硅氧化膜的形成方法,等离子体处理装置以及存储介质的制作方法

文档序号:6888971阅读:144来源:国知局

专利名称::硅氧化膜的形成方法,等离子体处理装置以及存储介质的制作方法
技术领域
:本发明涉及硅氧化膜的形成方法、等离子体处理装置以及存储介质,特别涉及例如可以适用在各种半导体装置的制造过程中形成作为绝缘膜的硅氧化膜的情况等的硅氧化膜的形成方法、等离子体处理装置以及存储介质。
背景技术
:各种半导体装置的制造过程中,例如,作为晶体管的栅极绝缘膜而形成Si02等硅氧化膜。作为这样的硅氧化膜的形成方法,大致分为使用氧化炉或RTP(快速热处理RapidThermalProcess)装置的热氧化处理和使用等离子体处理装置的等离子体氧化处理。例如,热氧化处理之一的通过氧化炉进行的湿氧化处理中,将硅基板加热至超过80(TC的温度,使用将氧和氢燃烧生成水蒸气(H20)的WVG(水蒸气发生WaterVaporGenerator)装置,使硅基板暴露在氧化气氛中,由此使硅表面氧化而形成硅氧化膜。另一方面,作为等离子体氧化处理,使用含有氩气和氧气且氧的流量比率为大致1%的处理气体。将在133.3Pa的腔室内压力下形成的微波激励等离子体作用在硅表面而进行等离子体氧化处理,由此可以容易控制膜厚地形成优良的硅氧化膜(例如,专利文献l)。专利文献l:WO2004/008519号考虑利用可以形成优良的硅氧化膜的方法进行热氧化处理。但是,由于在超过80(TC的高温下进行处理,氧化速率高而形成过剩的膜厚,因此在形成极薄膜的情况下的控制很困难。例如,在具有凸凹的硅的角部也形成大的圆角形状,其程度难以控制。进一步,存在热预算(thermalbudget)增大,因热应力使硅基板产生歪曲等的问题。相对于此,在上述专利文献1的等离子体处理中,由于在处理温度40(TC左右下进行低温热处理,因此可以避免热氧化处理中的热预算在增大和基板歪曲等的问题。另夕卜,在处理压力133.3Pa左右、处理气体中的02流量1%的条件(为了便于说明,称为"低压力、低氧浓度条件")下进行等离子体处理,可以得到高氧化速率并且在对具有凸凹的硅表面进行氧化的情况下可以将形成在硅角部的圆角形状控制为合适的形状,还可以在凸凹表面形成极薄膜的硅氧化膜,抑制来自该部位的漏电流。但是,以上述低压力《氏氧浓度条件下进行等离子体氧化处理时,形成在被处理物表面的线和空间等的图案存在疏密,在此情况下,由于密集部位的氧分压降低,在图案稀疏部位和密集部位上硅氧化膜的形成速度出现差别。因此,存在,在密集部位处形成在硅上的膜厚变薄,不能形成均匀膜厚的硅氧化膜的问题。在具有凸凹形状的硅表面形成的硅氧化膜的膜厚在各个部位上存在有差异,若将这样的材料作为绝缘膜而利用在半导体装置上则会使可靠性降低。
发明内容因此,本发明的目的在于提供一种硅氧化膜的形成方法,该方式可以维持在低压力'低氧浓度条件下的等离子体氧化处理的优点,且使膜厚对图案依赖性降低,在凸凹形状的表面上以均匀膜厚形成硅氧化膜。本发明的硅氧化膜的形成方法,其特征在于,包括在等离子体处理装置的处理室内配置在表面具有凸凹图案的硅制的被处理体的工序;和形成处理气体的等离子体,对上述被处理体表面的硅作用该处理气体的等离子体而进行氧化,形成硅氧化膜的工序,在上述形成硅氧化膜的工序中,在上述处理气体中的氧的比例为0.1%以上10°/。以下,且压力为0.133Pa以上133.3Pa以下的条件下,形成上述等离子体,并且在上述处理室内的等离子体产生区域和被处理体之间设置具有多个贯通开口的部件,经由该贯通孔向上述被处理体引导上述等离子体,对上述硅进行氧化而形成上述硅氧化膜。本发明的硅氧化膜的形成方法中,上述处理气体中的氧的比例为0.5%以上10%以下。本发明的硅氧化膜的形成方法中,上述处理压力为6.6Pa以上133.3Pa以下。本发明的硅氧化膜的形成方法中,上述处理气体含有氢的比例为0.1°/。以上10%以下。本发明的硅氧化膜的形成方法中,在形成处理气体的等离子体而形成硅氧化膜时,处理温度为200'C以上80(TC以下。本发明的硅氧化膜的形成方法中,上述等离子体为利用上述处理气体和微波形成的微波激励等离子体,上述微波利用具有多个缝隙的平面天线经过透过板而被导入到上述处理室内。本发明的硅氧化膜的形成方法中,上述贯通开口的孔径为2.5mm以上12mm以下。本发明的硅氧化膜的形成方法中,通过上述贯通开口的上述等离子体的电子温度为0.7eV以下。本发明的硅氧化膜的形成方法中,上述贯通开口的开口率为10%以上20%以下。本发明的硅氧化膜的形成方法中,上述被处理体与具有上述贯通开口的部件的距离为3mm以上20mm以下。本发明的硅氧化膜的形成方法中,具有上述贯通开口的部件与上述透过板的距离为20mm以上50mm以下。本发明的等离子体处理装置,其特征在于,具有用于对表面具有凸凹图案的硅制的被处理体进行处理的能够进行真空排气的处理室;向上述处理室内供给处理气体的处理气体供给部;在上述处理室内产生上述处理气体的等离子体,对上述被处理体表面的硅作用该处理气体的等离子体进行氧化,而形成硅氧化膜的等离子体供给源;调整上述处理室内的压力的排气装置;和对上述处理气体供给部、上述等离子体供给源和排气装置进行控制的控制部,在上述处理室内的等离子体产生区域和上述被处理体之间,配置划分上述处理室内的具有多个贯通开口的部件,控制部对上述处理气体供给部、上述等离子体供给源和上述排气7装置进行控制,以使得生成上述处理气体中的氧的比例为0.1%以上10%以下,且压力为0.133Pa以上133.3Pa以下的条件下的等离子体,并且经由具有上述贯通开口的部件的贯通口向上述被处理体引导上述等离子体,对硅进行氧化而形成硅氧化膜。本发明的存储介质,其是存储在计算机中用于执行硅氧化膜的形成方法的计算机程序的存储介质,其特征在于硅氧化膜的形成方法包括,在等离子体处理装置的处理室内配置在表面具有凸凹图案的硅制的被处理体的工序;和形成处理气体的等离子体,对上述被处理体表面的硅作用该处理气体的等离子体而进行氧化,形成硅氧化膜的工序,在上述形成硅氧化膜的工序中,在上述处理气体中的氧的比例为0.1%以上10%以下,且压力为0.133Pa以上133.3Pa以下的条件下,形成上述等离子体,并且在上述处理室内的等离子体产生区域和被处理体之间设置具有多个贯通开口的部件,经由该贯通孔向上述被处理体引导上述等离子体,对上述硅进行氧化而形成上述硅氧化膜。根据本发明,在处理气体中的氧的比例0.1%以上10以下、压力0.133Pa以上133.3Pa以下的条件下形成等离子体,并且在处理室内的等离子体产生区域和被处理体之间设置具有多个贯通幵口的部件而进行处理。由此,在低压力、低氧浓度条件下,不会损害作为等离子体氧化处理的优点的高氧化速率和在图案肩部的圆角形成等的特征,并且能够改善因图案的疏密引起的膜厚差,可以以均匀膜厚形成硅氧化膜。所以,能够对使用由该方法得到的硅氧化膜作为绝缘膜的半导体装置赋予良好的电气特性。另外,本发明的硅氧化膜的形成方法中,可以不会受到形成在被处理体表面的图案的疏密的影响地形成均匀膜厚的硅氧化膜,可以提高将其作为绝缘膜的半导体装置的可靠性。图1是表示适用在本发明实施方式中的等离子体处理装置的一例的概略截面图。8图2(a)是表示板的结构的平面图,图2(b)是表示其主要部分的截面图。图3是表示平面天线板的结构的图。图4(a)4(i)是表示适用在基于STI的元件分离的例的晶片截面的模式图。图5是表示形成有图案的晶片表面附近的纵截面的模式图。图6是表示处理压力和等离子体中的基团的密度的关系的图表。图7是表示处理气体流量比率和等离子体中的基团的密度的关系的图表。图8是表示其它例子的板的结构的平面图。图9是表示其它例子的板的结构的平面图。具体实施例方式下面,参照附图对本发明的优选方式进行说明。图1是模式地表示适用于本发明的硅氧化膜的形成方法的等离子体处理装置的一例的截面图。该等离子体处理装置构成为RLSA微波等离子体处理装置,包括具有多个缝隙的平面天线、特别是RLSA(RadialLineSlotAntenna;径向线缝隙天线),利用该天线将微波导入处理室内产生等离子体,以高密度并在被处理体附近发生1.2eV以下的低电子温度的微波等离子体,例如,可以适用于以晶体管的栅极绝缘膜为代表的各种半导体装置中的绝缘膜的形成。上述等离子体装置100具有,气密地构成,且被接地的大致圆筒状的腔室(处理室)1。在腔室1的底壁la的大致中央部形成有圆形的开口部10,在底壁la设置有与该开口部10连通且向下方突出的排气室U。腔室1内设置有由AIN等陶瓷构成的基座2,其用于水平地支持作为被处理基板的半导体晶片(以下简称为"晶片")W。另外,在晶片W在表面具有凸凹图案,由硅制成。基座2由支持部件3支持,该支持部件3由从排气室11的底部中央向上方延伸的圆筒状,由AIN等陶瓷构成。在基座2的外缘部设置有用于引导晶片W的引导环4。另外,在基座2埋入有电阻加热型的加热器5,该加热器5通过加热器电源69的供电对基座2进行加热,利用该热量对作为被处理体的晶片W加热。此时,例如加热器5能够在例如从室温到1000'C的范围内进行温度控帝IJ。另外,在腔室1的内周设置有由石英构成的圆筒状的套管7。另外,在基座2的外周侧,为了均匀地对腔室1内排气而环状地设置有具有多个排气孔8a的石英等制的挡板8,该挡板8利用多个支柱9支持。由此,在腔室内部不容易产生金属污染,保持了洁净的环境。在基座2上,设置有用于支持晶片W并使其升降的晶片支持销,其能够突出、陷入于基座2的表面。在基座2的上方配置有板60,其具有使等离子体中的活性种中的离子的能量衰减并通过的多个贯通孔。该板60例如可以由石英、蓝宝石、SiN、SiC、A1203、A1N等的陶瓷电介体、单晶硅、多晶硅、非结晶硅等构成。另外,在本实施方式中,使用了杂质为数十ppm以下等级的高纯度的石英,但是优选例如氮化硅、多晶硅、非结晶硅、单晶硅等的高纯度材料。板60,其外周部与支持部70卡合而被支持,该支持部70从腔室1内的套管7在全周上向内侧突起。另外,该板60具有使等离子体中的离子等的活性种的能量衰减的作用。由此,将晶片附近的等离子体的电子温度控制为0.7eV以下,可以降低等离子体损伤。板60的安装位置优选为与晶片W接近的位置,板60的下端与晶片W的距离优选为例如320mm,更优选10mm左右。该情况下,板60的上端与透过板28(后述)的下端的距离,例如优选为2050mm。在板60上,形成有多个贯通孔60a。图2(a)、(b)是表示板60的详细情况的图。图2(a)表示从上方观看板60的状态,图2(b)表示板60的主要部分的截面。板60的贯通孔60a大致均匀地配置,且贯通孔60a的配置区域比图2(a)中虚线所示的晶片W的载置区域稍大。具体地,例如图2(a)中,相对于300mm直径的晶片W,连接贯通孔60a的配置区域的外延的相当于圆的直径的长度L比晶片W的直径大,贯通孔60a配置在从晶片W的周缘向外侧扩大的大致530mm区域。另外,贯通孔60a也可以设置在板60的整个面上。10贯通孔60a的直径Dl可以任意设定,例如,可以设定为2.5mm、5mm或10mm左右。在板60内也可以根据贯通孔60a的位置改变孔的大小,该直径D1太小会使基团难以通过,直径D1太大则与没有贯通孔60a相同,因此,直径D1可以优选为2mm15mm。另外,贯通孔60a的配置也可以选择例如同心圆状、放射状、螺旋状等的任意的排列。另夕卜,考虑到设置强度等,优选板60的厚度(Tl)为220mm左右,更优选设置为38mm左右。该板60发挥使等离子体中的离子等活性种的能量衰减的能量衰减机构的作用。艮P,通过配置电介体的板60,可以主要使等离子体中的基团通过,使能量大的离子,例如Ar离子或02+离子等的能量衰减。为了上述目的,如后所述,优选对板60的贯通孔60a的幵口面积、贯通孔60a的直径D1、贯通孔60a的形状和配置、板60的厚度T1(即壁60b的高度)、板60的设置位置(距晶片W的距离)等进行综合考虑。作为其一例,在贯通孔60a的孔径为2.512mm的情况下,优选在板60上的与晶片W对应的区域内,相对于晶片W的面积的贯通孔60a的合计开口面积比率为1050%。在腔室1的侧壁设置有呈环状的气体导入部件15。在该气体导入部件15连接有气体供给系统16。气体导入部件可以配置为喷淋状。该气体供给系统16例如具有Ar气体供给源17、02气体供给源18、H2气体供给源19,这些气体分别经由各气体管道20到达气体导入部件15,并从气体导入部件15导入到腔室1内。在各气体管道20上,设置有质量流控制器(massflowcontroller)21以及其前后的开闭阀22。另外,也可以利用其他的稀有气体例如Kr、Xe、He等气体代替Ar气体。在上述排气室11的侧面连接有排气管23,该排气管23上连接有包含高速真空泵的排气装置24。而且,通过使该排气装置24动作,将腔室1内的气体均匀地排出到排气室11的空间lla内,并通过排气管23排气。由此,可以高速地将腔室1内减压为规定的真空度例如0.133Pa。在腔室1的侧壁设置有用于在与等离子体ioo邻接的搬动室(未图示)之间搬入搬出晶片W的搬入搬出口25,和关闭该搬入搬出口25的闸阀26。腔室1的上部成为开口部,沿该开口部的周缘部设置有环状的支持部27。该支持部27上通过密封部件29气密地设置有透过微波的微波透过板28,该微波透过板由电介体例如石英或A1203、A1N等的陶瓷构成。所以,保持腔室l内的气密性。在微波透过板28的上方,与基座2相对地,设置有圆板状的平面天线31。该平面天线31卡止在腔室1的侧壁上端。平面天线31,例如由表面镀银或镀金的铜板或铝板的导电性材料构成,以规定的图案成对地贯通形成有用于放射微波的多个缝隙状微波放射孔32。微波放射孔32,成为例如图3所示的长沟状,典型配置为,使相邻的微波放射孔32彼此配置为"T"字状,并使上述多个微波放射孔32配置为同心圆状。微波放射孔32的长度和排列间隔根据微波的波长ag)决定,例如微波放射孔32的间隔配置为人g/4、、g/2或Xg。另外,在图3中,由Ar表示形成为同心圆状的相邻的一对微波放射孔32彼此的间隔。另外,微波放射孔32也可以为圆形状、圆弧状等的其他形状。另外,微波放射孔32的配置形态没有特别的限定,同心圆状之外,也可以配置为螺旋状或放射状。在平面天线板31的上面,设置有具有比真空大的介电常数的慢波材料(遅波材)33,该慢波材料33例如由石英、A1203、A1N等的陶瓷、聚四氟乙烯等的氟系树脂或聚酰亚胺系树脂构成。由于真空中微波的波长变长,该慢波材料33具有使微波的波长縮短而对等离子体进行调整的功能。另外,在平面天线板31和微波透过板28之间,慢波材料33和平面天线板31之间,可以分别贴合也可以离开配置。在腔室1的上面,设置有例如由铝或不锈钢等的金属材料构成的密封盖体34,覆盖平面天线板31以及慢波材料33。密封盖体34具有作为导波路的一部分的功能,使微波均匀地传播。腔室1的上面和密封盖体34通过密封部件35密封。在密封盖体34上,形成有冷却水流路34a,在其中流通冷却水,对密封盖体34、慢波材料33、平面天线板31、微波透过板28进行冷却。另外,密封盖体34接地。在密封盖体34的上壁的中央形成有开口部36,在该开口部连接有导波管37。在该导波管37的端部,经由匹配电路38与微波发生装置39连接。由此,微波发生装置39产生的例如频率2.45GHz的微波经由导波管37传播到上述平面天线板31。另外,作为微波的频率,也可以使用8.35GHz、1.98GHz等。导波管37具有从上述密封盖体34的开口部36向上方延伸出的截面圆形状的同轴导波管37a,和通过模式变换器40与该同轴导波管37a的上端部连接的水平方向延伸的矩形导波管37b。矩形导波管37b与同轴导波管37a之间的模式变换器40具有将以TE模式在矩形导波管37b内传播的微波变换为TEM模式的功能。在同轴导波管37a的中心延伸设置有内导体41,该内导体41在其下端部,与平面天线31的中心连接固定。由此,微波经由同轴导波管37a的内导体41均匀且高效地向平面天线放射状传播。等离子体处理装置100的各构成部,与具有CPU的处理控制器50连接而被控制。在该处理控制器50,连接有为了使工程管理者对等离子体处理装置100进行管理而进行命令的输入操作等的键盘、可视化地显示等离子体处理装置100的工作状况的显示器等用户接口51。另外,在处理控制器50上,连接有存储部52,该存储部52收容有记录了通过处理控制器50的控制而实现等离子处理装置100中执行的各种处理的控制程序(软件)或处理条件数据等方案。根据需要,按照来自用户接口51的指示等从存储部52调出任意的方案而使处理控制器50执行。因此,在处理控制器50的控制下,进行等离子体处理装置100中的希望的处理。另外,上述控制程序或处理条件数据等的方案可以保存在计算机可读取的存储介质50a例如CD-ROM、硬盘、软磁盘、闪存等中,而被利用,或者其它装置可以通过专线等随时对其传送而被在线利用。这样构成的等离子体处理装置100,即使在80(TC以下,优选为50(TC以下的低温度下,通过无损害的等离子体处理,可以形成优质的膜,并且等离子体的均匀性良好,能够实现处理的均匀性。该等离子体处理装置100能够适用于如下情况,例如在形成作为晶体管的栅极绝缘膜的硅氧化膜或硅氮化膜、对硅氧化膜氮化而形成页硅氮氧化膜,或在半导体装置的制造过程作为元件分离技术而利用的STI(浅槽隔离:ShallowTrenchIsolation)中在槽(trench)内形成氧化膜等情况。在此,对使用等离子体处理装置100进行的硅氧化膜形成方法进行说明。首先,打开闸阀26,将形成有槽(trench)等凹部的硅制晶片W从搬入搬出口25搬入到腔室l内,载置在基座2上。然后,从气体供给系统16的Ar气体供给源17以及02气体供给源18等,经由气体导入部件15以规定的流量将Ar气体以及02气体等导入到腔室1内,将腔室内压力和基座温度调整为处理条件。作为该处理条件,处理气体中的氧的比例可以优选例如0.110%,更优选0.510%,最优选0.55%。处理气体的流量可以从Ar气体105000mL/min、02气体1500mL/min的范围中进行选择,以使相对于全部气体流量的氧的比例为上述值。另外,处理压力优选为0.133133.3Pa,更优选为6.6133.3Pa。另外,处理温度优选从20(TC80(TC的氛围进行选择,更优选为權。C500。C。另外,除了来自Ar气体供给源17以及02气体供给源18的Ar气体以及02气体之外,还可以从H2气体供给源19以规定的比例导入H2气体。通过供给H2气体,可以提高等离子体氧化处理中的氧化速率。这样因为,通过供给H2气体而生成OH基团,其有助于氧化速率的提高。该情况下,H2气体的比例优选相对于处理气体整体的量为0.110%,更优选为0.15%,最优选为0.12%。接着,将来自微波发生装置39的微波经由匹配电路38导入到导波管37。微波顺次通过矩形导波管37b、模式变换器40以及同轴导波管37a供给到平面天线板,从平面天线板31经由微波透过板28向腔室1内的晶片W的上方空间放射。微波通过TE模式在矩形导波管37b内传播,该TE模式的微波通过模式变换器40变换为TEM模式,在同轴导波管37a中向平面天线板31传播。此时,微波发生装置39的功率优选为0.414.91W/cm2,另外优选设为0.55kW。14通过经由微波通过板28从平面天线板31向腔室1放射的微波,在腔室l内形成电磁场,使Ar气体、02气体等的等离子体化,利用如上所述形成的等离子体对从晶片W的凹部露出的硅表面进行氧化。通过从平面天线板31的多个微波放射孔32放射微波,使该微波等离子体以大致lxl(^5xl0Wcr^的高密度,在晶片W附近,成为大致1.5eV以下的低电子温度等离子体。这样形成的微波等离子体,受到离子等引起的等离子体损伤小,但通过设置板60,在形成于板60之上的等离子体向晶片W侧通过时,使等离子体中的离子等的能量衰减。因此,在板60的下方侧生成电子温度leV以下的等离子体、在晶片W的附近生成0.7eV以下的适度(柔和)的等离子体,可以进一步降低离子损伤。这样,通过在晶片W和微波透过板20之间配置具有贯通孔60a的板60而控制等离子体的能量,通过的活性种主要利用0(>D2)基团等的作用将氧导入硅中而形成Si-O结合,从而形成致密且坑陷(trap)少的优质硅氧化膜。另外,可以在凸凹的硅表面形成均匀膜厚且角部的圆角形状良好的硅氧化膜。下面,参照图4说明将本发明的硅氧化膜形成方法适用于在STI中的槽(trench)内部形成氧化膜的例子。图4(a)图4(i)表示了从STI中的槽的形成到之后进行的氧化膜形成的工序。首先,在图4(a)以及图4(b)中,通过例如热氧化等的一个方法在硅基板101上形成Si02等的硅氧化膜102。然后,在图4(c)中,在硅氧化膜102上,通过例如CVD(化学气相沉积ChemicalVaporDeposition)形成Si3N4等的硅氮化膜。在图4(d)中,在硅氮化膜103上,涂敷光致抗蚀剂(photoresist)后,利用光刻法技术形成图案而形成抗蚀剂层104。然后,将抗蚀剂层104作为蚀刻掩模,例如,利用碳氟化合物(fluorocarbon)类的蚀刻气体选择性地对硅氮化膜103和硅氧化膜102进行蚀刻,由此,对应于抗蚀剂层104的图案使硅基板101露出(图4(e))。即,通过硅氮化膜103,形成用于槽的掩模图案。图4(f)表示了通过利用含有例如氧等的处理气体的含氧等离子体,实施所谓的灰化处理,而除去抗蚀剂层104的状态。15在图4(g)中,以硅氮化膜103和硅氧化膜102为掩模,通过对硅基板101进行选择性地蚀刻,形成槽105。该蚀刻可以使用例如含Cl2、HBr、SF6、CF4等的卤素或卤化合物、02等的蚀刻气体。图4(h)表示了相对于形成的晶片W上的STI的槽105,形成硅氧化膜的工序。在此,进行低压力,低氧浓度条件下的等离子体氧化处理。通过在这样的条件下进行等离子体氧化处理,可以使槽105的肩部105a和底缘部105b的硅101具有圆角。如上所述对槽105的肩部105a以及底缘部105b的硅101氧化而使它们具有圆角形状,而可以在槽105的内部形成均匀膜厚的硅氧化膜111。由此,与在槽105的肩部105a以及底缘部105b形成锐角的情况相比,可以抑制漏电流的产生。另外,可以不依赖于硅的面方向而在槽105的内面[侧壁部(110)面以及底部(100)面]以均匀的膜厚形成硅氧化膜llla、lllb。考虑得到该效果的原因主要是,在低压力,低氧浓度条件下进行的等离子体氧化处理中,等离子体中O(力2)基团成为支配地位。另外,在利用本发明的硅氧化膜形成方法形成硅氧化膜111后,按照STI的元件分离区域形成的顺序,例如在利用CVD法在槽105内埋入Si02等的绝缘膜后,以硅氮化膜103为阻止层,利用CMP(化学机械研磨ChemicalMechanicalPolishing)进行研磨而使其平坦化。平坦化后,通过以蚀刻除去硅氮化膜103和埋入绝缘膜的上部,可以形成元件分离结构。下面,对确认本发明的效果的试验结果进行说明。将本发明的硅氧化膜的形成方法适用于形成具有疏密图案的硅表面的氧化膜形成中。图5模式地表示了通过下述条件A以及条件B的等离子体氧化处理,在具有图案110的硅基板101的表面形成氧化膜111后的晶片W的主要部分截面结构。在本试验中,使用图1的等离子体处理装置100,在下述条件A下进行等离子体氧化处理,形成硅氧化膜后,对图案110稀疏部分(疏部)的肩部112的角部膜厚a、侧部膜厚b、底部膜厚c以及图案密集部分(密部)的肩部112的角部膜厚a'、侧部膜厚b'、底部膜厚c'分别进行测定(本发明的实施例)。另外,作为比较例,利用除了不具有板60之外,与图1的等离子体处理装置IOO具有同样结构的等离子16体处理装置进行在下述条件B下的等离子体氧化处理,对各部进行测定。另外,图案的凹部的深度与开口宽度的比(横纵比),疏部为1以下,密部为2。对于形成的硅氧化膜,对角部膜厚比(膜厚aV膜厚b')以及图案110的疏密引起的膜厚差[(膜厚c'/膜厚c)xl00]进行测定。将它们的结果显示在表l中。<条件八>......使用板60Ar流量500mL/min(sccm)。2流量5mL/min(sccm)112流量-5mL/min(sccm)02气体比率大致1%处理压力133.3Pa(lTorr)微波功率2.3W/cm2(2750W)处理温度400°C处理时间1800秒板60的开口直径10mm〈条件B〉......不使用板60Ar流量500mL/min(sccm)02流量5mL/min(sccm)02气体比率大致1%处理压力133.3Pa(1Torr)微波功率2.3W/cm2(2750W)处理温度400°C处理时间360秒表1<table>tableseeoriginaldocumentpage17</column></row><table>表1中,在使用板60而形成硅氧化膜的情况下的角部膜厚比为1.16,与不使用板60的比较例的1.34同样良好的结果。角部膜厚比表示图案的肩部112的圆角形状的程度,若为1以上,则表示在肩部112的硅101的角上形成有圆角。另一方面,在使用板60而形成硅氧化膜的情况下的由图案的疏密引起的膜厚差为81.6%,与不使用板60的比较例的60.4相比为良好的值。如上所述,在具有板60的等离子体处理装置100中,通过在低压力-低氧浓度条件下形成硅氧化膜,可以在图案110的肩部112的硅101的角上形成圆角,并且可以改善图案的疏密引起的膜厚差。因此,对可以得到这样结果的理由进行了考察。图6表示等离子体处理装置100内生成的等离子体中的作为基团的O。D2)和O(3P2)的原子密度与处理压力的关系。等离子体形成条件为Ar流量500mL/min(sccm)、02流量5mL/min(sccm)、处理温度400°C、微波功率1500W(1.25W/cm2)、处理压力在90667Pa之间变化。通过图6可以看到,O(D2)密度在大约133.3Pa左右达到峰值,随着处理压力提高,与O(3P2)密度相比更快地减少。图7表示了等离子体中的0('D2)密度和O(3P2)密度与处理气体的流量比率的关系。等离子体形成条件为处理压力在133.3Pa(1Torr)、处理温度400°C、微波功率1500W(1.25W/cm2)、Ar流量300500mL/min(sccm)、02流量1200mL/min(sccm)之间变化。通过图7可以了解,O(3P2)密度几乎不受处理气体中的02流量比率[(02/Ar+02)xl00]的影响,O(1。2)密度在处理气体中的02流量比率越低时越高,在1%左右达到陡峭的峰值。通过图6和图7可以了解,在具有板60的等离子体处理装置100中,在133.3Pa、02浓度1%的低压力、低氧浓度条件下,形成O(^2)和O(3P2)的密度最高的等离子体。利用这样的基团主体的等离子体,对硅进行氧化,可以在图案110的肩部112的硅角部101a、101c以及底缘部101b、101d形成圆角。另外,通过设置板60,可以使参与氧化的等离子体中的其他活性种中的02+离子、o+离子等的离子的大部分衰减。另外,O(5D2)等基团通过板60的贯通孔60a而到晶片W表面。其结果,不会像离子那样相对于晶片w垂直地入射,各向相同(均匀)地入射的O(力2)等的基团主体的氧化更加显著,改善了图案110的疏密引起的膜厚差。以上,对本发明的实施方式进行了说明,但是本发明不限于上述的实施方式,可以进行各种变形。例如,在图1中列举了RLSA方式的等离子体处理装置100,但是也可以为例如ICP等离子体方式、ECR等离子体方式、表面反射波等离子体方式、磁控管等离子体(magnetronplasma)方式等等离子体处理装置。另外,在上述实施方式中,利用了图2所示的均匀的开口图案的板60,但板的结构并没有限定。例如,如图8所示可以使用如下所述的3区域的板80,其形成有贯通孔的贯通孔形成区域81具有各贯通孔的直径不同的对应于晶片W的中央部分的第一区域81a、对应于晶片W的外侧部分地配置于第一区域81a外周的第二区域81b和配置于第二区域81b外周并包含晶片W的外侧区域的第三区域81c。另外,也可以使用两区域的板。在三区域的板80的情况下,在第一区域81a形成有具有最小直径的贯通孔82a,在第三区域81c形成有具有最大直径的贯通孔82c,在第二区域81b形成有具有它们之间的直径的贯通孔82b。在此,作为第一区域81a的贯通孔82a的直径、第二区域81b的贯通孔82b的直径、第三区域81c的贯通孔82c的直径,都优选515mm的范围,更优选712mm的范围。另外,贯通孔82a的直径贯通孔82b的直径贯通孔82c的直径优选l:11.2:1.1L4。另外,优选第一区域81a的贯通孔82a的开口率最小,第三区域81c的贯通孔82c的开口率最大,第二区域81b的贯通孔82b的幵口率为它们之间的值。第一区域81a的贯通孔82a的开口率优选为2555%的范围,第二区域81b的贯通孔82b的开口率优选为3085%的范围,第三区域81c的贯通孔82c的开口率优选为5080%的范围。第一区域81a的贯通孔82a的开口率和第二区域81b的贯通孔82b的开口率和第三区域81c的贯通孔82c的开口率的比优选为h12.6:1.13.2的范围。在使用300mm晶片为晶片W的情况下,优选第一区域81a的贯通孔82a的直径为711mm,第二区域81b的贯通孔82b的直径为7llmm,第三区域81c的贯通孔82c的直径为913mm,第一区域81a的直径D1:80190mm,第二区域81b的直径D2:250450mm,第三区域81c的直径D3:400650mm。通过使用这样的板80,形成离子能量(等离子体能量)低的等离子体而在晶片W整个面上进行均匀的等离子体氧化处理,可以控制凸凹形状表面的角部的圆角的程度并且形成均匀膜厚的硅氧化膜。另外,作为板其他的例子,如图9所示,贯通孔形成区域的直径为350mm,利用了中央部的直径200mm的区域中将直径9.5mm的贯通孔形成为12.5mm间距(开口率44.4%),在其外侧的区域将直径lOmm的贯通孔形成为12.5mm间距(开口率52.4%)的板90。另外,本发明适用于要求沿着图5所示的凸凹图案形成高品质的氧化膜的应用,例如适用于STI中的槽内部的氧化膜形成或晶体管的多晶硅栅极电极侧壁的氧化膜形成等。另外,在凸凹形成部位引起的面方向不同的硅表面例如叶片(fin)构造和槽状栅极结构的三维晶体管的制造过程中,形成作为栅极绝缘膜等的硅氧化膜的情况下,也可以使用本发明。另外,也可以适用于快闪存储器等的隧道状氧化膜的形成。另外,在本实施方式中,对形成作为绝缘膜的硅氧化膜的方法进行了说明,但是,可以对通过本发明的方法形成的硅氧化膜进一步进行氮化处理而形成硅氮氧化膜(SiON)。另外,也适用于直接对硅进行氮化处理而形成硅氮化膜。该情况下,不管氮化处理的方法如何,优选利用含有Ar气体和N2气体的混合气体进行等离子体氮化处理。氮化处理条件优选为,Ar气体1005000sccm、N2气体5500sccm、、N2/Ar的比0.0015,优选0.011,压力1.3133.3Pa,优选6.766.7Pa,处理温度300600°C,功率0.414,19W/cm2。另外,在图1所示的等离子体处理装置100中为只使用了一个板60的构成,但是也可以将例如两个以上的板60重叠在贯通孔60a的位置而配置。20本发明可以适合利用在各种半导体装置的制造中形成硅氧化膜或硅氮化膜等情况。权利要求1、一种硅氧化膜的形成方法,其特征在于,包括在等离子体处理装置的处理室内配置在表面具有凸凹图案的硅制的被处理体的工序;和形成处理气体的等离子体,对所述被处理体表面的硅作用该处理气体的等离子体而进行氧化,形成硅氧化膜的工序,在所述形成硅氧化膜的工序中,在所述处理气体中的氧的比例为0.1%以上10%以下,且压力为0.133Pa以上133.3Pa以下的条件下,形成所述等离子体,并且在所述处理室内的等离子体产生区域和被处理体之间设置具有多个贯通开口的部件,经由该贯通孔向所述被处理体引导所述等离子体,对所述硅进行氧化而形成所述硅氧化膜。2、如权利要求1所述的硅氧化膜的形成方法,其特征在于,所述处理气体中的氧的比例为0.5%以上10%以下。3、如权利要求1所述的硅氧化膜的形成方法,其特征在于,所述处理压力为6.6Pa以上133.3Pa以下。4、如权利要求1所述的硅氧化膜的形成方法,其特征在于,所述处理气体含有氢的比例为0.1%以上10%以下。5、如权利要求1所述的硅氧化膜的形成方法,其特征在于,在形成处理气体的等离子体而形成硅氧化膜时,处理温度为200°C以上80(TC以下。6、如权利要求1所述的硅氧化膜的形成方法,其特征在于所述等离子体为利用所述处理气体和微波形成的微波激励等离子体,所述微波利用具有多个缝隙的平面天线经过透过板而被导入到所述处理室内。7、如权利要求1所述的硅氧化膜的形成方法,其特征在于,所述贯通开口的孔径为2.5mm以上12mm以下。8、如权利要求1所述的硅氧化膜的形成方法,其特征在于,通过所述贯通开口的所述等离子体的电子温度为0.7eV以下。9、如权利要求1所述的硅氧化膜的形成方法,其特征在于,所述贯通开口的开口率为10%以上20%以下。10、如权利要求1所述的硅氧化膜的形成方法,其特征在于,所述被处理体与具有所述贯通开口的部件的距离为3mm以上20mm以下。11、如权利要求6所述的硅氧化膜的形成方法,其特征在于,具有所述贯通开口的部件与所述透过板的距离为20mm以上50mm以下。12、一种等离子体处理装置,其特征在于,具有用于对表面具有凸凹图案的硅制的被处理体进行处理的能够进行真空排气的处理室;向所述处理室内供给处理气体的处理气体供给部;在所述处理室内产生所述处理气体的等离子体,对所述被处理体表面的硅作用该处理气体的等离子体进行氧化,而形成硅氧化膜的等离子体供给源;调整所述处理室内的压力的排气装置;和对所述处理气体供给部、所述等离子体供给源和排气装置进行控制的控制部,在所述处理室内的等离子体产生区域和所述被处理体之间,配置划分所述处理室内的具有多个贯通开口的部件,控制部对所述处理气体供给部、所述等离子体供给源和所述排气装置进行控制,以使得生成所述处理气体中的氧的比例为0.1%以上10%以下,且压力为0.133Pa以上133.3Pa以下的条件下的等离子体,并且经由具有所述贯通开口的部件的贯通口向所述被处理体引导所述等离子体,对硅进行氧化而形成硅氧化膜。13、一种存储介质,其是存储在计算机中用于执行硅氧化膜的形成方法的计算机程序的存储介质,其特征在于硅氧化膜的形成方法包括,在等离子体处理装置的处理室内配置在表面具有凸凹图案的硅制的被处理体的工序;禾口形成处理气体的等离子体,对所述被处理体表面的硅作用该处理气体的等离子体而进行氧化,形成硅氧化膜的工序,在所述形成硅氧化膜的工序中,在所述处理气体中的氧的比例为0.1%以上10%以下,且压力为0.133Pa以上133.3Pa以下的条件下,形成所述等离子体,并且在所述处理室内的等离子体产生区域和被处理体之间设置具有多个贯通开口的部件,经由该贯通孔向所述被处理体引导所述等离子体,对所述硅进行氧化而形成所述硅氧化膜。全文摘要一种等离子体氧化处理方法,维持在低压力、低氧浓度条件下的等离子体氧化处理的优点,并且使膜厚不依赖于图案疏密,而以均匀的膜厚形成硅氧化膜。在等离子体处理装置的处理室内,对具有凸凹图案的被处理体表面的硅作用处理气体的等离子体而进行氧化,形成硅氧化膜。以上述处理气体中的氧的比例为0.1%以上10%以下并且压力为0.133Pa以上133.3Pa以下的条件形成上述等离子体。在上述处理室内的等离子体产生区域和被处理体之间设置具有多个贯通开口的板而进行处理。文档编号H01L21/316GK101523577SQ20078003650公开日2009年9月2日申请日期2007年9月28日优先权日2006年9月29日发明者北川淳一,壁义郎,小林岳志,盐泽俊彦申请人:东京毅力科创株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1