触电阻变高,将导致串联电阻增加而使发光效率变差。Au系层藉由透过Au系接合金属层与发光层部接合而可降低接触电阻。为了确实接触,Au系接合金属层必须掺合较多量的必要的合金成分,反射率将稍有下降。在此,只要将发光层部侧接合金属层分散形成在Au系层的主表面上,则在发光层部侧接合金属层的非形成区域,可确保因Au系层所产生的高反射率。
当与发光层部侧接合金属层接合的化合物半导体层以n型III-V族化合物半导体(例如,前述的(AlxGa1-X)yIn1-yP(在此,0≤x≤1,0≤y≤1))所构成时,可通过采用AuGeNi接合金属层作为发光层部侧接合金属层,则,其降低接触电阻的效果特别好。在此情形,在该化合物半导体层的贴合面侧主表面上形成AuGeNi接合金属层,且能以包覆该AuGeNi接合金属层面的方式来形成Au系层。在此情况下,以350oC~500oC进行AuGeNi接合金属层与化合物半导体层的合金化热处理,由此可提高接触电阻的降低效果。
再者,为了充分提升光取出效果,相对于Au系层,发光层部侧接合金属层的形成面积率(以发光层部侧接合金属层的形成面积除以Au系层的全面积所得的值)在1%~25%较佳。若发光层部侧接合金属层的形成面积率小于1%,则降低接触电阻的效果不佳;若超过25%,则反射强度会降低。再者,由于将Au系层设定成较发光层部侧接合金属层具有较高的Au含有率,在Au系层未形成发光层部侧接合金属层的区域中,可更加提升Au系层的反射率。
另一方面,在具有上述Au系层的发光元件中,在Au系层与化合物半导体层间亦可插入以Ag为主成分的Ag系层而形成反射面。由于Ag系层较Au系层价格低、且在接近可见光的大致全波长域内(350nm~700nm)具有良好的反射率,故反射率不易受波长影响。其结果,不论元件的发光波我长为何,均可实现高光取出效率。再者,若将的与Al等金属比较,不易产生由于形成氧化皮膜等而使反射率降低的情形。
图6为表示镜面研磨后的各种金属表面的反射率。图式的点「■」是Ag的反射率;图式的点「△」是Au的反射率;图式的点「◆」是Al的反射率。另外,图式的点「×」是AgPdCu合金的反射率。Ag的反射率在350nm~700nm(或者波长更长的红外线域),尤其,在380nm~700nm时,可见光的反射率特别好。
另一方面,Au系有色金属,如图6所示的反射率亦可知,在波长670nm以下的可见光域具有强吸收(尤其650nm以下在600nm以下的吸收更大),发光层部的最大发光波长在670nm以下时,反射率降低的情形显著。其结果,除了发光强度容易降低之外,取出光的光谱因为吸收而与原本的发光光谱不同,故易导致发光色调的变化。然而,即使在670nm以下的可见光域,Ag的反射率亦非常好。亦即,发光层部的最大发光波长在670nm以下时(尤其是650nm以下,甚至600nm以下),相较Au系层的反射面,Ag系层的反射面可实现非常高的光取出效率。
如图6所示,在使用Al时,并不会产生反射率降低很多的情形,但由于形成氧化皮膜所造成的反射率降低,使得在可见光域的反射率多少会停留在低值(如85~92%)。由于Ag系金属不易形成氧化皮膜,故相较于Al可确保在可见光域的高反射率。具体而言,可知波长在400nm以上(尤其是450nm以上)其较Al的反射率佳。
另外,图6的Al反射率,是利用机械研磨与化学研磨,以抑制形成表面氧化皮膜的状态下量测镜面化的Al表面,实际上由于形成厚的氧化皮膜,其反射率可能比图6所示的数据更低。在使用Ag时,由图6中可知,在350nm~400nm的短波长域中,其反射率较Al低,但远较Al不易形成氧化皮膜。因此,在实际上形成作为发光元件的反射金属层时,通过采用Ag系层,即使在该波长域中,其反射率亦可超过Al。又,即使在该波长域,Ag的反射率比Au高。
综合上述,当发光层部在350nm~670nm(以400nm~670nm较佳,尤以450nm~600nm较佳)的波长域中具有最大发光波长时,Ag系层的光取出效率的改善效果明显地较Al或Au更好。具有如上所述具有最大发光波长的发光层部,如使用(AlxGa1-x)yIn1-yP(其中,0≤x≤1,0≤y≤1)或InxGayAl1-x-yN(0≤x≤1,0≤y≤1,x+y≤1),其可构成具有将第一导电型包覆层、活性层与第二导电型包覆层依序积层的双异质构造。
以Ag系层用于形成反射面时,在Ag系层与化合物半导体层间,可配置以Ag为主成分的Ag系接合金属层,以分散在Ag系层的主表面上的形态作为发光层部侧接合金属层。当与Ag系接合金属层相连的化合物半导体层以n型的III-V族化合物半导体(如前述的(AlxGa1-x)yIn1-yP(其中,0≤x≤1,0≤y≤1))所构成时,通过使用AgGeNi接合金属层作为Ag系接合金属层可提高接触电阻的降低效果。相对于Ag系层,发光层部侧Ag系接合金属层的形成面积率与前述的Au系接合金属层相同,以1%~25%为佳。
接着,在本发明的发光元件中,上述Au系层可具有结合层。如上述的发光元件可以如下述的方法制造以与该化合物半导体层的取出面相反侧的主表面作为贴合侧主表面,在该贴合侧主表面上,配置以Au为主成分、且待变成该结合层的第一Au系层;以该元件基板的预定位于该发光层部侧的主表面作为贴合侧主表面,在该贴合侧主表面上,配置以Au为主成分、且待变成该结合层的第二Au系层;使该等第一Au系层与第二Au系层密接贴合。
再者,当元件基板与化合物半导体层贴合时,元件基板与化合物半导体层透过Au系层相叠合,而在此状态下进行贴合热处理。
依本发明的制造方法,化合物半导体层侧与元件基板侧分别形成第一及第二Au系层,使两者互相紧密贴合。由于两Au系层即使在较低的温度亦容易一体化,故即使贴合的热处理温度低亦可获得非常强的贴合强度。
再者,本发明的金属层的具体形成方法,除了真空蒸镀或溅镀等气相成膜法外,亦可采用无电解电镀或电解电镀等的电化学成膜法。
附图的简要说明

图1是以积层结构表示适用于本发明的发光元件的第一实施形态的示意图。
图2是表示图1的发光元件的制作过程的一例的说明图。
图3是以积层结构表示适用于本发明的发光元件的第二实施形态的示意图。
图4是表示图3的发光元件的制作过程的一例的说明图。
图5是表示图1的发光元件的制作过程的另一例的说明图。
图6是表示各种金属反射率的图。
用于实施发明的优选形式以下,参照图式说明本发明的较佳实施形态。
图1是表示本发明一实施形态的发光元件100的示意图。发光元件100具有以下构造在p-Si基板7(作为元件基板的导电性基板,而以p型Si(硅)单结晶所形成)的第一主表面上,透过主金属层10与发光层部24贴合的结构。
发光层部24具有以p型包覆层6(第一导电型包覆层,在本发明中系由p型(AlzGa1-z)yIn1-yP(其中,x<z≤1)所构成)与n型包覆层4(与前述第一导电型包覆层不同的第二导电型包覆层,在本发明中是由n型(AlzGa1-z)yIn1-yP(其中,x<z≤1)所构成),将活性层5(由无掺杂(AlxGa1-x)yIn1-yP(其中,0≤x≤0.55,0.45≤y≤0.55)混晶所形成)夹住的结构,发光波长按照活性层5的组成,可在绿色至红色域间调整(发光波长(最大发光波长)在550nm~670nm)。在发光元件100中,在金属电极9侧配置p型AlGaInP包覆层6,在主金属层10侧配置n型AlGaInP包覆层4。因此,通电极性在金属电极9侧为正。另外,在此「无掺杂」是指「不进行积极添加掺杂物」的意思,并非指排除在一般的制程上无法避免的混入杂质成分(例如上限在1013~1016/cm3左右)。
另外,与发光层部24面向基板7的面相反侧的主表面上形成由AlGaAs所构成的电流扩散层20,在该主表面的大致中央,以局部覆盖该主表面的方式形成金属电极(例如Au电极,用于将发光驱动电压施加于发光层部24)9。在电流扩散层20的主表面上,金属电极9周围的区域成为来自发光层部24的光的光取出区域。
p-Si基板7是由Si单结晶块切片、研磨而制成的,其厚度在100μm~500μm。又,与发光层部24相向夹住主金属层10而贴合。主金属层10全体由Au系层所构成。
在发光层部24与主金属层10间,形成作为发光层部侧接合金属层的AuGeNi接合金属层32(例如Ge15质量%,Ni10质量%),其可降低元件的串联电阻。AuGeNi接合金属层32分散形成于主金属层10的主表面上,其形成面积率为1%~25%。
在p-Si基板7与主金属层10间,第一Al接触层31(例如Al99.9质量%)以与p-Si基板7的主表面相接的状态形成作为基板侧接合金属层。再者,在p-Si基板7背面形成覆盖全体表面的金属电极(背面电极如Au电极)15。在金属电极15与p-Si基板7间插入第二Al接触层16(例如Al99.9质量%)。
另外,在前述第一Al接触层31的全体表面覆盖作为扩散阻止层的钛(Ti)层11。该Ti层的厚度为1nm~10μm(在本实施形态中为600nm)。另外,扩散阻止层亦可以镍(Ni)层取代Ti层。又,主金属层10(Au层系)以覆盖该Ti层11全部表面的状态与Ti层相接而配置在其上。再者,本实施形态的Au系层是由纯Au或Au含有率在95质量%以上的Au合金所构成。
来自发光层部24的光,是以在光取出面侧直接放射的光与通过主金属层10的反射光重叠的状态下取出。为充分确保反射的效果,主金属层10的厚度以大于80nm为佳。另外,虽然并未特别限制厚度的上限,但由于反射的效果会饱和,在兼顾成本的情况下制定适当厚度值(例如1μm左右)。
以下说明关于图1的发光元件100的制造方法。
首先,如图2的步骤1所示,在GaAs单结晶基板(作为发光层成长用基板的半导体单结晶基板)1的主表面上依序使例如0.5μm的p型GaAs缓冲层2、0.5μm由AlAs形成的剥离层3、5μm由p型AlGaAs所形成的电流扩散层20磊晶成长。再者,的后依序使1μm的p型AlGaInP包覆层6、0.6μm的AlGaInP活性层(无掺杂)5及1μm的n型AlGaInP包覆层4磊晶成长。
接着,如步骤2所示,在发光层部24的主表面上分散形成AuGeNi接合金属层32。在AuGeNi接合金属层32形成后,接着在350℃~500℃的温度下进行合金化热处理。之后,第一Au系层10a覆盖在AuGeNi接合金属层32。在发光层部24与AuGeNi接合金属层32间通过上述的合金化热处理形成合金化层,可以大幅降低串联电阻。另一方面,如步骤3所示,在另外准备的p-Si基板7(掺杂硼,电阻率约8Ω.cm)的两侧主表面上形成作为基板侧接合金属层的第一、第二Al接触层31、16,在300℃~650℃的温度下进行合金化热处理。接着,在第一Al接触层31上,依序形成Ti层11(例如厚度为600nm)与第二Au系层10b。再者,在第二Al接触层16上形成背面电极层15(例如以Au系金属构成)。上述步骤的各金属层可利用溅镀或真空蒸镀等形成。
接着,如步骤4所示,使p-Si基板7侧的第二Au系层10b与在发光层部24上形成的第一Au系层10a重叠并紧压,以180℃~360℃的温度,例如以200℃的温度进行贴合热处理,来制造基板贴合体50。P-Si基板7透过第一Au系层10a及第二Au系层10b与发光层部24贴合。并且,第一Au系层10a及第二Au系层10b通过上述接合热处理形成一体化的主金属层10。由于不论第一Au系层10a及第二Au系层10b均由不易氧化的主体所构成,上述的贴合热处理即使在大气中进行亦无任何问题。
再者,在第二Au系层10b与第一Al接触层31间插入作为扩散阻止层的Ti层11。在进行贴合热处理或在第二Au系层10b形成时,可通过上述Ti层阻挡住由第一Al接触层31向第二Au系层10b扩散的Al成分,且可有效抑制Al成分在藉由与第二Au系层10b贴合而一体化的第一Au系层10a侧渗出。其结果,可防止因Al成分而使最后所获得的主金属层10反射面变成紫色等不良现象,而可获得良好的反射率。另外,通过主金属层10亦可维持p-Si基板7与发光层部(化合物导体层)24的贴合强度。
接着,进行步骤5,将上述基板贴合体50浸渍在例如由10%氢氟酸水溶液所形成的蚀刻液中,将在缓冲层2与发光层部24间所形成的AlAs剥离层3通过选择性蚀刻,将GaAs单结晶基板1(对于来自发光层部24的光为不透明)自发光层部24及与之接合的p-Si基板7的积层体50a去除。再者,亦可采用由AlInP取代AlAs剥离层3而形成蚀刻阻止层,使用对GaAs具选择性的第一蚀刻液(如氨/过氧化氢混合液)蚀刻除去GaAs单结晶基板1与GaAs缓冲层2,接着使用对AlInP具选择性的第二蚀刻液(如盐酸亦可添加用来去除Al氧化层的氢氟酸)蚀刻蚀刻阻止层的步骤。
接着,如步骤6所示,引线接合用的电极9(接合垫,图1),通过因去除GaAs单结晶基板1而露出的电流扩散层20的主表面一部份覆盖的方式而形成。之后,以一般的方法切割作为半导体晶片,将之固定在支持体上进行引线接合后,以树脂封装而获得最后的发光元件。
在上述的实施形态中,虽然在第一Au系层10a形成反射面,如图3的发光元件200,亦可在第一Au系层10a与发光层部24间插入Ag系层10c。在此情形,发光层部侧接合金属层是以AgGeNi(例如Ge15质量%、Ni10质量%)构成的Ag系接合金属层132取代Au系接合金属层而分散形成。关于其他部分与图1的发光元件100相同。图4是表示其制作过程的一例。其与图2的制作过程不同之处在于在步骤2中将Ag系接合金属层132取代Au系接合金属层32而分散形成,在350℃~660℃的温度下进行合金化热处理,之后依序形成Ag系层10c与第一Au系层10a。除此之外基本上与图2相同。
再者,在以蚀刻液去除发光层成长用基板时,若因该蚀刻液可能使Ag系层10c腐蚀时,可依下述步骤进行。亦即,如步骤3所述,将与Ag系层10c相接的第一Au系层10a的外周围位置较Ag系层10c的外周围位置靠外侧,且面积较Ag系层10c大。藉此,Ag系层10c以被第一Au系层10a包住的状态,使Ag系层10c的外周围因为藉耐蚀性高的第一Au系层10a外周围部分10e保护,故在步骤5中,即使蚀刻发光层成长用基板(GaAs单结晶基板1),亦不易影响到Ag系层10c。当以GaAs单结晶基板1作为发光层成长用基板,以氨/过氧化氢混合液作为蚀刻液将之溶解、去除时,虽然Ag特别容易受蚀刻液腐蚀,但若采用上述的构造则可轻易将GaAs单结晶基板1溶解去除。
另外,发光层部24的各层亦可以AlGaInN混晶形成。用于使发光层部24成长的发光层成长用基板,可使用蓝宝石基板(绝缘体)或SiC单结晶基板代替GaAs单结晶基板。再者,在上述实施形态中,虽然发光层部24的各层由基板侧依序为n型包覆层4、活性层5及p型包覆层6,但亦可将其反转,在基板侧由p型包覆层、活性层与n型包覆层所形成。
又,如图5(步骤3)所示,主金属层10亦可仅贴合于p-Si基板7(元件基板)与发光层部24(化合物半导体层)的任一侧(在图5为发光层部24侧)而形成。此时,贴合的热处理温度(步骤4)在200℃~700℃,虽然其温度设定必须较图2的温度高一些,但由于设置了作为扩散阻止层的Ti层(或Ni层)11,其可充分抑制Al向主金属层10扩散,故可顺利进行贴合。
权利要求
1.一种发光元件,以具有发光层部的化合物半导体层的第一主表面作为光取出面,在该化合物半导体的第二主表面侧,透过具有反射面的主金属层结合元件基板而构成;该反射面使来自该发光层部的光向该光取出面侧反射,其特征在于该元件基板,是以导电型为p型的Si基板所构成;且在该元件基板的主金属层侧的主表面正上方,形成以Al为主成分的接触层。
2.根据权利要求1所述的的发光元件,其特征在于,该发光层部的p型化合物半导体层位于光取出面侧,发光层部的n型化合物半导体层位于主金属层侧,且该n型化合物半导体层透过该主金属层而与p型的Si基板结合。
3.根据权利要求2所述的发光元件,其特征在于,该发光层部具备双异质构造,该构造是由p型包覆层(p型化合物半导体层)、n型包覆层(n型化合物半导体层)、以及在p型包覆层与n型包覆层间形成的活性层所构成。
4.根据权利要求1~3的任何一项所述的发光元件,其特征在于,在该接触层与主金属层间插入导电性材料构成的扩散阻止层,阻止该接触层的Al成分向主金属层扩散。
5.根据权利要求4所述的发光元件,其特征在于,该主金属层中至少包含扩散阻止层界面的部分,是以Au为主成分构成的Au系层;且该扩散阻止层,系以Ti及Ni中任一者为主成分的扩散阻止用金属层。
6.根据权利要求5所述的发光元件,其特征在于,该Au系层形成上述反射面。
7.根据权利要求5所述的发光元件,其特征在于,在该Au系层与化合物半导体层间插入以Ag为主成分的Ag系层,形成该反射面。
8.根据权利要求5~7的任何一项所述的半导体元件,其特征在于,该Au系层具有结合层。
9.一种发光元件的制造方法,用于制造权利要求8所述的发光元件,其特征在于具备以下步骤以该化合物半导体层的取出面相反侧的主表面作为贴合侧主表面,在该贴合侧主表面上,配置以Au为主成分、且待变成该结合层的第一Au系层;以该元件基板的预定位于该发光层部侧的主表面作为贴合侧主表面,在该贴合侧主表面上,配置以Au为主成分、且待变成该结合层的第二Au系层;使该第一Au系层与该第二Au系层密接贴合。
10.根据权利要求9所述的发光元件的制造方法,其特征在于,使该元件基板与化合物半导体层透过Au系层而相叠合,并且在该状态下进行贴合热处理,藉此使该元件基板与化合物半导体层贴合。
全文摘要
在本发明的发光元件100中,以具有发光层部24的化合物半导体层的第一主表面作为光取出面,在该化合物半导体的第二主表面侧,透过具有反射面的主金属层10结合元件基板7而构成;该反射面使来自该发光层部24的光向该光取出面侧反射,其特征在于该元件基板7是以导电型为p型的Si基板所构成,且在该元件基板7的主金属层侧10的主表面正上方形成以Al为主成分的接触层31。藉此提供在具有透过金属层使发光层部与元件基板贴合的构造的发光元件中,具有良好的导电性的发光元件及其制造方法。
文档编号H01L33/34GK1754267SQ200380109980
公开日2006年3月29日 申请日期2003年12月19日 优先权日2003年2月28日
发明者萩本和德, 山田雅人 申请人:信越半导体株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1