铜线及其制造方法以及具有该铜线的薄膜晶体管基板的制作方法

文档序号:6902451阅读:77来源:国知局
专利名称:铜线及其制造方法以及具有该铜线的薄膜晶体管基板的制作方法
技术领域
本发明涉及半导体器件中的铜线,尤其涉及这样一种半导体器件中的铜 线,其中无需任何额外的制造步骤便可形成用以提高铜线附着力的阻挡层;以 及涉及制造该铜线的方法,和具有该铜线的平板显示设备。
背景技术
随着信息社会的发展,半导体器件的快速发展不断促进大量信息的快速存 储。将半导体器件集成为具有在较小的区域存储大量信息的高器件封装密度成 为一种趋势。
半导体器件作为向平板显示设备提供信号的普通集成电路或直接作为显 示图像的平板显示设备上的像素矩阵的驱动器件,来驱动显示图像的平板显示 设备。
因此要求应用于多种领域的半导体器件中布线的区域减小,使占用较少的 面积且能够快速处理大量信息。布线的区域的减小和因此造成的邻近图案间距 离的减小增加了布线的阻抗,造成信号延迟以及布线中电子迁移的问题。
为解决以上问题,需要开发一种具有低阻抗的布线的器件,具有高导电性
和低介电常数的铜Cu作为低阻抗布线的材料受到关注。
然而,铜用作低阻抗布线具有对硅的氧化物膜、硅的氮化物膜或主要用作 绝缘膜的玻璃的附着力差的特点。而且,由于铜在硅中的扩散系数是铝的大约 100倍,因此额外需要导电阻挡层来增加对绝缘膜的附着力及防止铜的扩散。
在相关技术中已出现由含Ti、 TiN或TaN的材料构成阻挡层,但是由于 该材料包含不同于铜的金属,因此要求制造该材料的过程在一个和沉积铜的室分开的室里进行。换句话说,形成阻挡层的过程变得复杂。 为解决上述问题,提出铜的氮化物阻挡层。
然而,由于铜和氮化物彼此间的溶解性差,所以尽管成分精确的材料的准 备是困难的,足以用作阻挡层的铜的氮化物是Ql3N。
图1例示了形成在基板1上的Cu3N阻挡层10上的铜线的铜导电层20的 截面。
由于Cu3N具有相对稳定的特性,Cu3N被用作光盘的存储介质。然而, 由于Qi3N还具有低的热稳定性,举例来说,如果阻挡层形成之后由于制造步 骤中的基板温度升高而使CU3N受热,就会沉积铜,即Cii3N中的Cu还原为 Cu而形成一个还原的Cu层15,如图1所示。
如果Cu3N由此还原为Cu,那么阻挡层就失去了阻挡作用,导致其与下 面的膜的附着力变差,不能防止铜的扩散。

发明内容
因此,本发明旨在提供一种铜线及其制造方法,其能克服上述现有技术中 的一个或多个缺点。
本发明的目的是在提供一种铜线及其制造方法,其中,无需额外的制造步
骤便可容易地形成稳定的阻挡层,该阻挡层由包含铜的氧化物,尤其是CU20
或CuOxNy的材料构成。
关于本发明其它的优点、目的和特征, 一部分将在下文的说明书中阐明, 一部分对于所属领域普通技术人员将通过研究下文而变得显而易见,或者可从 本发明的实践领会到。通过书面说明书及其权利要求以及附图中特别指出的结 构可实现和获得本发明的目的和其它优点。
为了实现这些目的和其它的优点,依照本发明的意图,如这里具体化和广 泛描述的,铜线包括形成于底层结构上的阻挡层,和位于阻挡层上的铜导电层, 其中阻挡层包括Cu20层和CuOxNy层中的至少之一 。
根据本发明的另一方面,提供一种薄膜晶体管基板,包括形成于基板上的 多条栅极线,和形成于所述栅极线和栅极绝缘膜之间用以定义像素区并垂直于 所述栅极线的多条数据线;形成于所述栅极线和数据线分别相交的区域的多个 薄膜晶体管;和形成于所述像素区并分别连接到所述薄膜晶体管的多个像素电极,其中所述栅极线和数据线中的至少之--由所述铜线构成;其中所述铜线包 括阻挡层和位于所述阻挡层上的铜导电层,其中所述阻挡层包括Cu20层和
Cu(XNy层中的至少之一。
应当理解,本发明前面的一般性描述和下面的详细描述都是示范性的和解 释性的,意在提供对要求保护的本发明进一步的解释。


附图结合在本申请中构成本申请的一部分,用以提供对本发明的进一步理 解。附图例示了本发明的实施方式并与说明书一起用以解释本发明的原理。在 附图中
图1为例示相关技术阻挡层的问题的剖视图2A为例示根据本发明第一优选实施方式的铜线的剖视图2B为例示根据本发明第二优选实施方式的铜线的剖视图3A为例示根据本发明优选实施方式的薄膜晶体管基板的平面图3B为从图3A的线I-I'得到的剖视图4A-4C为例示根据本发明第一优选实施方式的铜线的制造方法的剖 视图5A-5C为例示根据本发明第二优选实施方式的铜线的制造方法的剖 视图6A为例示仅用氮气N2制造的Cu3N阻挡层的物理特性的曲线图;以及 图6B为例示CuOxNy阻挡层的物理特性的曲线具体实施例方式
现在详细描述本发明的优选实施方式,其中的一些实例在附图中示出。在 整个附图中尽可能地使用相同的参考标号表示相同或相似的部件。
本发明的铜线包括位于底层结构上的阻挡层,和位于阻挡层上的铜导电 层,其中阻挡层由0i20铜氧化物层,或至少一种CuOxNy层构成。
下面将参照附图描述根据本发明第一优选实施方式的铜线。
图2A为例示根据本发明第一优选实施方式的铜线的剖视图。
参照图2A,铜线包括形成于底层结构100上的阻挡层200,和形成于阻挡层200上的铜导电层300,其中阻挡层200为Cu20铜氧化物层或CuOxNy 的铜氧化物层(其中x和y为正数)。
举例来说,底层结构100可以是基板,比如玻璃基板或硅基板,或是绝缘 膜,比如硅的氮化物膜或硅的氧化物膜。
阻挡层200是Cu20铜氧化物层或最好是CuOxNy层。
铜氧化物层或最好是CuOxNy层的阻挡层200具有足够好的热稳定性,以 使得阻挡层不会在随后的制造阶段由于基板受热而被还原,从而实现阻挡层的 阻挡特性,或是实现防止铜向绝缘膜中扩散的效果,并且与此同时提高铜的附 着力。
下面将参照附图描述根据本发明第二优选实施方式的铜线。
图2B为例示根据本发明第二优选实施方式的铜线的剖视图。
参照图2B,铜线包括位于底层结构100上的第一阻挡层202,位于第一 阻挡层202上的第二阻挡层204,和位于第二阻挡层204上的铜导电层300。
举例来说,底层结构100可以是基板,比如玻璃基板或硅基板,或是绝缘 膜,比如硅的氮化物膜或硅的氧化物膜。
虽然第一阻挡层202和第二阻挡层204可以是CuOyNy或Cu20的铜氧化 物层,但最好第一阻挡层202由CuOxNy构成且第二阻挡层204由0120构成。
由于CuOxNy与绝缘膜的交界面的特性比Cu20与绝缘膜的交界面的特性 稳定,所以在第二阻挡层204下的第一阻挡层202最好由CuOxNy构成。
CuOxNy阻挡层最好沉积到50 1000口的厚度。
按如上方式形成有双层阻挡层的更稳定。
下面描述根据本发明优选实施方式的薄膜晶体管基板。
图3A是根据本发明优选实施方式的薄膜晶体管基板的平面图,图3B是 从图3A的线I-I'得到的剖视图。
参照图3A和3B,薄膜晶体管基板包括形成于基板100上的多条栅极线 110,形成于栅极线110和栅极绝缘膜101之间用来定义像素区P且垂直于栅 极线110的多条数据线,形成于栅极线和数据线分别相交的区域的多个薄膜晶 体管,以及形成于像素区并分别连接至薄膜晶体管的多个像素电极150。
栅极线110的一端有栅极焊盘112,用来接收来自器件外部的栅极信号, 数据线120的一端有数据焊盘123,用来接收来自器件外部的数据信号。薄膜晶体管包括从栅极线分岔出的栅极115,用来覆盖栅极115的栅极绝
缘膜IOI,与栅极115相对地形成于栅极绝缘膜上的半导体层126,形成于半 导体层126 —端的从数据线120分岔出的源极122,以及与源极122相对的漏 极124。
像素电极150通过第一接触孔140连接至薄膜晶体管,其中,当形成于包 括源极122、漏极124和数据线120的整个基板表面上的用于保护薄膜晶体管 的保护膜146的一部分被去除时,形成该第一接触孔140以暴露漏极124。 像素电极150最好由透明导电材料构成,比如铟-锡氧化物(ITO)。 尽管图3A例示了将像素电极150形成为具有与先前阶段的栅极线重叠的 区域以形成存储电容器的情况,还存在像素电极150与公共线重叠以形成存储 电容器的情况。
在栅极悍盘112上具有用来覆盖第二接触孔142的栅极焊盘电极152,经 由第二接触孔142去除栅极绝缘膜101和保护膜146,以暴露栅极焊盘122。
在数据焊盘123上具有用来覆盖第三接触孔144的数据焊盘电极154,经 由第三接触孔144去除保护膜146的一部分,以暴露数据焊盘。
栅极线UO和数据线120中的至少之一是由本发明的实施方式中的铜线构成。
图3B例示了栅极线和数据线均为具有阻挡层和铜导电层的双层结构构成 的情况。
参照图3B,本发明的实施方式的薄膜晶体管中,栅极焊盘112具有栅极 焊盘阻挡层112a和位于该栅极焊盘阻挡层112a上的铜导电层112b的双层结
构。尽管没有显示出来,栅极线iio具有栅极线阻挡层和铜导电层的双层结构,
栅极115具有栅极阻挡层115a和铜导电层115b的双层结构。
数据焊盘123具有数据焊盘阻挡层123a和位于数据焊盘阻挡层123a上的
铜导电层123b的双层结构,源极122具有源极阻挡层122a和铜导电层122b
的双层结构,漏极124具有漏极阻挡层124a和铜导电层124b的双层结构。 换句话说,在薄膜晶体管中,栅极线110具有栅极线阻挡层和铜导电层的
双层结构,数据线120具有数据线阻挡层和铜导电层的双层结构。
尽管图3例示了栅极线IIO和数据线120均具有双层结构,但也可以是栅
极线IIO和数据线120的其中之一具有双层结构。此外,本发明的实施方式的薄膜晶体管基板中,具有双层结构的栅极线 110和/或数据线120不需要覆盖层。换句话说,由于在制造平板显示设备的过
程中基板的温度不会升高到超过320。 C,所以不需要额外的覆盖层。
本发明的实施方式的薄膜晶体管基板包括多条栅极线和数据线,这两种线 中至少有一种是具有阻挡层和铜导电层的多层堆叠结构,其中阻挡层由Cu20 构成,或最好是至少一种CuOxNy,以形成阻挡层具有不会被受热还原的稳定 结构的铜线。
下面对根据本发明第一优选实施方式的铜线制造方法进行描述。
图4A至4C为例示在一个封闭室里通过反应溅射法制造根据本发明第一 优选实施方式的铜线的方法的剖视图。
参照图4A,在将基板100放在其中设有铜耙T的溅射室内之后,溅射铜 靶T,以在基板100上形成阻挡材料层200a。在这种情况下,只使用02气体, 且要求不能把Ar气体和02气体一起使用。
在这种情况下,设置室的内部压力为2.0Pa以下,内部温度为400。C以
下。尤其是,因为根据不同的压力会形成非CU20的其它材料,因此要注意压力。
由此形成的阻挡材料层200a是Cu20层。
参照图4B,在从室内去除02气体之后,在仅有Ar气体存在的环境中溅 射铜靶T,以在阻挡材料层200a上形成铜层300a。
这样,参照图4C,当把基板IOO从室内取出后,将阻挡材料层200a和铜 层300a图案化,以形成具有阻挡层200和铜导电层300的铜线。
因为制造根据本发明第一优选实施方式的铜线的方法是在同一个室(其中 设有铜耙T)内形成阻挡层200和铜导电层300,只是改变一次气体的种类, 而相关技术制造铜线的方法是在不同的室内形成阻挡层和铜导电层,所以,本 发明能够以简单的制造过程形成稳定的阻挡层,且其不易因受热而还原。
下面对根据本发明第二优选实施方式的铜线制造方法进行描述。
图5A至5C为例示也是在一个封闭室内通过反应溅射法制造根据本发明
第二优选实施方式的铜线的方法的剖视图。
参照图5A,在将基板100放在其中设有铜靶T的室内之后,溅射铜靶T, 以在基板100上形成CuOxNy层200a。在这种情况下,&气体和02气体共同使用,也可以在其中加入Ar气体。
在这种情况下,设置N2气体对02气体的流速比N2/ 02在0.1 ~ 1的范围
内,室的内部温度设为40(T C以下。
除了共同使用N2气体和02气体的方法,也可以使用一种一次能够形成氧 基和氮基基团的气体,诸如NO气体或N02气体,使用这些气体中任何一种 来形成CuOxNy层200a。
参照图5B,在把室内的N2气体和02气体去除后,在仅有Ar气体存在的 环境中溅射铜靶T,以在CuOxNy层200a上形成铜层300a。
这样,参照图5C,当把基板100从室内取出后,CuOxNy层200a和铜层 300a被图案化,以形成具有阻挡层200和铜导电层300的铜线。
因为制造根据本发明第二优选实施方式的铜线的方法是在同一个室(其中 设有铜靶)内形成阻挡层200和铜导电层300,只是改变一次气体的种类,所 以本发明能够以简单的制造过程形成稳定的阻挡层,且其不易因受热而还原。
尽管没有显示出来,在形成铜层300a之前,也可以在CuC^Ny层200a上 用02气体形成0120层。
图6A为例示仅使用N2气体形成的Cu3N阻挡层的物理特性的曲线图,图 6B为例示CuOxNy阻挡层的物理特性的曲线图。
每幅曲线图显示了发声测量结果,其分别通过施加从ON到40N间变化的 力(图中横坐标所示的临界负荷)用尖物来刮擦裸面玻璃基板上形成的阻挡层 而得到的。换句话说,如果膜在刮擦的过程中膜被剥落,沉积的膜的附着力便 通过发声量的急剧改变而估测出。
由图6A可知,通过仅使用N2气体形成的Cu3N阻挡层恰好在膜沉积后施 加7N的力时发生剥落(见左图),在温度为450° C时,施加10N的力时发 生剥落(见右图)。
与以上相比,由图6B可知,CuOxNy阻挡层恰好在膜沉积后施加19N的 力时发生剥落(见左图),在温度为450° C时,施加21N的力时发生剥落(见 右图)。
因此,像本发明形成的CuOxNy阻挡层可使铜线稳定性比相关技术中仅用 氮气N2形成Cu3N阻挡层的铜线稳定性高。
正如所描述的,本发明的铜线及其制造方法及具有该铜线的平板显示设备具有如下优点。
由于在同一个室(其中设有铜靶)内仅改变一次气体种类形成阻挡层和铜 导电层,能够以简单的制造过程形成稳定的阻挡层,且其不易因受热而还原。
尽管铜的氮化物阻挡层很容易因受热而还原,并且除Cu20外的铜的氧化 物阻挡层的膜特性取决于沉积条件表现出差的膜特性,但本发明能提供一种阻 挡层在受热条件下稳定且膜特性卓越的铜线。
在不脱离本发明精神或范围的情况下,在本发明中可进行各种修改和变 化,这对于所属领域技术人员来说是显而易见的。因此,本发明意在覆盖落入 所附权利要求及其等同范围内的对本发明的所有修改和变化。
权利要求
1. 一种铜线,包括形成于底层结构上的阻挡层;和在所述阻挡层上的铜导电层,其中所述阻挡层包括Cu2O层和CuOxNy层中的至少之一。
2. 根据权利要求1所述的铜线,其特征在于,在所述阻挡层包括Cu20 层和CuOxNy层时,CuOxNy层形成在Cu20层下面。
3. —种薄膜晶体管基板,包括形成于基板上的多条栅极线,和形成于所述栅极线和栅极绝缘膜之间用以定义像素区并垂直于所述栅极线的多条数据线;形成于所述栅极线和数据线分别相交的区域的多个薄膜晶体管;和形成于所述像素区并分别连接到所述薄膜晶体管的多个像素电极,其中所述栅极线和数据线中的至少之一由所述铜线构成;其中所述铜线包括形成于底层结构上的阻挡层和位于所述阻挡层上的铜导电层,其中所述阻挡层包括Cu20层和CuOxNy层中的至少之一。
4. 根据权利要求3所述的薄膜晶体管基板,其特征在于,由所述铜线构 成的栅极线或数据线不具有置于其上的单独的覆盖层。
5. —种制造铜线的方法,包括如下步骤 将基板放在其中设有铜靶的溅射室中; 使用02气体在所述基板上形成Cu20层; 去除02气体,并在同一个室内在CU20层上形成铜层;和 同时图案化所述铜层和Cu20层,以形成具有阻挡层和铜导电层的多层堆叠结构的铜线。
6. 根据权利要求5所述的方法,其特征在于,在形成CU20层的步骤中, 设置所述室的内部压力为2.0Pa以下。
7. —种制造铜线的方法,包括如下步骤 将基板放在其中设有铜靶的溅射室;通过一起使用02气体和N2气体,或通过使用NO和N02气体中的至少之 一,在所述基板上形成CuOxNy层;去除形成所述CuOxNy层时使用的气体,并在同一个室内在CuOxNy层上 形成铜层;和同时图案化所述铜层和CU20层,以形成具有阻挡层和铜导电层的多层堆 叠结构的铜线。
8. 根据权利要求7所述的方法,还包括在形成铜层的步骤之前使用02气体形成Cll20层的步骤。
9. 根据权利要求8所述的方法,其特征在于,设置N2气体对02气体的流速比N2/O2在0.1 1的范围内。
全文摘要
本发明涉及一种铜线及其制造方法以及具有该铜线的薄膜晶体管基板,该无需任何额外的制造步骤即可形成用以提高铜线附着力的阻挡层。所述铜线包括形成于底层结构上的阻挡层;和在所述阻挡层上的铜导电层,其中所述阻挡层包括Cu<sub>2</sub>O层和CuO<sub>x</sub>N<sub>y</sub>层中的至少之一。
文档编号H01L23/532GK101471327SQ20081018110
公开日2009年7月1日 申请日期2008年11月21日 优先权日2007年12月26日
发明者扈源俊, 杨熙正, 金东先, 韩奎元 申请人:乐金显示有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1