发光器件的制作方法

文档序号:6986983阅读:98来源:国知局
专利名称:发光器件的制作方法
技术领域
本发明涉及包括LED芯片(发光二极管芯片)的发光器件。特别是,本发明涉及一种发光器件,其包括阳电极、P-型氮化物半导体层、以及位于阳电极和P-型氮化物半导体层之间的电介质层。电介质层位于沿垂直于LED芯片厚度方向的平面的预定区域中。
背景技术
常规地,对大量LED芯片进行了研究。在先的LED芯片包括发光层、阳电极和阴电极。发光层由氮化物半导体材料例如GaN、InGaN、AlGaN和InAlGaN制成。阳电极设置在发光层的厚度方向的一个表面上,阴电极设置在发光层的厚度方向的另一表面上。LED芯片倒装安装于安装基板上。此外,进行了改善LED芯片的光提取效率的研究。为了改善LED 芯片的光提取效率,进行了结构设计为防止阳电极被阳电极所吸附的LED芯片的研究和开发。为改善LED芯片的光提取效率,研究和开发了具有防止光在阳极被吸收的结构的LED 芯片。在下述专利文献1中公开了上述LED芯片。专利文献1公开了具有图3所示结构的LED芯片。由图3可见,LED芯片包括透光基板l、n-型氮化物半导体层2、氮化物发光层3、p-型氮化物半导体层4 ;透光基板1由蓝宝石基板制成;η-型氮化物半导体层2、氮化物发光层3和ρ型氮化物半导体层4位于透光基板1的一侧表面上。阳电极7从ρ型氮化物半导体层4观察时位于氮化物发光层3的相反侧。此外,阴电极8位于η-型氮化物半导体层2的与氮化物发光层3相同的一侧上。 此外,LED芯片包括第一透明导电膜9a、第二透明导电膜%、多个低折射率电介质层10P、 反光导电膜11和阻挡金属层14。在ρ-型氮化物半导体层3和阳电极7之间插入第一透明导电膜9a、第二透明导电膜%、多个低折射率电介质层10P、反光导电膜11和阻挡金属层 14。第一透明导电膜9a形成在ρ-型氮化物半导体层4上。第二透明导电膜9b形成在第一透明导电膜9a上。低折射率电介质层IOP由折射率低于ρ-型氮化物半导体层4的折射率的的材料制成。低折射率电介质层IOP部分地堆叠在第二透明导电膜9b上。低折射率电介质层IOP设置为反射由氮化物发光层3发射的光。反光导电膜11成形为覆盖低折射率电介质层IOP和第二透明导电膜%。反光导电膜11设置为反射由氮化物发光层3发射的光。阻挡金属层14形成在反光导电膜11上。即,图3的LED芯片具有在氮化物发光层3 的厚度方向上的一个表面中的光提取表面、以及从氮化物发光层3观察时位于光提取表面的相反侧的第一表面。此外,LED芯片在其第一表面处设置有低折射率电介质层10P。氮化物发光层3设置为朝向光提取表面和阳电极7两者发射光。当氮化物发光层3朝向阳电极 7发射光时,光被低折射率电介质层IOP和反光导电膜11反射。低折射率电介质层IOP和反光导电膜11设置为朝向光提取表面反射光。应说明图3B所示的标有箭头的线C公开了从氮化物发光层3发射的光的路径一个实例,该光在低折射率电介质层IOP中吸收,并被低折射率电介质层反射。上述第一透明导电膜9a的厚度为2nm 10歷。第一透明导电膜9a由材料诸如 Ni、Pd、Pt、Cr、Mn、Ta、Cu、Fe或包含它们中的至少之一的合金制成。第二透明导电膜9b由选自 ITO、IZO、ZnO, Ιη203、SnO2, MgxZn1^xO(χ ( 0. 5)、非晶的 AlGaN, GaN、SiON 中的材料制成。此外,反光导电膜11由材料诸如Ag、Al和Rh制成。阳电极7由金属材料Au制成。阻挡金属层14由Ti材料制成。

上述低折射率电介质层IOP中的每个均具有垂直于LED芯片厚度方向的横截面; 低折射率电介质层IOP的横截面为圆形。除了上述之外,低折射率电介质层IOP中的每个均设置在第二透明导电膜9b上,使得低折射率电介质层IOP布置为二维阵列。更具体地, 低折射率电介质层IOP中的每个均设置在沿垂直于LED芯片厚度方向的平面的正方形栅格的栅点上。即,图3公开了 LED芯片,其包括多个低折射率电介质层IOP ;低折射率电介质层IOP沿着与氮化物发光层3平行的平面布置;低折射率电介质层IOP中的每个均具有彼此隔离的岛状结构。除了上述结构之外,低折射率电介质层IOP包括两种电介质层的交替层;所述两种电介质层具有电绝缘性能并且彼此折射率不同,由此低折射率电介质层IOP中的每个均具有折射率周期性变化的周期性结构。低折射率电介质层IOP由材料诸如Si02、Zr02、Ti02、 Al203、Si3N4 和 AlN 制成。专利文献专利文献1 日本专利申请公开2007-258276A

发明内容
本发明要解决的技术问题在包括安装基板和具有图3所示结构并倒装安装在安装基板上的LED芯片AA的发光器件中,当氮化物发光层3朝η-型氮化物半导体层2发射光时,光穿过透光基板1从光提取表面发出。此外,当氮化物发光层朝向P-型氮化物半导体层4发光时,光被反射元件反射,所述反射元件由多个低折射率电介质层IOP和反光导电膜11实现。利用该结构, 从氮化物发光层3发射的光朝向阳电极7得到有效反射。因此,该结构使得能够改善从LED 芯片的光提取表面提取的光的光提取效率,由此能够改善发光效率。除了上述之外,图3所示LED芯片包括多个低折射率电介质层IOP ;多个低折射率电介质层彼此隔离以具有岛状结构。因此,该结构使得能够防止操作电压由于低折射率电介质层IOP而增加。结果,该结构使得能够防止操作电压增加并同时还改善光提取效率。然而,上述发光器件包括在第二透明导电膜9b上以二维阵列布置的多个低折射率电介质层10P,使得多个低折射率电介质层IOP具有于彼此隔离的岛状结构。因此,阳电极7在其一个表面处设置有与凸点交叠的第一区域。除此之外,低折射率电介质层IOP也设置在第一区域上。低折射率电介质层IOP由与Au和GaN相比具有低的导热性能的电介质材料制成。(SiO2的导热性能为0. 55W/mK。Au的导热性能为320W/mK。GaN的导热性能为130W/mK。)该结构使得通过凸点从LED芯片释放热到安装基板的散热性能降低。这导致LED芯片的发光效率降低。除此之外,当LED芯片AA倒装安装在安装基板上时,LED芯片受到冲击。该冲击导致在低折射率电介质层IOP和第二透明导电膜9b之间的界面的剥离。 类似地,施加于LED芯片的冲击导致在低折射率电介质层IOP和反光导电膜11之间的界面处的剥离。这由低折射率电介质层IOP和与低折射率电介质层IOP接触的膜的低结合力所导致。(与低折射率电介质层IOP接触的膜为例如第二透明导电膜9b和反光导电膜11)。
实现本发明以解决上述问题。本发明的一个目的是制造其散热性能和其发光效率得到改善的发光器件。解决该问题的手段为解决上述问题,本发明公开了包括LED芯片和安装基板的发光器件。LED芯片包括n_型氮化物半导体层、氮化物发光层、ρ-型氮化物半导体层、阳电极和阴电极。η-型氮化物半导体层具有第一表面。氮化物发光层形成在η-型氮化物半导体层的第一表面上。 P-型氮化物半导体层形成在氮化物发光层上。阳电极位于从P型氮化物半导体层观察时与氮化物发光层相反侧的位置。阴电极形成在η-型氮化物半导体层的第一表面上。LED芯片安装在安装基板上。安装基板具有图案化的导体。图案化的导体通过凸点与阴电极接合, 并通过凸点与阳电极接合。LED芯片包括一个或更多个具有岛状结构的电介质层。电介质层的折射率小于P型氮化物半导体层的折射率。电介质层位于P型氮化物半导体和阳电极之间。P-型氮化物半导体层具有与凸点交叠的第一区域。电介质层不与第一区域交叠。该结构使得能够改善LED芯片的光提取效率。此外,该结构使得能够减小LED芯片和安装基板之间的热阻。因此,能够改善散热性能。优选LED芯片还包括透明导电膜和反光导电膜。透明导电膜设置于P-型氮化物半导体层和阳电极之间。透明导电膜的折射率小于P型氮化物半导体层的折射率。反光导电膜形成于透光导电膜和阳电极之间。一个或更多个电介质层部分地形成于透明导电膜上, 以具有岛状结构。电介质层位于透明导电膜和阳电极之间。该结构使得也能够改善LED芯片的光提取效率。此外,该结构使得能够减小LED 芯片和安装基板之间的热阻。因此,能够改善散热性能。优选第一区域为垂直于ρ-型氮化物半导体层厚度方向的平面。该平面限定第一区域为圆形。此外,第一区域与凸点沿P-型氮化物半导体层的厚度方向交叠。在此情况下,与其中低折射率电介质层区域在平面视图中具有矩形形状的情况相比,能够密集地设置低折射率电介质层。因此,该结构使得也能够改善LED芯片的光提取性能。优选第一区域为垂直于ρ-型氮化物半导体层厚度方向的平面。限定为第一区域的平面为圆形。因此,第一区域具有外周。第一区域与凸点沿P-型氮化物半导体层的厚度方向交叠,使得凸点位于第一区域的外周内。


图IA显示第一实施方案的发光器件的示意性的侧截面图。图IB显示第一实施方案的发光器件的示意性的底视图。图2A显示第二实施方案的发光器件的示意性的侧截面图。图2B显示第二实施方案的发光器件的示意性的底视图。图3A显示现有技术的LED芯片的示意性的底视图。

图3B显示沿图3A中的LED芯片的B-B’线截取的示意性的截面图。
具体实施例方式(第一实施方案)
该实施方案公开了图IA所示的发光器件;该发光器件包括LED芯片A和设置为安装LED芯片A的安装基板20。应说明图IA的上下方向等同于LED芯片A的厚度方向, 也等同于LED芯片A的各个构件的厚度方向。安装基板20包括电绝缘基板21、图案化的导体27和图案化的导体28。电绝缘基板21具有电绝缘性能,由具有高的热导率的氮化铝基板制成并成形为板形。图案化导体 27和图案化导体28形成在电绝缘基板21的一个表面上。图案化导体27和阳电极7通过凸点37接合在一起,图案化导体28和阴电极8通过凸点28接合在一起。应说明虽然本实施方案的安装基板20在平面视图中为矩形(在本实施方案中为正方形),安装基板20的形状不限于正方形;能使用矩形、圆形和六边形的安装基板20。 安装基板20的电绝缘基板21也用作构建为传递在LED芯片A中产生的热的传热板。电绝缘基板21可示例为玻璃环氧树脂基板。电绝缘基板21可由导热率高于有机材料基板导热率的基板实现。因此,电绝缘基板21不限于氮化铝基板。电绝缘基板21可由铝基板、搪瓷基板、以及具有二氧化硅膜涂层的硅基板实现。图案化导体27和28由包括Cu 膜、M膜和限定为最上层的Au膜的多层膜实现。凸点37和38中的每个均由Au材料制成。凸点37和38为所谓的柱凸点;凸点37 和38通过柱凸点法形成在图案化导体27和28中的每个的表面上。应注意柱凸点法是换言之的球凸点法。除了上述特征之外,虽然阳电极7和凸点37接合在一起,凸点37的数目没有限制。然而,需要有效地释放LED芯片A中的热。因此,优选使用大量凸点37。当进行 LED芯片A的安装时,LED芯片对准至约士5微米的精度,并受到通过超声波的负荷。然而, 当凸点37由柱凸点实现时,凸点37相对于阳电极7的圆形接合区域的直径小于凸点37相对于图案化导体27的圆形接合区域的直径。此外,当凸点38由柱凸点实现时,凸点38相对于阴电极8的圆形接合区域的直径小于凸点38相对于图案化导体28的圆形接合区域的直径。除了上述之外,凸点37和凸点38可通过镀覆法制造。由图IA和图IB可理解,上述LED芯片A包括透光基板1和n_型氮化物半导体层2 ;透光基板1由GaN基板制成,以具有一个对应于图IA所示透光基板1的下表面的表面;由η-型GaN层实现的η_型氮化物半导体层2形成在与透光基板1的下表面相同的侧上。如图IA所示,η-型氮化物半导体层2具有等同于第一表面的下表面。随后,氮化物发光层形成在η-型氮化物半导体层2的下表面上。氮化物发光层3具有量子阱结构。由ρ 型GaN层实现的ρ-型氮化物半导体层4形成在氮化物发光层3上。ρ-型氮化物半导体层 4从氮化物半导体层4观察时位于η-型氮化物半导体层2的相反侧。即,LED芯片A包括 透光基板1和位于与透光基板1的一个表面相同侧上的堆叠结构;堆叠结构包括n-型氮化物半导体层2、氮化物发光层3和ρ-型氮化物半导体层4。η-型氮化物半导体层2、氮化物发光层3和ρ-型氮化物半导体层4通过外延生长方法例如MOVPE方法形成在透光基板 1的一个表面上。因此,能够在透光基板1和η-型氮化物半导体层2之间使用缓冲层。此夕卜,η-型氮化物半导体层2、氮化物发光层3和ρ-型氮化物半导体层4的晶体成长方法不限于MOVPE方法。η-型氮化物半导体层2、氮化物发光层3和ρ-型氮化物半导体层4可通过晶体成长方法例如氢化物气相外延方法和分子束外延方法形成。除了上述之外,需要透光基板1具有透明性用于使得从氮化物发光层3发射的光透过。即,透光基板1示例为蓝宝石基板、SiC基板和ZnO基板。
除了上述之外,在LED芯片A中,阳电极7形成在从ρ-型氮化物半导体层4观察时与氮化物发光层3相反侧的位置。阴电极8形成在η-型氮化物半导体层2的第一表面上;第一表面在η-型氮化物半导体层2的与氮化物发光层3相同的侧上。阴电极8通过以下步骤形成在η-型氮化物半导体层2上。首先,进行第一步;在第一步中,依次形成η-型氮化物半导体层、氮化物发光层3和ρ-型氮化物半导体层4。根据第一步,形成包括η-型氮化物半导体层2、氮化物发光层3和ρ-型氮化物半导体层4的堆叠膜。在第一步之后, 进行蚀刻堆叠膜预定区域的第二步骤,以从P-型氮化物半导体层4的表面向下蚀刻堆叠膜至η-型氮化物半导体层2的中部。在第二步骤之后,在η-型氮化物半导体层的表面上形成阴极的第三步骤;η-型氮化物半导体层的表面通过蚀刻形成。以此方式,η-型氮化物半导体层2包括第一区域和第二区域。第一区域对应于其中形成氮化物半导体层的区域。第二区域对应于其中形成阴电极8的区域。第二区域与第一区域间隔开。在LED芯片A中,当在阳电极7和阴电极8之间施加正向偏压时,空穴注入p_型氮化物半导体层4中。此外,当在阳电极7和阴电极8之间施加正向偏压时,电子注入η-型氮化物半导体层 2中。当电子和空穴注入氮化物发光层2中时,电子和空穴在氮化物发光层3中彼此复合。因此,氮化物发光层2发光。上述η-型氮化物半导体层2由形成在透光基板1上的η-型GaN层实现。然而, η-型氮化物半导体层2不限于单层结构。即,氮化物半导体层2可由多层结构实现。例如,在其中透光基板1由蓝宝石基板实现的情况下,能够使用多层的η-型氮化物半导体层, 其包括在透光基板1的一个表面上的缓冲层例如AlN层和AlGaN层、在缓冲层上的η-型 AlGaN层、以及在η-型AlGaN层上的η-型GaN层。此外,氮化物发光层3具有量子阱结构,其包括势垒层和介于势垒层之间的阱层; 势垒层由GaN层实现,阱层由InGaN层实现。确定InGaN层的组成以发射发射峰波长为 450nm的光。然而,氮化物发光层3的发射波长(发射峰波长)不限于此。此外,氮化物发光层3不限于具有单量子阱结构的量子阱结构;能使用具有多量子阱结构的量子阱结构的氮化物发光层3。除了上述之外,不必使用具有量子阱结构的氮化物发光层;能使用具有单层结构的氮化物发光层。此外,仅需要氮化物发光层3使用氮化物半导体材料的材料。因此,氮化物发光层3能够使用材料例如AlInGaN、AlInN和AlGaN以获得期望发射波长。除上述外,ρ-型氮化物半导体层4由形成在氮化物发光层3上的ρ-型GaN层实现。然而,P"型氮化物半导体层4不限于单层结构;能够使用具有多层结构的P-型氮化物半导体层4。例如,能够使用具有第一 ρ-型半导体层和第二 P-型半导体层的P-型氮化物半导体层4 ;第一 ρ-型半导体层可由ρ-型AlGaN层实现,第二 ρ-型半导体层可由ρ-型 GaN层实现。此外,阳电极7具有多层结构,其包括第一 Au层、Ti层和第二 Au层;第一 Au层设置在下述的反光导电膜11上;Ti层设置在第一 Au层上;第二 Au层设置在Ti层上。此夕卜,位于多层结构最上部的第二 Au层限定为ρ-垫层。此外,阴电极8具有多层结构,其包括在η-型氮化物半导体层2上的Ti层、以及在Ti层上的Au层。此外,Au层用作η-垫层。设置在η-型氮化物半导体层2上的Ti层用作相对于η-型氮化物半导体层2的欧姆接触层。欧姆接触层可使用其材料例如Ti、V、 Al和包含它们中的至少之一的合金。
LED芯片A还包括透明导电膜9、反光导电膜11和低折射率电介质层10。低折射率电介质层10为换言之电介质层。在P-型氮化物半导体层4和阳电极7之间插入透明导电膜9、反光导电膜11和低折射率电介质层10。透明导电膜9设置在ρ-型氮化物半导体层的一个表面上。透明导电膜9从ρ-型氮化物半导体层观察时位于氮化物发光层3的相反侧。透明导电膜9由折射率小于ρ-型氮化物半导体层6的折射率的GZ0(Ga掺杂的 ZnO)膜实现。反光导电膜11从透明导电膜观察时位于P-型氮化物半导体层2的相反侧。 因此,反光导电膜11介于透明导电膜9和阳电极之间。反光导电膜11由Ag膜实现,其具有导电性和反射从氮化物发光层3发射的光的反光性。低折射率电介质层10插入透明导电膜9和反光导电膜11之间。低折射率电介质层10部分地设置在透明导电膜9上。低折射率电介质层10中的每个的折射率均低于P-型氮化物半导体层4的折射率。低折射率电介质层10具有彼此隔离的岛状的结构。在该实施方案中,透明导电膜9由形成为具有10纳米厚度的GZO实现。然而,透明导电膜9对其厚度没有限制。此外,该实施方案公开了由GZO材料制成的透明导电膜9。 然而,透明导电膜9由选自GZO、AZO(Al掺杂ZnO)和ITO中的材料制成。由选自上述组中的材料制成的透明导电膜9使得透明导电膜9能够相对于ρ-型氮化物半导体层6形成欧姆接触。除了上述之外,当透明导电膜9由例如GZO膜、AZO膜和ITO膜形成时,透明导电膜9通过以下步骤形成。首先,诸如GZO膜、AZO膜和ITO膜的膜借助于O2气体通过电子束蒸发方法形成。随后,GZO膜、AZO膜和ITO膜在N2气和O2气的混合气体中退火。该步骤使得能够获得消光系数为约0.001的透明导电膜9。以下解释了用于形成作为透明导电膜 9的GZO膜的退火条件。N2气和O2气混合以具有95 5的体积比。退火的温度为500摄氏度。退火进行五分钟。然而,透明导电膜9的形成方法和形成条件不限于上述实例。然而,优选确定形成方法和形成条件以形成消光系数k为0. 003或更小的透明导电膜。此外, 透明导电膜可由例如厚度为0. Inm的Pt膜实现。此外,Pt膜对于450nm波长的透光率随着Pt膜厚度减小而增加。相比之下,当Pt膜的厚度小于0. 6nm时,Pt膜的透光率减小至约95%。结果,厚度为0. 6nm的Pt膜的光反射率近似等于由Ag膜制成的反光导电膜11的光反射率。因此,当使用Pt膜作为透明导电膜9时,优选使用0. 5nm或更小的Pt膜。 此外,在该实施方案中,反光导电膜11由厚度为IOOnm的Ag膜实现。然而,反光导电膜11对其厚度没有限制。能够使用厚度为50nm 200nm的Ag膜。此外,反光导电膜 11的材料不限于Ag。反光导电膜11可由诸如Al的材料制成。然而,与Al相比,反光导电膜11优选由Ag制成。这是因为与由Al制成的反光导电膜的光反射率相比,由Ag制成的反光导电膜11对于从氮化物发光层3发射的光(紫外光至可见光)具有高的光反射率。此外,低折射率电介质层10包括3丨02层IOa和&02层IOb ;SiO2层IOa形成在透明导电膜9上JrO2层IOb形成在SiO2层IOa上。应注意仅需要低折射率电介质层10包括至少一个SiO2层IOa和至少一个&02层10b。然而,能够使用由包括第一 SiO2层、ZrO2 层和第二 SiO2层的堆叠层实现的低折射率电介质层10。此外,低折射率电介质层10可通过由选自Si02、Zr02、Al203和Y2O3中至少之一的材料制成的单层实现。上述堆叠膜和单膜使得低折射率电介质层10能够具有近似零的消光系数。因此,能够防止光在低折射率电介质层10中的吸收损失。应注意=SiO2的折射率为1. 46,ZrO2的折射率为1. 97。Al2O3的折射率为1. 7 1. 9。Y2O3的折射率为1. 8 2. 0。此外,与透明导电膜9的折射率相比,低折射率电介质层10不限制其材料具有低折射率。低折射率电介质层10可由折射率大于透明导电膜9的折射率的材料制成。满足上述要求的材料的示例为Ti02、Ce02、Nb205和Ta205。然而,低折射率电介质层10优选由其折射率小于Ti02、CeO2, Nb2O5和Ta2O5的折射率的Si02、 ZrO2^Al2O3和Y2O3材料制成。这是因为由SiO2、&02、A1203和Y2O3制成的低折射率电介质层 10的光反射率高于由Ti02、CeO2, Nb2O5和Ta2O5制成的低折射率电介质层10的光反射率。根据上述,通过使用具有下述条件的低折射率电介质层10,对于低折射率电介质层10,进行光反射率对于入射角相关性的模拟。低折射率电介质层10由选自Si02、ZrO2, A1203、Y2O3> TiO2, CeO2, Nb2O5和Ta2O5中之一的材料制成。低折射率电介质层10指定为具有由“η”表示的折射率。氮化物发光层3指定为发射发射波长为λ (nm)的光。使用厚度等于λ/4η整数倍的各种低折射率电介质层10进行模拟,用于对于低折射率电介质层10 获得光反射率的入射角相关性。结果,当低折射率电介质层10设定为具有等于或大于从氮化物发光层3发射的光的发射波长的四分之五的厚度时,证实防止了由于光的逐渐消失导致的光反射率相对于预定入射角的降低。即,如果低折射率电介质层10满足厚度为氮化物发光层3发射波长的光波长(λ/η)的四分之五或更大的条件,则确认光提取效率得到改善。除了上述之外,当低折射率电介质层10由包括SiO2层IOa和&02层IOb的堆叠膜实现时,期望满足以下条件。SiO2层IOa的厚度限定为“tl”。SiO2层IOa的折射率度限定为 “nl”。&02层1013的厚度限定为“t2”。&02的折射率限定为“n2”。在这些条件下,满足式 (tlX A/4nl+t2X λ/4η2) ^ (5/4) λ。在该实施方案中,低折射率电介质层10包括厚度 tl等于31. Inm的SiO2层IOa和厚度t2等于159. Inm的&02层10b,使得低折射率电介质层10的内应力为零。即,如果低折射率电介质层由上述堆叠膜实现,则低折射率电介质层 10可具有SiO2层IOa和&02层10b,其均设计为具有适合的厚度,由此能够改善低折射率电介质层的反射率。此外,当低折射率电介质层10由上述堆叠层实现时,能够通过任意设计SiO2层IOa和&02层IOb的厚度来减轻低折射率电介质层10的内应力。结果,能够改善低折射率电介质层10和透明导电膜9之间的粘合。此外,LED芯片A具有在平面视图中为矩形(正方形)的透光基板1。换言之,LED 芯片A具有沿垂直于LED芯片A厚度方向的方向为矩形(正方形)的透光基板1。阳电极 7具有在平面视图中为矩形(正方形)的形状;阳电极7在平面图中的形状稍微小于透光基板1,以在其四个角之一具有切口。换言之,LED芯片A具有阳电极7,其具有一个沿垂直于 LED芯片A厚度方向的方向的表面;阳电极7的一个表面稍微小于透光基板1。此外,阳电极7具有四个角;四个角中的之一具有切口。阴电极8在平面视图中具有位于阳电极7切口内的矩形。换言之,阴电极8具有一个沿垂直于LED芯片A厚度方向的平面的表面。阴电极8的尺寸使得阴电极位于阳电极的切口内。此外,阳电极7的尺寸大于阴电极8的尺寸。换言之,阳电极7具有一个大于阴电极的一个表面的表面。应注意阳电极7和阴电极 8中的每个的形状不限于此。此外,LED芯片A还包括多个低折射率电介质层10,其具有彼此隔离的岛状的结构;低折射率电介质层10布置在透明导电膜9上。低折射率电介质层10中的每个在平面视图中均为近似圆形。换言之,低折射率电介质层10具有垂直于LED芯片厚度方向的圆形截面。因此,在低折射率电介质层10中的每个中,低折射率电介质层10具有中心和与低折射率电介质层10的中心具有近似恒定距离的外周。结果,反光导电膜11具有包围全部低折射率电介质层10的部分。因此,能够改善包围全部低折射率电介质层10的反光导电膜 11的部分的电流密度的均勻性。应注意低折射率电介质层10在平面视图中为圆形。然而,能够使用在平面视图中具有规则多边形的低折射率电介质层10 ;规则多边形等于或大于六个角。此外,期望使用在平面视图中具有规则多边形的低折射率电介质层10,使得规则多边形具有多个角,并使得规则多边形具有近似等同于圆形的形状。此外,该实施方案公开了 LED芯片A,其包括在透明导电膜9上的多个低折射率电介质层;多个低折射率电介质层10布置为两维阵列。然而,优选低折射率电介质层10具有等于或小于透明导电膜9平面区域70%的平面区域。利用该结构,防止由于低折射率电介质层10导致的操作电压(正向电压)的增加。此外,能够改善光提取效率。在上述实施方案中,如上所述,低折射率电介质层10在平面视图中为圆形并具有5微米的直径。然而, 该数值仅为一个示例。因此,该数值不限于上述数值。此外,该实施方案公开了包括透明导电膜9的LED芯片A。阳电极7具有均与凸点37接合的区域。透明导电膜9具有第一区域,其每个与凸点37的与阳电极7接合的区域交叠。第一区域中的每个均稍微大于凸点37的区域。低折射率电介质层10中的任一个均不设置于第一区域12中的每个内部,以不与第一区域交叠。此外,P-型氮化物半导体层 4具有第一区域12。阳电极7具有均与凸点37接合的区域。ρ-型氮化物半导体层4的第一区域12的每个均稍微大于与阳电极7接合的凸点的区域中的每个。低折射率电介质层 10中的每个不设置于P-型氮化物半导体层4的第一区域12中的每个内。换言之,透明膜 9具有第一区域12。透明导电膜9的第一区域12由垂直于透明导电膜厚度方向的平面限定。此外,透明导电膜9的第一区域12由垂直于ρ-型氮化物半导体层4厚度方向的平面限定。透明导电膜9形成在ρ-型氮化物半导体层4上。因此,ρ-型氮化物半导体层4也具有第一区域12。ρ-型氮化物半导体层4的第一区域12由垂直于ρ-型氮化物半导体层厚度方向的平面限定。透明导电膜9的第一区域12中的每个与凸点37沿透明导电膜的厚度方向交叠。P-型氮化物半导体层4的第一区域12中的每个与凸点37沿ρ-型氮化物半导体层4的厚度方向交叠。第一区域12中的每个具有垂直于透明导电膜9厚度方向的尺度;凸点37中的每个具有垂直于透明导电膜9厚度方向的尺度;第一区域12的尺度大于凸点37的尺度。除了上述之外,LED芯片A具有在平面图中均为圆形的第一区域12。与阳电极7接合的凸点37中的每个均在平面视图中具有突出区域,突出区域中的每一个均位于第一区域12内。换言之,与阳电极7接合的凸点37中的每一个均具有外周;凸点37中的每一个的全部外周位于第一区域12的外周内。然而,第一区域12中的每一个仅需要与“凸点37中的每一个的区域”沿透明导电膜9的厚度方向交叠。应说明第一区域12在平面视图中的形状由通过低折射率电介质层10包围的部分限定。在该实施方案中,与阳电极7 接合的凸点37中的每一个形成为在横截面中具有80微米的直径。第一区域12形成为具有100微米的直径。然而,上述直径的数值作为示例公开。因此,以上直径的数值不限于上述数值。由上述说明可理解,在该实施方案中,发光器件包括透明导电膜9、反光导电膜 11和多个具有彼此隔离的岛状结构的低折射率电介质层10。LED芯片A成形为具有插入 P-型氮化物半导体层4和阳电极7之间的透明导电膜9。透明导 电膜9设置在从ρ-型氮化物半导体层4观察时氮化物发光层3相反侧的位置。透明导电膜9的折射率小于ρ-型氮化物半导体层4的折射率。反光导电膜11位于从透明导电膜9观察时与ρ-型氮化物半导体层4相反的位置。反光导电膜11具有导电性,并构建为反射从氮化物发光层3发射的光。低折射率电介质层10形成在透明导电膜9和反光导电膜11之间以部分位于透明导电膜9上。低折射率电介质层10的折射率小于ρ-型氮化物半导体层4的折射率。利用该结构,能够制造具有高光提取效率的LED芯片A。除了上述结构之外,透明导电膜9具有第一区域12。第一区域与凸点37中的每一个沿透明导电膜的厚度方向交叠。低折射率电介质层10中的任一个不形成于第一区域12中,从而不与第一区域12交叠。利用该结构,能够减小LED芯片A和安装基板20之间的热阻。即,该结构使得能够改善LED芯片A的散热性能。除了上述改善之外,该结构使得能够增加LED芯片A的操作电流。 除了上述结构之外,该实施方案公开了具有以上所述第一区域12的发光器件;第一区域12在平面图中为圆形。阳电极7与凸点37中的每一个接合,使得凸点37中的每个沿厚度方向具有突出区域;突出区域位于第一区域12内。因此,与其中第一区域12在平面图中为矩形的情况相比,该结构使得能够增加低折射率电介质层10的结构的密度。结果, 该结构使得LED芯片A能够改善光提取效率。此外,图IB公开了 LED芯片A,其包括低折射率电介质层10 ;低折射率电介质层 10中的每个设置在透明导电膜9上,以位于具有正正方形单位单元的二维正方栅格(假想的)的栅点上。然而,能够布置低折射率电介质层10中的每个位于具有正三角形单位单元的二维三角形栅铬(假想的)的栅点上。在此情况下,低折射率电介质层10设置为与相邻的低折射率电介质层10间隔开相同距离。结果,能够改善电流密度的均勻性,由此能够改善发光效率。此外,对于图IA中的发光器件,能够省略透明导电膜9和反光导电膜11。在此情况下,LED芯片A包括p-型氮化物半导体层4、阳电极7、以及在ρ-型氮化物半导体层4和氮化物发光层5之间的低折射率电介质层10。低折射率电介质层10部分地设置在从ρ-型氮化物半导体层4观察时与氮化物发光层5相反的位置。低折射率电介质层10的折射率小于P-型氮化物半导体层4的折射率。低折射率电介质层10具有彼此隔离的岛状结构。 在此情况下,P-型氮化物半导体层4具有与凸点37沿ρ-型氮化物半导体层的厚度方向交叠的区域;所述区域定义为第一区域12。该结构使得发光器件能够改善LED芯片A的光提取效率。此外,LED芯片A包括具有第一区域12的ρ-型氮化物半导体层4,第一区域12定义为与凸点37中的每个沿ρ-型氮化物半导体层的厚度方向交叠的区域。因此,该结构使得能够改善LED芯片A和安装基板20之间的散热性能,并也能够改善发光效率。(第二实施方案)在该实施方案中的发光器件与第一实施方案近似相同。由图2可知,LED芯片A包括透明导电膜9、反光导电膜11、以及在透明导电膜9和反光导电膜11之间的低折射率电介质层11 ;反光导电膜11部分地设置在透明导电膜9上并且其折射率小于ρ-型氮化物半导体层4的折射率。本实施方案与第一实施方案中发光器件的差异在于在本实施方案中, 发光器件包括单个低折射率电介质层10,而不是多个低折射率电介质层10。在此实施方案中,低折射率电介质层10设置有每个均为圆形的开口 ;每个开口的尺寸均大于每个凸点30 的突出区域;每个开口均位于对应于凸点37中的至少之一的部分中。换言之,低折射率电介质层10具有圆形开口,其开口尺寸大于凸点37的横截面的尺寸;凸点37的横截面的尺寸定义为垂直于凸点37的厚度方向的横截面的尺寸。应注意与第一实施方案组件相同的组件利用相同的附图标记表示,并省略其说明。因此,在该实施方案中,发光器件包括LED芯片A,其具有ρ-型氮化物半导体层4、 阳电极7、透明导电膜9、反光导电膜11和低折射率电介质层10。透明导电膜9设置在从 P-型氮化物半导体层4观察时与氮化物发光层3相反的位置。透明导电膜9的折射率小于 P-型氮化物半导体层4的折射率。反光导电膜11设置在从透明导电膜9观察时与ρ-型氮化物半导体层4相反的位置上。反光导电膜11具有导电性,并构建为反射从氮化物发光层 3发射的光。低折射率电介质层10设置在透明导电膜9和反光导电膜11之 间。低折射率电介质层10部分地形成在透明导电膜上。低折射率电介质层10的折射率小于ρ-型氮化物半导体层4的折射率。因此,能够改善LED芯片A的光提取效率。除了上述之外,LED芯片A包括透明导电膜9,使得透明导电膜9具有第一区域12,第一区域12定义为与凸点37 中的每个沿透明导电膜9的厚度方向交叠的区域。因此,该结构使得能够减小LED芯片A 和安装基板20之间的热阻。此外,该结构使得能够增加操作电流。结果,能够改善发光效率。此外,能够从图2A的发光器件减去透明导电膜9和反光导电膜11。在此情况下, LED芯片A包括p-型氮化物半导体层4、阳电极7、以及在ρ-型氮化物半导体层4和阳电极7之间的单个低折射率电介质层10。单个低折射率电介质层10部分地设置在从ρ-型氮化物半导体层4观察时与氮化物发光层5相反的位置上。单个低折射率电介质层10的折射率低于P-型氮化物半导体层4的折射率。低折射率电介质层10设置在ρ-型氮化物半导体层4的第一区域上;第一区域定义为与凸点37中的至少之一交叠的区域。利用发光器件的该结构,能够改善LED芯片A的光提取效率。此外,LED芯片A包括具有与每个凸点 37交叠的区域的ρ-型氮化物半导体层4 ;与每个凸点37交叠的区域定义为第一区域12。 因此,能够减小LED芯片A和安装基板20之间的热阻以改善散热性能,并改善发光效率。在上述实施方案中,LED芯片A设计为发射蓝色光。然而,从LED芯片A发射的光的颜色不限于蓝色。即,能够设计LED芯片以发射绿色光、红色光、紫色光、紫外光等。此外,在上述实施方案中说明的发光器件可使用拱形的颜色转化元件(图例中未示出)。在此情况下,颜色转化元件由具有磷光体的半透明材料制成。当磷光体接受来自 LED芯片A的光时,磷光体构建为受到激发,以发射波长长于从LED芯片A发射的光的波长的光。颜色转化元件安装在安装基板20上,使得LED芯片A位于颜色转化元件和安装基板 20之间。在此情况下,用于颜色转化元件的半透明材料示例为硅氧烷树脂。然而,半透明材料不限于硅氧烷树脂。即,能够使用丙烯酸树脂、玻璃和有机组分和无机组分在纳米水平或分子水平混合和耦联的有机_无机杂化材料。与其中使用硅氧烷树脂的情况相比,使用玻璃使得能够改善颜色转化元件的导热率。因此,能够防止磷光体温度的增加和光通量的增力口。此外,使用玻璃使得能够改善防止水蒸汽和NOx的气体阻挡性能,并且能够改善透湿性。 此外,使用玻璃使得能够防止磷光体由于吸湿而分解。结果,能够改善可靠性和耐久性。此夕卜,颜色转化元件设计为与黄色磷光体一起包括半透明材料。然而,磷光体不限于黄色磷光体。即,能够使用红色磷光体和绿色磷光体的组合,以获得白色光。
权利要求
1.一种发光器件,包括 LED芯片和安装基板,所述LED芯片包括η-型氮化物半导体层、氮化物发光层、ρ-型氮化物半导体层、阳电极和阴电极,所述η-型氮化物半导体层具有第一表面,所述氮化物发光层设置在所述η-型氮化物半导体层的所述第一表面上, 所述P-型氮化物半导体层设置在所述氮化物发光层上,所述阳电极从所述P-型氮化物半导体层观察时位于所述氮化物发光层的相反侧, 所述阴电极设置在所述η-型氮化物半导体层的所述第一表面上, 所述安装基板构建为安装所述LED芯片,所述安装基板具有图案化导体,其通过凸点与所述阴电极接合,并通过凸点与所述阳电极接合,所述LED芯片包括一个或更多个具有岛状结构的电介质层, 所述电介质层的折射率小于所述P-型氮化物半导体层的折射率, 所述电介质层位于P-型氮化物半导体层和所述阳电极之间, 所述P-型氮化物半导体层具有与所述凸点交叠的第一区域,和所述电介质层不与所述第一区域交叠。
2.根据权利要求1所述的发光器件,其中所述LED芯片还包括透明导电膜和反光导电膜,所述透明导电膜设置在所述P-型氮化物半导体层和所述阳电极之间, 所述透明导电膜的折射率低于所述P-型氮化物半导体层的折射率, 所述反光导电膜设置于所述透明导电膜和所述阳电极之间, 所述电介质层部分地形成在所述透明导电膜上, 所述电介质层具有岛状结构,和所述电介质层形成于所述透明导电膜和所述反光导电膜之间。
3.根据权利要求1或2所述的发光器件,其中所述第一区域为垂直于所述P-型氮化物半导体层的厚度方向的平面, 所述平面为圆形,所述第一区域与所述凸点沿所述P-型氮化物半导体层的厚度方向交叠。
全文摘要
公开了一种发光器件,其包括安装基板和LED芯片,所述LED芯片包括n-型氮化物半导体层、氮化物发光层、p-型氮化物半导体层、阳电极和阴电极。所述氮化物发光层设置在n-型氮化物半导体层上。所述p-型氮化物半导体层设置在氮化物发光层上。从p-型氮化物半导体层观察时,阳电极位于氮化物发光层的相反侧。阴电极设置在n-型氮化物半导体层上。安装基板的导体图案通过凸点与阴电极和阳电极接合。LED芯片具有电介质层。所述电介质层形成为至少一个岛并且位于p-型氮化物半导体层和阳电极之间。p-型氮化物半导体层具有与凸点交叠的第一区域。电介质层不形成于第一区域内。
文档编号H01L33/32GK102326270SQ201080009000
公开日2012年1月18日 申请日期2010年2月23日 优先权日2009年2月24日
发明者安田正治, 山江和幸, 岩桥友也, 村井章彦 申请人:松下电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1