使用薄平面半导体的高效光伏背触点太阳能电池结构和制造方法

文档序号:6992344阅读:213来源:国知局
专利名称:使用薄平面半导体的高效光伏背触点太阳能电池结构和制造方法
技术领域
本发明总体涉及光伏和太阳能电池技术领域,更具体地涉及背结背触点薄膜太阳能电池和制造方法。
背景技术
目前,晶体硅在光伏(PV)产业的市场份额最大,占整个PV市场的80%以上。尽管 制造更薄的晶体硅太阳能电池长期以来被认为是降低PV成本最有效的策略之一(因为太阳能电池中使用的晶体硅晶片的相对较高的材料成本占了 PV模块总成本的一部分),但是由于衬底尺寸较大较薄,这使得使用较薄的晶体过程中存在很多机械破损问题。其它问题包括在薄结构中存在光捕获不充分,这是由于硅是一种间接能隙半导体材料。另外,在PV工厂中,在制造量较高的情况下以一种有效节约成本的方式来取得高机械产量的要求和降低晶片破损率之间的平衡是很困难的。对于无支撑的独立式晶体硅太阳能电池而言,比当前的厚度范围140μπι-250μπι再稍微降低一点也会在制造过程中严重危害到机械产量。尤其是薄膜硅的机械性脆性会造成制造和处理困难。因此,处理非常薄的太阳能电池结构的方案可采用在整个电池工艺中电池完全由主载体支撑的电池工艺,或者是采用新颖的自支撑、独立、利用结构创新的衬底的电池工艺。尽管过去在太阳能工业里很多人尝试使用诸如玻璃的载体,用于薄衬底,但是这些载体有很严重的缺陷,如最高处理温度太低(如果是玻璃),这会潜在地危害到太阳能电池的效率。也有人尝试制成小面积薄太阳能电池,这样就不会有严重的破损问题了。然而,商业可行性却需要大的电池面积。在太阳能电池发展和制造方面,以较低制造成本获得较高的电池和组件效率一直以来是很关键的。由于电池正面无金属遮挡,无发射极,由此带来高蓝光响应,并且由于背部潜在的较低的金属抗性,因此背结/背触点电池结构具有高效性。本领域的技术人员知道背触点电池要求很高的少数载流子扩散长度与衬底厚度比(同时任何太阳能电池结构包括正面触点电池要有好的标准,这对背触点电池尤其重要)。该比值应典型地大于五。由于在不危害到机械产量的情况下很难降低电池的厚度,因此目前的背结背触点太阳能电池的重点在于使用寿命非常长的材料。虽然这会产生较大的扩散长度,但是使用寿命长的材料也会增加衬底成本。然而,使用较薄的电池,其扩散长度不一定要要求如此高,这就使得材料质量要求容易满足,因此电池的成本也会降低。除这种成本降低之外,使用较少的硅成本会明显降低。因此,在非常薄的晶体硅衬底上的背结/背触点电池具有大的成本和性能优势。

发明内容
根据本发明,提供了用于制造超薄晶体硅、大面积(适合于商业应用)的、背结/背触点太阳能电池的方法及其创新结构。在一个实施例中,背结背触点太阳能电池包括衬底,该衬底具有带有钝化层的光捕获正面表面、掺杂的基极区域,和极性与掺杂的基极区域相反的掺杂的背面发射极区域。发射极上的背面钝化层和图案化的反射层形成光捕获背面反射镜。在太阳能电池的背面设置有交叉指状金属化图案,并且一永久性加强物为电池提供支撑。由于此处提供的描述,本发明以及其它新颖特征会很明显。本简要内容的意图不是对权利要求的主题进行综合描述,而是对本发明的功能性进行简短的概述。在查阅以下图表和详细描述时,此处提供的其它系统、方法、特征和优点对于本领域的技术人员来说将变得明显。本简要内容的意图是将所有包含在本描述内的这些额外的系统、方法、特征和优 点包括在伴随的权利要求的范围内。


现参考结合以下附图进行描述,以便对本发明及其优点有一个更全面的理解,附图中相似的标号表示相似的特征,其中图I示出用于确定使太阳能电池效率最大化的最佳薄膜硅衬底(TFSS)厚度的模拟结果;图2是背结背触点薄膜太阳能电池的剖面图;图3示出背结背触点薄膜太阳能电池制造工艺的工艺流程图;图4A至4k是根据图3的制造工艺制造太阳能电池时在关键制造工艺步骤后太阳能电池的剖视图;图5是突出显示太阳能电池的背触点交叉指状发射极和基极金属电极和汇流条的不意图;图6A至6D是示出关键制造步骤后背触点太阳能电池背面的示意图;图7A至7D是与图6A至6D实施例相应的太阳能电池的剖面图;图8A至SC是示出形成朗伯反射镜的太阳能电池的剖面图;图9A和9B是示出根据本发明的两个汇流条设计的示意图;图10是具有正面加强物和邻接结的背结背触点薄膜太阳能电池的剖面图;图11是示出图10的电池的制造工艺的工艺流程图;图12A至12J是经过图11中的关键制造工艺步骤后太阳能电池的剖面图;图13是具有背面加强物和分离结的背结背触点薄膜太阳能电池的剖面图;图14是栅格状背面加强物的背面示意图;图15是示出制造图13的背结背触点薄膜太阳能电池的工艺的工艺流程图;图16A至16J是经过图15的关键制造工艺步骤后太阳能电池的剖视图;图17是具有背面加强物和邻接结的背结背触点薄膜太阳能电池的剖面图;图18是示出制造图17的背结背触点薄膜太阳能电池的工艺的工艺流程图19A至191是经过图18中的关键制造工艺步骤后太阳能电池的剖面图;图20是具有正面加强物、邻接结和非选择性发射极的背结背触点薄膜太阳能电池的剖面图;图21是示出制造图20的背结背触点薄膜太阳能电池的工艺的工艺流程图;以及图22A至22J是经过图21中的关键制造工艺步骤后太阳能电池的剖视图。
具体实施例方式以下描述没有限制意义,其目的是为了描述本发明的一般原理。本发明的范围应该根据权利要求而定。本发明的示例性实施例在附图中图示,相同标号在在附图中表示相 同或相应部件。图I通过将少数载流子块状硅的使用寿命和背反射镜反射器的质量(朗伯特性和镜面特性)考虑在内,图示了用于确定太阳能电池效率最大化的薄膜硅衬底(TFSS)的最佳厚度的模拟结果。设计背结背触点太阳能电池的关键参数是确定TFSS厚度。典型地,存在可以将电池效率最大化的硅层的最佳厚度。最佳厚度取决于一些参数,包括块体硅材料的使用寿命和背表面漫反射镜性能所允许的光捕获程度。最佳厚度是由以下的权衡得到的。对少数载流子复合最小化的需求驱使衬底厚度降低,而对更有效的光捕获的需求驱使衬底厚度增大。图I示出了作为TFSS厚度、少数载流子体硅使用寿命以及反射镜和朗伯镜的函数的电池效率的模拟曲线。很明显,较薄的膜厚度和较强的光捕获允许使用寿命较短的材料。基于使用更薄的膜在经济上和其它的优势,可以发现TFSS最佳厚度范围在15um至30um之间。然而,这种模拟仅代表了一个具体例子,大体上讲,衬底的厚度可由一些考虑因素来决定。本发明提供了背结背触点薄半导体太阳能电池的结构方案和制造工艺方案。尽管以上描述是针对硅而言,但也可使用其它半导体材料如锗或砷化镓,而不脱离本发明的结构和方法的范围。使用硅或其它半导体材料的异质结和多结太阳能电池也在本发明的范围内。在操作中,首先在可重复使用的模板顶面使用外延生长,制造出具有一般厚度少于IOOum(尤其是在15um至50um范围内)的大面积(在156mmX156mm的范围内)薄太阳能电池衬底,且随后该衬底被移出。该可重复使用的模板大体上可为平面,或在另一种实施例中具有三维的特征。其可重复多次用于外延生长,这就摊销了模板成本。TFSS可利用牺牲层从模板上分离,该牺牲层不仅可以将结晶性从模板传送到TFSS,而且与TFSS和可重复使用的模板相比其还可以容易地、可选择性地去除。牺牲层的一个例子是多孔硅,其多孔性可被调整或分级以便获得上述两个关键功能。使用上述方法制造薄太阳能电池衬底之后,关键挑战是在制造太阳能电池的过程中在不造成破损和分裂在情况下处理这些TFSS15WT结构和方法用于解决TFSS处理问题并可增大总效率。另外,本发明通过在太阳能电池制造过程中使用临时的和/或永久性的TFSS载具,提供了薄的平面/大体上是平面/或三维TFSS的加工方案。载具(carrier),是用于描述能够支撑薄膜太阳能衬底(TFSS)的耐用材料的宽泛术语,成功地制造所描述的电池的关键需求在于,在整个工艺步骤中都要支撑TFSS。因为太阳能电池的两面都需要处理(正面和背面),所以通常需要两个载具在处理太阳能电池每一面过程中需要一个载具用于支撑。载具应该满足一些标准第一,载具应经济有效。载具的成本应低于所节省的硅的厚度的成本。第二,载具中至少有一个必须能承受制造典型太阳能电池所需的高温度处理。此外,如果仅有一个载具能够支持高温处理步骤电池处理,则需要调整工艺流程以确保所有高温处理步骤都在此载具上进行。第三,载具中至少有一个必须能承受制造典型太阳能电池所需的湿法加工环境。湿法加工步骤的一个例子包括在稀释和加热的KOH溶液中对硅正表面织构化处理。第四,一旦其中一面被局部或完全处理,在准备处理另一面时,TFSS应很容易地与该优选地可重复使用的载具分离(用于大量制造)并转换到永久附着的最后载具(通常附着于首先处理的面上)。接下来,在仅对第一个面进行了局部处理的情况下,则剩余的步骤应该能被完成。在公开的工艺中,第一载具是厚的半导体(例如优选地为用于晶体硅太阳能电池的晶体硅)晶片,比如可重复使用的模板。第二载具是可永久支撑TFSS的成本较低的材料。可重复使用的模板载具,因为其是标准厚度的硅晶片,能够承受高温。模板可以是各种尺寸,比如200mm或300mm,可以是各种形状,比如圆形或正方形,其厚度可使模板经历全部太阳能电池工艺而不断裂(厚度为200 μ m以上)。这种载具的成本通过重复使用和多个TFSS制造周期的分摊可显著地降低。最后,这种载具也满足了上述载具标准,比如在高产量的情况下有利于TFSS分离,其中在模板和TFSS之间使用多孔硅而实现分离。分离(release)工艺包括机械分离(MR)或在液体中进行的超声机械分离(SMR)。第二载具可有一些选择,形成不同类的制造方法。在此公开的所有工艺的特征在于该标准,即至少部分太阳能电池处理步骤在TFSS上进行,而也是在第一载具即所述模板上进行。第二载具的选择与是否部分或所有工艺步骤均在模板上完成紧密相连。在模板上进行部分背面处理的情况下,其中在TFSS分离之后还剩下正面电池工艺以及一些背面电池工艺,则可采用一些第二载具实施例。在被称为正面加强物(FSR)的实施例中,使用附着在部分处理过的背面上的临时性载具,TFSS从模板分离。临时性载具的突出特点在于其通过使用一些方法,比如电(例如,可移动的静电夹头)或在高温加热时会分离的临时性粘合剂而可轻松地分离。接下来,用临时性背面载具支撑TFSS,进行正面电池工艺,比如织构化和钝化。最后,通过将TFSS从临时性背面支撑转换到永久性正面加强物(例如,EVA/玻璃组合),由此将背面空出以进行处理,进行剩余的背面步骤。正面加强物的一个具体需求是其降低光耦合不能超出通常由模块级组装引起的降低,使得可将该加强集成到太阳能模组中并因此成为永久性加强。在被称为背面加强物(BSR)的实施例中,使用永久背面加强物,TFSS从模板(第一载具)分离。永久背面加强物仅局部地覆盖背面,这使得背面处理在正面工艺之后可通过打开的未覆盖的背面区域完成。BSR的一个例子是在网格之间具有很大的开口区域的网格设计,所述开口区域使得在最后几个处理步骤中可接入背面。BSR另一种例子是带有孔的背面加强物,通过所述孔可接近下面的金属,所述金属是当TFSS在模板上时被沉积和图案化。
第三实施例与BSR的相似之处在于其也是永久性背面加强物,但是该加强物具有集成结构,该结构避免了进一步进行实质性的背面处理的需要。因而,当TFSS在模板上时,几乎所有背面的工艺步骤都被完成。图2是具有集成的朗伯镜并具有正面加强物和分离结的背结背触点薄膜太阳能电池(此具体实施例以下被称为FSR-SJ电池)的剖面图。这种电池的背结背触点结构可增大转换效率。整个文献中,将引用术语邻接结(AJ)和分离结(SJ)。邻接结指的是这样的太阳能电池设计,其中在基极触点下而的硅中局部重掺杂的基极直接与发射极相邻。分离结指的是这样的情况,在基极触点下面的硅局部重掺杂的基极区域,经由轻掺杂的基极区域,与重掺杂的发射极基本分离。仅对于AJ和SJ分类而言,术语“结(junction)”指的是当某种浓度的掺杂区域与相同或不同类型的不同掺杂物浓度的区域相邻时而形成的金相结。然而,当引用“背结”时,可理解为这是由相邻的P+/n或n+/p区域形成的电学结。如显不的那样,FSR-SJ电池使用了由发射极层4、基极层6和正表面场8组成的外延硅衬底2。太阳能电池背面(或触点面)结构包括背面钝化电介质10、背反射镜12、选择性发射极触点14、基极触点16、在基极和发射极触点上的种子金属沉积18 (比如Al/Ag)和在Ag沉积上的电镀金属20(比如Ni/Cu/Ni)。太阳能电池正面(或向阳面)结构包括织构化的正面层22和由粘着层24附着的正面加强物26。例如,在一个具体实施例中,外延娃衬底2具有η-型(基于磷的)基极层6和ρ-型(基于硼的)发射极层4,实际上,这些极性是可颠倒的。外延硅衬底厚度的具体范围值在 15 μ m至30 μ m之间,而大体上可少于100 μ m。正表面场(FSF) 8可依据正表面复合的质量、基极电阻和俄歇复合(Auger recombination)的数量来选择。所制造的太阳能电池的正面(向阳面)用永久性平面载具(正面加强物26)强化。由于载具是永久性的,所以材料必须是透明的,比如PV-级玻璃或聚合物,它们是优选的但不是必须的。如所示,载具的厚度在O. 2mm至2mm的范围内。正面加强物,也称作正面加强物/板/载具,通过薄层粘合剂(显示为粘着层24)比如PV-级EVA、Z68或硅树脂被安装在太阳能电池衬底上。以比外延厚度小得多的尺寸对正面硅表面进行织构化处理(显示为织构化的正面层22),这种情况下的织构化使得硅衬底大体上是平的。织构化的正面还具有抗反射涂层比如PECVD氮化硅。PECVD SiHxNy: H可在热氧化物的顶部或直接地在硅衬底的顶部(显示为外延硅衬底2) OSiHxNy = H也起到提供高的正固定电荷密度的重要功能,其可在4xl012Cm_2的范围内。对于η-型基极和ρ-型发射极太阳能电池而言,正固定电荷将少数载流子(孔)从表面反射走,且避免其在表面复合,从而提高了效率。该图示出背结背触点太阳能电池的结构,其中代表用于从太阳能电池提取电流或电力的太阳能电池基极和发射极的金属触点两极(到η-型和到ρ-型区域)均在背面。背结背触点太阳能电池的优点他人已详细总结过,包括a)在向阳面没有金属,从而消除了金属反射/遮挡引起的效率损失山)金属互连线的电阻可能降低,因为这些线可以更宽而不会造成金属反射;c)更好的蓝光响应,因为电池正面没有高度掺杂的发射极区域,而蓝光在此区域内被吸收;d)更容易在模块中将完成的电池连接并放在一起,和e)更好的美学效果,例如电池的正面可做成完全黑色(向阳面)。图2中所示太阳能电池结构的特征还在于选择性基极触点,显示为基极触点16。选择性基极触点指的是一种太阳能电池设计,其中基极触点在硅中被制成局部的、重扩散的基极掺杂区域。这与非选择性基极触点形成对比,非选择性基极触点被制成轻掺杂的(局部或非局部)基极扩散。因为选择性基极触点和最小触点区域有助于将硅与金属界面处的少数载流子的复合最小化,这增大开路电压,所以它们是提高效率的重要因素。除了最小化基极触点,发射极触点也被最小化(显示为选择性发射极触点14)。较小的发射极触点区域还有助于将金属与硅界面处的触点复合最小化,从而通过开路电压(Voc)的改进而提
高效率。背反射镜12作为一个例子显示为图案化的反射层,这是此类电池的又一个特征优势。可选择地,背反射镜可由背面钝化电介质10顶部存在的金属形成。热氧化物作为钝化电介质的一个例子可在本实施例中使用。然而,可使用其它好的钝化电介质,比如,但不局限于,SiHxNy = H和Al2O315由于干涉效应,背面金属下面的受控钝化层厚度可显著提高背反射镜叠层的净反射率。背反射镜的有效性可由两个属性来定义其净反射率以及扩散反射光的程度,即高反射率和高扩散率是需要的。最佳厚度的电介质(大约1000A氧化物)顶部的金属比如Al或Ag能够提供范围为95%的高反射率,而表面粗糙和其它技术可用来产生散射(朗伯)镜。在电池背面高的金属覆盖率(如大于85%)具有潜在的优势,以确保大多数的的光落到背反射镜上。由于太阳能电池变得更薄,大部分的太阳光谱和波长都落到背反射镜上,所以依赖优良品质的背反射镜的高效性对于薄硅来说更加关键。本发明的工艺流程概述了可以产生具有所需反射镜性能的高金属覆盖率的制造方法。
·
图2中所示电池的两个特征为分离结和正面加强物,其区别于本发明的背结背触点薄膜硅太阳能电池的其他实施例。分离结属性指的是制成基极触点的η++区域大体上与P+发射极层隔离的事实。这种分离可缓解太阳能电池中分流的危险,且允许高占空因数(FF),这反过来可帮助实现可能的最高效率。另外,分离结允许高反向击穿电压。本发明中,背结背触点太阳能电池结构的薄尺寸要求,没有增强就绝不可在制造线上处理该电池。图2中正面加强物26是一个永久性正面加强物的例子,永久性正面加强物是生产过程的一部分,且稍后可用于太阳能模组中。永久性透明正面加强物的一个核心优势是由于永久性透明正面加强物是由不会危害正面光耦合的匹配的材料(比如PV等级EVA和玻璃)制成,所以并不需要去除。通常,这些材料在模块装配的过程中被置于电池顶部。图3是示出背结背触点薄膜太阳能电池制造工艺的工艺流程图。图4Α至4k是当根据图3的制造工艺制造太阳能电池时在关键制造工艺步骤后太阳能电池的剖视图。在图4A至4K的剖面图中描绘的结构特征是一致的,除非另行标注。在图4A至4G中,太阳能电池的剖面图显示其正面(向阳面)朝下,背面(非向阳/接触面)朝上,以便更好图示处理步骤。剖面图的取向在图4H至4k中做了调整。如图3所示,制造工艺从步骤30开始,其中清洁可重复使用的硅模板。大体上,起始模板可以是任何形状的晶片,例如8英寸圆或156mmX156mm近似正方形或完全正方形晶片,掺杂浓度和类型(η型对ρ型)均有利于形成多孔硅。模板的面积可与所期望的最终薄膜太阳能电池衬底(TFSS)的面积相同,或模板面积可以大得多以抑制对太阳能电池性能有害的边缘效应。另外,其两面可以是粗糙或磨光的任意组合。在一个具体实施例中,模板可以是8英寸圆,P-型掺杂超过3X1018cm_3的晶片(已知其可形成多孔硅)。可重复使用的模板经过一个常规清洁工艺以去除任何有机杂质或金属杂质。在一具体实施例中,其可通过使用标准RCA清洗实现,标准RCA清洗包括有机清洗(被称为SCl)和金属污染清洗(被称为SC2清洗)。在另一种具体实施例中,清洗过程采用了碱性蚀刻步骤,其对硅的蚀刻速率有限,且可通过蚀刻或底切用于去除表面污染物。氢氧化钾、氢氧化钠或其它氢氧化物(KOH,NaOH或其它)可用于此清洗步骤中。至于去除金属,由于使用过氧化物的化学品的药液(bath)寿命,所以使用HCl、HF或二者的组合是有效且成本效益高的。步骤32包括通过阳极蚀刻形成多孔硅。随后,模板被放入工艺工具中,该工艺工具可在晶片正面的平面上形成多孔硅。有几种形成多孔硅的方式,一个具体的工艺包括使用氟氢酸(HF)和异丙醇(IPA)混合液的阳极蚀刻 工艺。阳极蚀刻工艺开始以化学方法零星地蚀刻去除硅,从而在表面形成多孔硅。反应从正表面开始进行,且多孔硅的厚度随着在此工艺下晶片暴露的时间逐渐增大。图4A图示了在可重复使用的硅模板70的顶部表面形成的双层多孔硅72。表征该层的特性是其孔隙率。表面的孔隙率须足够低以便在紧接着外延沉淀的热回流之后,可在多孔材料的顶部外延生长单晶硅。另一方面,孔隙率须足够高,使得该层选择性地被除去时,模板和外延衬底不受损害。在一种具体实施中,上述平衡是通过调整单层的孔隙率而实现的。在不同的实施中,使用具有不同孔隙率的多层堆叠。具体地,可取的是具有顶层和底层的双层堆叠,其中完成硅外延的顶部具有低孔隙率,例如,但不局限于,10-35%的范围,而与可重复使用的模板接触的底层具有高孔隙率,例如,大于40%。步骤34通过外延工艺在多孔娃表面的顶部生长娃层。单晶外延(epi)是需要的。然而,大体上,生长材料可以是多晶的或是多结晶体。该步骤的一个重要指标是材料的质量,由其少数载流子扩散长度来测量。大体上,该指标是由膜中的结晶度(单晶具有最长的寿命)和污染等级(希望没有金属、有机和/或氧污染)决定的。这种方法的优点在于生长外延的同时,可原位完成构成太阳能电池所需的各种扩散和掺杂。掺杂的具体例子为基极、发射极和正面以及背面表面场。根据基极掺杂是η-型(比如基于磷)还是P-型(比如基于硼),太阳能电池分别被称为NBLAC (η-型)或PBLAC (ρ-型)。且对应的发射极会有相反的极性。因此,对于NBLAC和PBLAC来说,发射极分别是ρ_型(比如基于硼)和η-型(比如基于磷)。NBLAC在此处是被用于描述的目的,而PBLAC是作为一替代实施例完全在公开的工艺和结构的范围内。基极掺杂在整个衬底厚度中可以是恒定的,或不断变化的或分梯度的,这取决于需要什么来提高效率。梯度掺杂的一个潜在优势是它制造了内置电场,该内置电场反过来可使少数载流子快速移动到发射极,此处可使其远离复合的危险,这与完全依赖随机扩散工艺截然相反。本质上,对于该材料的给定寿命来说,这提高了有效扩散长度。增强的有效扩散长度的影响是增大了短路电流密度(Jsc)。本文中提出的太阳能电池设计为发射极在背面的背结背触点电池。背面(也是触点面或非向阳面)被定义为与阳光进入方向相反的面,正面(向阳面)与背面相反被定义为阳光进入的面。因而,背结背触点太阳能电池的两个定性特征为1)所有的金属连接都在非向阳面,和2)发射极也在非向阳面上。在描述的实施例中,在外延工艺中最后生长发射极,以避免其掺杂物分布(profile)被过度的热聚集(budget)影响。该实施例允许背面处理可在模板上完成,因为在模板上时背面是暴露面。对于NBLAC而言,除了硅掺入(三氯氢硅-TCS)和其它必要的气体外还使用磷化氢(磷掺入)气体来实现基极掺杂,且当完成发射极生长而结束外延工艺时,可将反应器按照程序切换到乙硼烷(硼掺入)而非磷化氢。应优化基极和发射极区域厚度以提供最佳太阳能电池性能。在一个实施例中,优选地基极厚度小于100 μ m,掺杂在5el4和le17cm_3之间,发射极厚度小于3 μ m,掺杂在lel8和3e20CnT3之间(基极厚度可薄至15至30 μ m)。发射极可以是多步骤的,每一个步骤都可产生不同的浓度。这种外延结构可促使太阳能电池产生高的开路电压(Voc),从而实现更高的效率。在另一种实施例中,发射极不是作为外延工艺的一部分在原位生长,而是在外延沉淀工艺之后,非原位生长。除其他的之外,这可通过沉积含硼前体(pre-cursor)来实现,比如使用常压化学气相淀积法(APCVD)沉积的硼掺杂氧化物、(BSG),在工艺流程中紧接着或稍后进行后续退火以将发掺射极杂物推阱。正表面场(FSF)是可选的。这包括与基极同种类的更重的掺杂,在基极之前先在多孔硅上外延生长。对于NBLAC而言,这可使用磷掺杂实现正表面场,通常,有两个优点和一个缺点。第一个优点是FSF通过电场反射光生的(photogenerated)少数载流子使其离开正表面,从而阻挡其在正表面复合(此处发生许多复合)。第二个优点是其通过提供一条通路使电子穿过较低电阻区域而帮助减轻基极电阻。缺点源于在FSF区域本身由于俄歇(Auger)复合发生的较多的复合。大体上,好的正面钝化不需要使用FSF,而不好的正面钝化必须使用FSF。图4B图示了由η+正表面场层76、η_型基极78和原位掺杂薄ρ+发射极层80组 成的外延娃衬底74。η-型基极外延娃层在可重复使用的娃模板的多孔娃表面上生长。如图3所示,步骤36旨在在硅表面通过直写硅蚀刻或烧蚀形成浅槽。浅硅槽在下文中被称为浅槽隔离。该蚀刻的目的在于嵌套基极电极(finger)和汇流条(busbar)区域、将基极区域与发射极区域隔离,此正是这种特别的分离结(SJ)设计的定性特性,以及为基极金属触点提供进入基极的通道。在不同的实施例中,基极金属电极和/或汇流条或许不能嵌套。如图4C所示的槽82中,浅槽的深度应比发射极层厚度大,如此发射极便可被局部性地完全去除(图4B中显示为发射极层80)。在一个具体实施例中,如果发射极区域浅于O. 5μπι,则硅蚀刻深度可在O. 5至Iym之间。蚀刻槽的图案与基极金属电极和汇流条的图案相同,如果需要嵌套的话,蚀刻槽则更宽一些以便嵌套实际的金属电极和汇流条区域。在该实施例中,基极金属电极和汇流条在浅槽内部沉积,不与无槽发射极层重叠。浅槽宽度优选地尽可能小。保持较小的沟槽宽度的动机在于沟槽宽度构成发射极中断的程度。因而,较宽的槽增大了少数载流子在沟槽区域下面复合的机会,此种现象称为电着色。在优选的实施中,可使用直写激光烧蚀硅或使用激光辅助的基于卤素的化学品直接蚀刻来进行浅槽隔离。利用这些工艺是很重要的,因为这些工艺均使用全干燥的、流水线、非接触处理,而这种处理可避免模板上热工艺过程中的TFSS损伤。另外,与邻接结(AJ)体系结构相比,直写激光蚀刻或烧蚀工艺允许仅通过一个额外的工艺步骤便可形成SJ体系结构。为了实现最高的电池效率,希望烧蚀硅时不会对硅衬底造成任何热损伤,所谓的“冷烧蚀”工艺。使用低皮秒或飞秒脉宽激光进行硅的“冷烧蚀”是可能的。在湿法加工可接受的情况下,可使用图案化及随后的湿硅蚀刻剂比如KOH完成浅槽隔离。在另一种实施中,硅凹陷或浅槽隔离可通过丝网印刷蚀刻胶(其蚀刻硅)完成。这种实施需求额外的烧制蚀刻胶和清洗剩余蚀刻胶的步骤。然而,在TFSS上不太希望使用湿法净化工艺,但是可使其变得有利。在再另一种实施方案中,硅浅槽的形成可通过首先对掩蔽层进行图案化然后执行硅等离子体或反应离子刻蚀(RIE)来实现。在浅槽蚀刻之后,去除图案化的掩蔽层,然后进行相应的衬底清洗步骤。如图3所示,下一个步骤,步骤38,旨在沉积防护介电层。介电层包括,但不局限于,热生长的二氧化硅和氮化硅。介电层的一般特性是其应该是好的钝化层。另外,介电层的物理厚度由两个因素间的平衡来确定(1)该层应该足够薄,如此便可容易地被随后的激光烧蚀步骤图案化,同时(2)该层应该足够厚,如此便可阻挡气相掺杂物的扩散,如果这种掺杂物是用来形成结其未被打开(正如非选择性发射极结构的情况,稍后加以详述)。气相掺杂物扩散是后续的制造步骤,在下文中会加以详述。在一个具体实施例中,该保护层是厚度在IOOnm至250nm范围内的热生长氧化物。可以选择介电层生长/沉积的温度和时间,以合适的厚度为目标。选择氧化物生长环境的一个考虑是使硼发射极到生长的氧化物的隔离最小化这需要将氧化的热聚集(budget)(有益于潮湿环境工艺)最小化,以及在高温下生长,在高温下可实现较少的硼隔离。然后,在步骤40中,形成了在上述的介电层上曝光下面的硅的交叉指状触点开口。电介质将被打开的图案是交叉指状电极和汇流条,其中基极和发射极线是分离的且连续的。接下来的讨论中将详述由标准双汇流条或分布式汇流条定义的该图案的细节。基极和发射极触点开口的目的是为了后续的选择性掺杂。在NBLAC实施例中,基极触点开口将会用η-型磷材料进行重掺杂,而发射极触点开口将会用P-型硼进行重掺杂。基极和发射极 开口区域在此步骤中同时被打开。这一步骤的具体实施可直接用激光烧蚀氧化层来进行。可见或紫外波长内的脉冲皮秒激光有助于烧蚀氧化层。图4D图示了发射极触点开口 84、基极触点开口 86,以及正面和背面二氧化娃层86。步骤42包括选择性地在基极和发射极触点打开区域上施加η-型和ρ-型掺杂物,依照之前定义的交叉指状图案。掺杂物会将开口覆盖并且可与介电层略微重叠和/或超过其顶部。对于NBLAC具体实施例而言在发射极区域,掺杂物应为ρ++型(例如硼),而在基极触点区域,掺杂物应为η++型(基于磷)。实施掺杂的具体方法是使用喷墨印刷技术。此外,要被沉积的墨水的具体例子为基于硅纳米粒子的磷墨水和硼墨水。紧接此步骤的下一步骤是选择性的,即使用喷墨印刷机将不加掺杂物的硅(或玻璃)纳米粒子墨汁印刷到所有电池区域(或除激光烧蚀触点之外的区域)。下一步是按照具体的的墨汁使用说明来烧结墨汁。无掺杂墨汁的目的是用其随机对氧化物表面进行织构化处理,随机织构化处理可提高背反射镜的朗伯性能,以及增强电池效率(随后讨论)。图4Ε图示了喷墨印刷的发射极掺杂物88、喷墨印刷的基极掺杂物90 (可选地烧结),和无掺杂的喷墨印刷材料92 (形成全体覆盖的织构化表面层的纳米粒子)。然后在步骤44中,对喷墨印刷的硼、磷以及无掺杂墨汁进行退火以形成η++和P++发射极触点区域。可选地,该退火步骤后可在低氧或蒸汽环境中再次退火,或该退火步骤与该再次退火结合起来,其用于氧化无掺杂硅粒子以及产生随机织构化的氧化物表面。图4F图示了 P++选择性发射极区域94、η++选择性基极区域96和表面织构化的硅氧化层(二氧化硅)98。然后在步骤46中,使用干法分离或湿法分离或二者结合的技术将TFSS与可重复使用的模板分离。在此步骤中,TFSS,具有上述基极和发射极图案和掺杂,与可重复使用的模板分离。沿着牺牲性多孔硅形成的界面进行去除。在一个具体实施例中,其通过在对太阳能电池的最终形状有利的图案中用浅槽激光刻划而实现。在一些可能性当中,激光刻划可以是125mmX125mm或156mmX156mm近似正方形或超越最终的太阳能电池尺寸。激光刻划后夹持基极/发射极触点面并且进行拖离模板的机械分离。夹持可使用真空力来完成,以及借助于静电夹头(ESC)或可移动静电载具(MESC)来辅助或实现。为了描述的目的,需要使用可移动载具时引用MESC。将TFSS与模板分离典型地发生在多孔硅层孔隙率最高的部分。可选地,分离后,可进行最后的剪切步骤以确定TFSS的尺寸。图4G图示了背面被支撑的TFSS,其中TFSS100经分离工艺与可重复使用的模板102分离,且由临时性TFSS载具(比如MESC)104支撑。步骤60示出模板重整和清洗,准备下次使用。模板上的TFSS区域之外外延生长的硅被除去,且模板被送回以便在下一循环中再次使 用,包括模板清洁,形成多孔硅,外延生长。在一个具体实施中,可使用机械磨削/研磨或抛光去除外部硅,该操作可在模板的顶部、沿着边缘及在背部进行,且在需要时去除外部硅。这些步骤可在每一次重复使用中进行,或隔几次重复使用进行一次。工艺进行到此时,如果TFSS的厚度大于75 μ m,则TFSS可自行支撑以进行分离。然而,当TFSS很薄时,比如薄于50 μ m,则应支撑TFSS。在一个具体实施中,可在分离步骤过程中或分离步骤后通过可移动ESC(MESC)进行机械夹持。随后MESC固定附着到薄TFSS上,并且很重要地,作为临时性载具在电池背面(基极和发射极图案所在的非向阳面)支撑此薄TFSS。正面(向阳面)此时暴露。然后在步骤48中,清洁电池正面并除去任何剩余的多孔硅(下文中被称为类似单晶硅或QMS)碎屑。可使用单面湿法净化进行清洁,在此面上清洗蚀刻剂仅接触TFSS的正面,而TFSS在背面被MESC控制。通过MESC,或者使用适合于单面蚀刻工艺的设备,来保护TFSS的背面不受到蚀刻。在各种湿法净化的选择中,可使用氢佛酸/硝酸、HNA、TMAH以及基于KOH的硅蚀刻。对正面表面进行织构化处理后进行QMS清洁。进行织构化处理的湿化学品可与QMS去除化学品相同(例如,但不局限于,Κ0Η),其结果是在单一步骤中同时完成两个任务。替代性地,可有一系列导致QMS去除和织构化处理的化学处理。在织构化处理之后,对衬底正面表面进行处理。在一个实施例中,衬底经历一些步骤,其中包括金属去除清洁,典型地使用合格的酸或酸组合,比如氢氟酸(HF)或盐酸(HCl)。可选地,应用有机去除,比如臭氧。在其它实施例中,在沉积钝化层(在氮化硅的情况下也可是抗反射层(ARC))之前,可使表面状态保持低密度的高品质化学氧化物被用作最后一个湿法步骤。在图4H至4K中,太阳能电池的剖面图被调整(旋转180度)以便更好地图示后续处理步骤。因此,现在描绘的电池其正面(向阳面)朝上,背面(非向阳/接触面)朝下。图4H图示了背面被支撑,具有织构化的正面表面104的TFSS。当模板被预织构化处理时出现一个替代实施例,其包括图4A至4H所示的、略微发生变化的工艺流程。在这种情况下,衬底TFSS大体上仍是平面,然而,分离的TFSS已被织构化,这就排除了 QMS去除之后对TFSS进行湿法织构化处理的需要。其余的工艺流程与图3中讨论的一样,并且在先前流程内容中所讨论的所有设计和工艺变化仍适用于预织构化的TFSS实施例。其次,在步骤50中进行单面表面钝化和抗反射涂布(ARC)。在具体实施例中,可使用微波等离子体增强的氮化硅化学生长来实现。在另一种实施例中,其可以是二氧化硅层,PECVD SiHxNy = H层紧随其后。在再另一种实施例中,钝化结构可以是非晶硅层,氮化硅紧随其后。在以上每一种实施例中,沉积温度可调整在100至400摄氏度之间以与已在电池堆叠中的材料的需要和性能相匹配。钝化不仅可起到在电池正面降低表面复合速度的重要作用(其有助于显著地提高背触点电池的效率),而且还可作为抗反射涂层(ARC)使太阳光强耦合到太阳能电池。图41图示了具有正面表面钝化和抗反射涂层(ARC) 106,背面被支撑的TFSS。如图3所示,在步骤52中临时性背面支撑被转换为永久性正面加强物。正面(向阳面)产生钝化/抗反射涂层后,仅剩下对背结背触点电池的背面处理。正面加强物的一个具体实施是使用由PV硅胶、Z68或EVA材料附着的薄PV玻璃。用这种材料增强正面的一个优点是这种增强是永久性的,因为当太阳能电池被封装到模组中时,相同的材料常常在电池的正面。因而,此类增强可确保完成的模组的光学性能不会降低。一旦完成正面加强物,临时性背面支撑,比如MESC,通过静电放电被分离,且电池背面(非向阳面)可用于最后的金属化工艺。重要的是应注意到在支撑转换的过程中,任何时候TFSS都需要支撑/增强。图4J图示了永久性正面加强物108 (使用诸如玻璃的材料)和增强附着层110 (使用诸如PV级EVA或硅的材料以附着正面加强物)。
在步骤54中,清洁增强的TFSS的正面以去除剩余掺杂物(比如喷墨剩余的掺杂物)并且清洁触点区域以便实现良好的金属附着和电接触。可用HF作为清洗蚀刻剂去除剩余掺杂物和表面氧化物和/或用温和的选择性硅蚀刻来清洁该区域。在另一种实施例中,来自喷墨的工艺残留物可通过干法技术比如脉冲激光蚀刻来去除,从而曝光下面的硅以形成触点。当TFSS仍在模板载具上时,激光工艺也可在掺杂物扩散后马上进行。步骤56包括金属化。尽管有几种方式可进行金属化,但仅描述一种具有一些变化的具体实施。清洗后,银(Ag)或铝(Al)纳米粒子墨汁被选择性地沉积在基极和发射极触点区域的顶部。墨汁按照发射极和基极的电极和汇流条的形状沉积。然而,墨汁沉积可选地分别比电极和汇流条的宽度要宽,以在整个区域形成背反射镜。金属覆盖可在85%以上以确保背面大多数的的光线都落在金属上,然后光线被反射回结构中,以便被更多地吸收通过。要小心确保相反极的金属彼此不要接触。在一种替代实施例中,相同的最终结构可通过使用全体覆盖的(blanket) Al沉积(例如,通过使用蒸发或PVD)和激光烧蚀Al沉积以形成缝隙区而实现。在再另一种替代实施例中,通过在基极和发射极触点区域沉积银或铝墨汁并形成连续的金属电极和汇流条进行金属化。烧结墨汁后,通过使用该金属层作为电镀种子层来进行电镀步骤。针对铝墨汁的情况,可在电镀之前以相同的方式可选地施加第二种墨汁。增加电镀步骤的目的是以一种具有成本效益的方式增大导电性。例如,可电镀一个镍/铜/镍(Ni/Cu/Ni)的金属堆叠,其中铜厚度在10至50μπι范围内。铜下面的薄镍层可用作铜阻挡层以避免铜扩散到硅,而铜层顶部的镍层可用作钝化层以避免铜表面的氧化和腐蚀。然而在另一种替换实施例中,不是使用所描述的银墨汁金属化或通过蒸发的/PVD铝层形成背反射镜,而是沉积比如喷墨印刷的反射绝缘层以用作背反射镜。使用这种方法,在基极面和发射极面的金属可保持彼此隔离,且避免了可能出现的经过下面的介电层的电分流。图4Κ图示了制造的背结背触点太阳能电池,具有选择性发射极触点112、基极触点114、喷墨印刷的图案化的反射层116、电镀金属120 (比如Ni/Cu/Ni)和种子金属沉积118(比如喷墨印刷的银,其在示意图中被描绘为暗区,位于电镀金属120和P++选择性发射极区域94之间)。图5是示出背触点太阳能电池(NBLAC或PBLAC)的背面(非向阳面),突出太阳能电池的背接触交叉指状的发射极和基极金属电极和汇流条的示意图。所显示的交叉指状电极和汇流条图案仅作为一个例子,其他图案也是可能的。浅硅沟槽区域位于基极金属电极和汇流条的下面。如之前所描述的那样,沟槽深度略大于发射极层厚度。应将沟槽宽度最小化,以便电着色可保持在最小值。在该具体实施例中,通过喷墨印刷,比如喷墨印刷银或铝墨汁,随后进行高温烧结工艺而形成金属图案。同样在所示的该实施例中,背反射镜由反射介电层形成。如图2和图4K所示,基极金属层未与发射极区域重叠,因此避免了穿过背面表面钝化层的潜在的电分流。然而,作为折中,金属层的厚度应该很厚(在某些实例中要厚于50 μ m),以便金属层能够应付太阳能电池的电流和功率提取的需要。对于图5所示的特定的交叉指状电极和汇流条设计而言,交叉指状电极的长度可与太阳能电池的宽度相等,在某些实例中接近125mm或156mm长。金属电极的宽度可在100 μ m至500 μ m的范围内,相邻金属电极的间距可在O. 5mm至3mm的范围内。图6A至6D为示出背触点BLAC太阳能电池的背面的示意图,突出显示了关键制造步骤后基极和发射极触点开口的替代性金属化图案。图7A至7D是图示图6A至6D的金属化实施例的太阳能电池的剖视图。在该实施例中,用于金属化的起始TFSS(带有分离结的正面加强物电池)与图4J中所示的电池对应。
图6A图示了基极触点开口嵌套在浅硅沟槽之中时的发射极和基极触点开口的顶视图。对应的图7A图示了基极触点区域(省略发射极区域以简化附图)的剖视图。发射极触点是类似的,不同的是发射极触点置于发射极表面而非置于基极触点所在的浅硅沟槽中。图6B和对应的图7B图示了至少一个带有狭窄绝缘间隙以分离基极和发射极金属区域的沉积的薄金属层。薄金属层用于两个目的1)为后续的厚金属堆叠电镀提供电镀种子层,和2)提供背反射镜。薄金属层可通过金属喷墨印刷(比如银或铝墨汁),而后进行烧结来沉积。在直写工艺中,金属绝缘间隙印刷形成,因此不再需要薄金属图案化步骤。在一种替代方法中,薄金属是通过金属(比如铝或Al/NiV/Sn的堆叠)蒸发或PVD由全体覆盖的沉积形成。下一步,金属缝隙的形成可通过控制好烧蚀深度直接进行激光烧蚀实现,如此激光功率便不会损伤到狭窄绝缘间隙下面的硅的表面。替代性地,掩蔽层可通过丝网印刷印到铝背反射镜表面,随后对暴露的薄铝层进行化学蚀刻以产生该狭窄绝缘间隙。在铝蚀刻之后去除蚀刻掩蔽层。如图6C和相应的图7C所示,下一个步骤是沉积覆盖缝隙区的绝缘体材料(介电层)。介电材料可与两侧的薄金属略微重叠(如图6C中所描绘的那样)。介电层的功用包括作为保护层阻挡来自后续电镀步骤的危害,如果金属线之间的下面的氧化层有任何裂痕,划痕或不希望的缺陷(这些可在氧化后期的处理和工艺步骤中产生),则作为湿法的电镀将在这些缺陷中实施电镀,从而连接两条金属线并产生分流。在缝隙中沉积介电层可确保将任何缺陷填充,且没有不需要的电镀。电介质绝缘层可通过喷墨印刷、丝网印刷或全体覆盖的沉积来实施。如图6D和相应的图7D所示,金属化的下一个步骤是选择性地在图案化的薄金属层上电镀金属。具体实施例包括Ni/Cu/Ni堆叠。Ni可用来阻挡铜,而铜的厚度应根据需要而定,以确保低电阻和良好的占空因数(Fill-Factor)。金属层的厚度取决于汇流条设计。其它金属比如Ag(虽然昂贵)也是可能的。镀的优选方法为电镀,其可确保仅在下面的导电区域进行选择性电镀,从而可避免分流。此处示出的金属化顺序完成了整个电池工艺流程,但是可接着可选地形成气体退火以提高开路电压(Voc)。图8A至SC为太阳能电池的剖面图,示出关键制造步骤后朗伯镜的形成。术语“朗伯(Lambertian)”指的是背反射镜的质量,通过背反射镜能将反射光朝各个方向扩散,这与镜面反射截然相反,镜面反射中光线会记忆入射角并以与入射角相等的角度被反射出去。漫反射或朗伯反射镜的优点在于它增大了光线的路径长度,使得在光线抵达电池的相对面之前与硅的相互作用距离更长以便被吸收。这种属性对厚度在15-30 μ m之间的非常薄的太阳能电池尤为重要,因为对于薄太阳能电池而言,即使是波长更短的光线也会照射到背反射镜上。此外,通过模拟显示出使用朗伯镜可使太阳能电池具有高效率,这更不容易受使用寿命变化的影响,这种属性在制造过程中可提供大多数装箱(包装)优势。提供了与之前公开的工艺流程相结合的制造伯朗镜的两种方法。在第一种实现中,氧化前对电池背面进行织构化处理,例如使用硅蚀刻织构化处理。此后使用喷墨印刷金属纳米粒子墨汁或金属(Al或Ag)的PVD进行背面金属反射镜(比如Al或Ag)沉积。这种方法可能出现的一种情况是由于织构化蚀刻打通发射极结区域而造成发射极短路。此外,其可能地增大背面表面复合速度从而导致较高的发射极暗电流密度以及糟糕的Voc。
另一种制造朗伯镜(漫反射镜)的方法在上述工艺流程中已含蓄地公开,且在图8A至SC中示出。此方法旨在通过喷墨印刷(优选地无掺杂)硅纳米粒子墨汁然后进行烧结和氧化对背面钝化电介质(例如热氧化物)进行织构化处理,以形成织构化的、粗糙的背面表面。图8A示出在背面电池钝化介电层上沉积的硅纳米粒子。钝化电介质可以是厚度在IOOnm至250nm范围内的薄热氧化物层。图8B示出热氧化硅纳米粒子后的电池。替代性地,背面也可通过喷墨玻璃(石英)纳米粒子来涂布。随后,如图8C所示,通过喷墨印刷金属纳米粒子墨汁或金属(Al或Ag)的PVD便可形成背面漫反射镜。这种形成朗伯(漫反射镜)的方法在TFSS分离之前发生。图9A和9B是图示了按照本发明的两个汇流条设计的示意图。薄而高效的电池设计的一个重要特性是其汇流条设计。标准汇流条设计,如图9A中所示,是具有交叉指状金属图案的双汇流条设计,且可用于本发明的背触点电池。然而,此设计中背面可能需要厚金属,因为电极需要将电流从TFSS的一边一直带到另一边。这些线产生了巨大的电阻耗损。较厚的金属,典型地小于30 μ m,可适用于厚度大于150 μ m的标准硅电池。然而,薄硅(15 μ m至50 μ m)背触点太阳能电池,如文中提到的电池可能无法承受厚度小于30 μ m的铜金属线的压力。图9B图示了用于非常高效的薄背触点电池的替代性的分布式汇流条设计。在该实施例中,发射极区域有N个汇流条,基极区域的汇流条数量相同。这种设计的一个优点在于较细的电极负责将电流运送较短的距离,显著地减轻了电阻耗损。所有的发射极汇流条连在一起,且所有的基极汇流条连在一起。与标准的N=I (双汇流条)相比,对于N对汇流条来说,汇流条电流降低N倍。这使得铜厚度可降低N倍,而不会影响电阻耗损,使得当N=3 (N=3的实施例在图9B中示出)和N=4时铜的厚度在5_10μπι之间。对于薄的硅电池而言,这是主要的优点。然而,分布式汇流条的一个潜在问题是因为较大的厚金属增大了触点复合和电着色。这可以通过槽式汇流条设计来缓解,其中与下面的硅连接的触点在槽内,但是外伸的金属连接在一起形成连续的线。这种方法要求插槽的间距不超过金属厚度的两倍。应注意到汇流条设计可与以上讨论的工艺流程分开,因为它仅仅规定了图案,在其中激光烧蚀电介质和薄金属层。图10是根据本发明具有正面加强物和邻接结(此具体实施例以下被称为FSR-AJ电池)以及集成了朗伯镜的背结背触点薄膜太阳能电池的剖面图。在该实施例中,基极和发射极结是相邻的,因为没有预制的浅硅沟槽来嵌套基极结和触点。因此,基极触点掺杂必须要足够强以至于它克服和反掺杂其下面的已经存在的发射极层。图11是制造背结背触点薄膜太阳能电池FSRAJ的工艺流程。图12A至12J是根据图11中的制造工艺制造太阳能电池时在关键制造工艺步骤之后的太阳能电池的剖视图。在图12A至12J的剖面图中描绘的结构特征是一致的,除非另行标注。在图12A至12G中,太阳能电池的剖面图显示其正面(向阳面)朝下,背面(非向阳/接触面)朝上以便更好地图示处理步骤。剖面图的取向在图12H至12J中做了调整。所描述的FSR-AJ的工艺流程与图3和图4A至4K中描述的FSR-SJ实施例是相同的,一个重要的差异在于在FSR-AJ情况中,没有分离发射极和基极结的浅槽隔离步骤。在 这种情况下P+和η+区域是相邻的。因此,打开触点区域后,发射极区域就暴露于基极区域。因此,当使用喷墨来施加磷掺杂物时,推阱(drive-in)要足够强以克服且反掺杂处于下面的已存在的基于硼的发射极。为了促进此过程,发射极就会受到限制要很浅才行。以上讨论的FSR-SJ流程的所有变化和微细差别同样适用于FSR-AJ装置,包括分布式汇流条设计、MESC方法、朗伯镜策略以及各种金属化策略。图13是根据本发明的、具有背面加强物和分离结(此具体实施例以下被称为BSR-SJ电池)以及集成了朗伯镜的背结背触点薄膜太阳能电池的剖面图。很重要地,完成的BSR-SJ电池不具有像之前公开的实施例那样的、EVA/玻璃材料堆叠形式的正面加强物。相反,增强是在背面,其形状可以是有助于为独立的TFSS提供机械强度的形状。图14是可用于BSR-SJ电池的栅格状背面加强物的背面示意图。栅格状背面加强物为薄TFSS衬底提供机械支撑,且是由交叉的网格线形成。网格线的宽度可在O. 3mm至Imm的范围内,厚度可在5μπι至300μπι的范围内。开口形状,占据网格线之间的间隔,可以是正方形、矩形、圆形或其他替代性的形状。在图14所示的正方形开口的情况下,该正方形的尺寸可在5mm*5_至50mm*50_的范围内。图15是示出用于制造背结背触点薄膜太阳能电池BSR-SJ的制造工艺的工艺流程。图16A至16J是根据图15的制造工艺制造太阳能电池时在关键制造工艺步骤之后太阳能电池的剖面图。图16A至16J的剖面图中描绘的结构特征是一致的,除非另行标注。图16A至16G中,太阳能电池的剖面图显示其正面(向阳面)朝下,背面(非-向阳/接触面)朝上以便更好地图示处理步骤。剖面图的取向在图16H至16J中做了调整。除了几个关键差异之外,用于制造BSR-SJ的工艺流程也与制造FSR-SJ (图3)的工艺流程相似。第一,在模板上进行η++和ρ++基极和触点区域火炉退火步骤后,FSR-SJ经过激光切割和分离,而在BSR-SJ制造流程中,图案化栅格状永久性加强物被附着在电池背面。如图16G所示,增强材料应能够允许后续步骤达到450摄氏度,或至少250摄氏度,且光学吸收最小,损耗非常低。在具体的实例中,增强材料可以是硬塑料、PTFE或PV-级硅树脂胶。栅格状增强材料可通过丝网印刷、喷墨印刷或激光立体光固化快速成型工具来施加。替代性地,由合适材料比如PTFE或其它高温聚合的或纤维/聚合物复合材料预先制造的晶格结构可被制成薄板且在TFSS分离之前被压覆并热熔到TFSS背面表面。由于下一个步骤包括TFSS分离,因此当TFSS自由竖立时,增强步骤可允许在薄TFSS上进行进一步的处理。这种增强也可是永久性的,因为只出现在背面(非向阳面)。分离后,正面已准备好进行处理,且在背面加强物的支撑下,正面可经历TFSS清洁、织构化和电介质(例如SiHxNy:H)钝化沉积。此外,当增强就位后,可进行背面金属化处理。对于栅格状图案而言,电池金属化分布式汇流条(优选地为NxN分布式汇流条图案)和交叉指状电极可以是垂直走向和水平走向。应注意图9B示出Nxl分布式汇流条设计的具体例子。NxN设计允许背面加强物可设置在汇流条之间。FSR设计在正面加强物就位之前,应在背面使用临时性(比如MESC)载具,此种增强是临时性的,在正面被强化后被分离。相比之下,在BSR设计中背面的增强是永久性的,因此制造工艺不需要额外的正面加强物步骤。除了上述的差异之外,BSR-SJ中的所有预执行(pre-release)步骤以及它们的顺序,比如模板清洁、多孔娃形成、娃槽凹陷、热氧化、交叉指状图案以及喷墨印刷/退火与图3中描述的FSR-SJ工艺是共同的因此可以是相同的。此外,一些后执行(post-release)步骤,比如TFSS清洁、织构化和SiHxNy :H沉积在FSR-SJ与BSR-SJ之间也是共同的。BSR-SJ制造流程也可利用以上描述的FSR-SJ制造流程的所有变化和微细差别。 图17是根据本发明的、具有背面加强物和邻接结(此具体实施例以下被称为BSR-AJ电池)以及集成了朗伯镜的背结背触点薄膜太阳能电池的剖面图。很重要地,完成的BSR-AJ电池不具有像之前公开的实施例那样的EVA/玻璃材料堆叠形式的正面加强物。相反,增强是在背面,其形状可以是有助于为独立的TFSS提供机械强度的形状。图18是示出用于制造背结背触点薄膜太阳能电池BSR-AJ的制造工艺的工艺流程。图19A至191是根据图18的制造工艺制造太阳能电池时在关键制造工艺步骤后太阳能电池的剖面图。图19A至191的剖面图中描绘的结构特征是一致的,除非另行标注。在图19A至19F中,太阳能电池的剖面图显示其正面(向阳面)朝下,背面(非向阳/接触面)朝上以便更好地图示处理步骤。剖面图的取向在图19G至191中做了调整。除了在BSR-SJ情况中与背面加强物有关的上述几个关键差别之外,用于制造BSR-AJ的工艺流程也与制造FSR-AJ (图11)的工艺流程相似。所有描述的电池实施例(FSR-SJ、FSR-AJ、BSR-SJ和BSR-AJ)都有共同的选择性发射极特征。其指的是一种属性,由于该特性,在硼掺杂薄层,在触点区域下面使用硼的P-型材料的掺杂浓度(用于NBLAC过渡(rendition))比其它地方(没有触点的地方)的硼掺杂浓度要高。这种结构的一个优点是其可产生较高的Voc,因此导致更高的电池效率。然而,在本发明的替代性实施例中,太阳能电池也可没有选择性发射极。因而,发射极的掺杂(在NBLAC情况下,硼掺杂)在触点下面和其它地方是相同的。这种发射极属性的变化可应用于上述四种结构(FSR-SJ-NSE、FSR-AJ-NSE, BSR-AJ-NSE以及BSR-SJ-NSE),下文描述FSR-AJ-NSE,作为例子来公开非选择性发射极设计和制造方法。图20是根据本发明的、具有正面加强物、邻接结、非选择性发射极(此具体实施例以下被称为FSR-AJ-NS电池)以及集成了朗伯镜的背结背触点薄膜太阳能电池的剖面图。与图10中的FSR-AJ实施例相比,唯一的不同之处在于FSR-AJ-NSE的发射极触点直接在ρ+发射极的表面制造。图21是示出用于制造背结背触点薄膜太阳能电池FSR-AJ-NS的制造工艺的工艺流程。图22A至22J是根据图21的制造工艺制造太阳能电池时在关键制造工艺步骤后太阳能电池的剖面图。图22A至22J的剖面图中描绘的结构特征是一致的,除非另行标注。在图22A至22F中,太阳能电池的剖面图显示其正面(向阳面)朝下,背面(非向阳/接触面)朝上以便更好地图示处理步骤。剖面图的取向在图22G至22J中做了调整。与图10和11中的FSR-AJ相比,仅进行磷喷墨印刷来形成选择性基极触点,而在之前描述的工艺流程中的硼喷墨印刷步骤被省略。因此,发射极金属层被直接施加于P+硅薄层。在替代性的实施例中,磷喷墨印刷被POCl掺杂替代。使用POCl的一个优点是POCl是成熟的工艺,且用于生产已经有很长时间了。图21和图22D图示和描述了基于POCL的制造FSR-AJ-NS的工艺流程。模板清洁、多孔硅、外延和热氧化步骤与之前描述的基于喷墨掺杂物的选择性发射极的步骤是相同的。应注意之前描述的工艺的所有变化同样适用于此工艺,所述工艺包括,但不局限于,使用MESC作为临时性载具。 然而,两个流程(FSRAJ-NS和FSR-AJ)的后氧化相异。在图21和图22k至22J中描述和示出的POCl (非选择性发射极)流程中,氧化之后仅激光烧蚀基极区域,这与激光同时烧蚀基极和发射极不同。随后,在该烧蚀区域完成基于POCL火炉的触点掺杂。在FSRAJ-NSE实施例中,POCl环境要足够强,以便反掺杂发射极区域。且氧化物的厚度要足够厚,以便在各处阻挡磷,除了前面激光步骤烧蚀氧化物的地方之外。此步骤后,随后使用激光烧蚀氧化物以打开发射极和基极触点区域。在POCl工艺之前不同时烧蚀基极和发射极区域是因为POCl是气相掺杂,当仅仅想反掺杂基极区域时,POCl也会进入发射极区域。在制造FSR-AJ-NE的实施例中,继激光烧蚀发射极之后,用可移动载具附着到烧蚀面(非向阳面)来分离TFSS。然后接下来的制造步骤包括TFSS清洁、织构化、SiHxNy: H沉积、正面加强物以及最后的金属化(先前已结合图3描述了)都适用于此流程,其各种变化也已讨论过。在基于POCl的制造流程的不同实施例中,要制造FSR-SJ-NS,则须在热氧化后且在激光烧蚀基极之前增加基极嵌套区域的硅蚀刻。结合图3中描述的所有通过硅蚀刻来制作浅槽隔离(凹陷)的方法同样适用于这种结构。在基于POCl以制造BSR-AJ-NS和BSR-SJ-NS的制造流程的不同实施例中,其流程分别与制造FSR-AJ-NS和FSR-SJ-NS的流程相似,不同之处在于,在制造BSR时,在分离前且在形成发射极触点开口后,例如使用硬塑料和硅树脂胶,电池背面便有了永久性加强物。如描述的那样,在一个实施例中,增强的形状可以是栅格状。在非选择性发射极情况中,与FSR相比,BSR的另一个不同之处在于BSR未使用临时性可移动载具用于增强非向阳面,因为在非向阳面上适当的位置已经有了永久性加强物。在必需的最后的金属化步骤之前取除附着正面加强物的步骤。在BSR情况中,在背面加强物就位后围绕增强图案操作来完成金属化。正如针对喷墨选择性发射极流程所描述的那样,对于这两种BSR设计而言,这可以使NxN汇流条设计更有利于金属化。在操作中,本发明用于提供以下几个方面在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行正面强化(FSR)。该太阳能电池具有背触点、分离结(SJ)、选择性发射极和集成的朗伯镜。这种类型的太阳能电池被称为FSR-SJ电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行正面强化(FSR)。该太阳能电池具有背触点、邻接结(AJ)、选择性发射极和集成的朗伯镜。这种类型的太阳能电池被称为FSR-AJ电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行背面强化(BSR)。该太阳能电池具有背触点、分离结(SJ)、选择性发射极和集成的朗伯镜。这种类型的太阳能电池被称为BSR-SJ电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行背面强化(BSR)。该太阳能电池具有背触点、邻接结(AJ)、选择性发射极和集成的朗伯镜。这种类型的太阳能电池被称为BSR-AJ电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行正面强化(FSR)。该太阳能电池具有背触点、分离结(SJ)、非选择性发射极(NSE)和集成的朗伯镜。这种类型的太阳能电池被称为FSR-SJ-NSE 电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行正面强化(FSR)。该太阳能电池具有背触点、邻接·结(AJ)、非选择性发射极(NS)和集成的朗伯镜。这种类型的太阳能电池被称为FSR-AJ-NSE电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行背面强化(BSR)。该太阳能电池具有背触点、分离结(SJ)、非选择性发射极(NS)和集成的朗伯镜。这种类型的太阳能电池被称为BSR-SJ-NSE电池。在分离的薄膜硅衬底(TFSS)上制造的太阳能电池,所述薄膜硅衬底大体上是平面的,且由临时性和/或永久性载具进行背面强化(BSR)。该太阳能电池具有背触点、邻接结(AJ)、非选择性发射极(NSE)和集成的朗伯镜。这种类型的太阳能电池被称为BSR-AJ-NSE 电池。衬底增强(FSR或BSR,临时性或永久性)、结(SJ或AJ)、发射极(SE或NSE)以及朗伯镜(集成的或分离的)的类型选择的变化都被认为是包含在本发明权利要求的范围内。另外,制造方面包括,第一载具是一个厚的半导体(例如,优选地为用于晶体硅太阳能电池的晶体硅)晶片,可重复使用的模板,而第二载具是一种可支撑TFSS的低成本材料,永久性背面加强物(其可永久地附着于电池)。可重复使用的模板载具,因为是标准厚度的硅晶片,所以能够承受高温。主晶片可以是各种尺寸比如200mm或300mm的圆形或正方形,其厚度可经受所有的太阳能电池工艺而不断裂,比如200 以上(包括半导体标准300mm直径,750 U m的厚晶片),也还可以是其它任意尺寸(因子)的正方形或其它几何形状。这种载具的成本通过重复使用和多个TFSS制造周期的分摊可显著地降低。这种载具还必须满足上述第三个标准,即有利于高产的TFSS或薄外延衬底的分离(从而使其成为可重复使用的临时性载具)。这可以通过在模板和TFSS之间使用多孔硅层(优选地为具有两种孔隙率的双层或具有多个孔隙率的多层)来实现。通过使用消减电化学工艺便可很容易地在载具顶部形成这种多孔硅薄层。该层的多孔性是要实现恰当的平衡,以至于该层有足够多的孔(以及机械上足够脆)以便能轻易地被分离(使用任何分离工艺如机械分离(MR)或在液体中使用超声机械分离(SMR)),同时也不要有太多的孔,以至于可有利于高质量、低缺陷薄TFSS的生长,且在载具上进行工艺的过程中,不会出现过早分离。一种方法是使用具有至少两个不同孔隙率的多层多孔硅(也就是说,双层多孔硅),其中挨着模板的底层具有较高的孔隙率值,而挨着外延层的多孔硅顶层具有较低的孔隙率值。其结果是可满足模板载具的具体掺杂要求。其它制造方面包括第二载具和后续载具,用于在使用分离的TFSS制造太阳能电池的各种处理步骤中提供临时性机械支撑。所述处理步骤的例子包括MR、金属化、前表面织构化和钝化。所述载具的例子包括可移动静电夹头(MESC)、可移动真空夹头(MOVAC)和带有可去除粘着层的可移动夹头。本发明的其它方面包括描述的使用具有亚纳秒脉冲宽度的短激光脉冲来完成背结背触点太阳能电池触点的至少一个极,优选地两个极的触点开口。而且,描述了使用所述激光脉冲来完成上述的背结背触点太阳能电池触点区域至少一个极,优选地两个极的触点区域的掺杂。
其它制造方面包括最后一个载具,为薄太阳能电池提供永久性加强物以及在太阳能电池模组中支撑太阳能电池。背面支撑/增强有几种选择,包括低成本的钠钙玻璃和各种低成本的塑料。提供上述优选实施例的描述是为了使本领域的任何技术人员制造或使用所请求保护的主题。这些实施例的各种修改对本领域中的技术人员来说是很明显的,且此处确定的基本原则可应用于其它实施例,无需创造性劳动。因此,所要求保护的主题不是要限于此处展示的实施例,而是要覆盖与此处公开的原理和新颖特征相一致的最广的范围。
权利要求
1.一种背结背触点薄太阳能电池,包括 沉积的半导体层,包括 具有钝化层的光捕获正面表面, 掺杂的基极区域,和 掺杂的背面发射极区域,其极性与所述掺杂的基极区域相反; 在所述背面发射极区域上的背面钝化介电层和图案化反射层,其中所述背面钝化介电层和所述图案化反射层形成光捕获背面反射镜; 背面发射极触点和背面基极触点,其连接至在所述背结背触点薄太阳能电池的背面形成交叉指状金属化图案的金属化图案的金属互连件;以及 在所述背结背触点薄太阳能电池的正面或背面上设置的至少一个永久性支撑增强。
2.如权利要求I所述的背结背触点薄太阳能电池,其中所述沉积的半导体层是厚度在15至50微米范围内的外延硅层。
3.如权利要求I所述的背结背触点薄太阳能电池,其中所述具有钝化层的光捕获正面表面充当抗反射涂层。
4.如权利要求I所述的背结背触点薄太阳能电池,其中所述具有钝化层的光捕获正面表面提供场辅助钝化。
5.如权利要求I所述的背结背触点薄太阳能电池,其中所述掺杂的背面发射极区域是原位掺杂的外延发射极区域,发射极结厚度小于3微米。
6.如权利要求I所述的背结背触点薄太阳能电池,其中所述交叉指状金属化图案是交叉指状电极和汇流条的分布式阵列。
7.如权利要求I所述的背结背触点薄太阳能电池,其中在所述背面基极触点下面的较高浓度的基极掺杂区域大体上与发射极区域分离,从而形成分离结。
8.如权利要求I所述的背结背触点薄太阳能电池,其中在所述背面基极触点下面的较高浓度的基极掺杂区域与发射极区域相邻,从而形成邻接结。
9.如权利要求I所述的背结背触点薄太阳能电池,其中所述反射镜是朗伯镜。
10.如权利要求I所述的背结背触点薄太阳能电池,其中在所述发射极触点下面的局部掺杂浓度大体上较高,从而形成选择性发射极触点。
11.如权利要求I所述的背结背触点薄太阳能电池,其中所述永久性支撑增强物是透明的正面支撑增强物。
12.如权利要求I所述的背结背触点薄太阳能电池,其中所述永久性支撑增强物是背面栅格状支撑增强物。
13.一种背结背触点薄太阳能电池,包括 厚度在15至50微米范围内的平面外延硅层,包括 具有提供场辅助钝化的抗反射涂层的织构化的正面表面, 掺杂的基极区域,和 掺杂的背面外延发射极区域,其极性与所述掺杂的基极区域相反; 在所述背面发射极区域上的背面钝化介电层和图案化反射层,其中所述背面钝化介电层和所述图案化反射层形成朗伯镜; 背面发射极触点和背面基极触点,其连接至在所述背结背触点薄太阳能电池的背面形成交叉指状金属化图案的金属互连件;和 在所述背结背触点薄太阳能电池的正面设置的永久性透明正面支撑增强物。
14.一种背结背触点薄太阳能电池,包括 厚度在15至50微米范围内的平面外延硅层,包括 具有提供场辅助钝化的抗反射涂层的织构化的正面表面, 掺杂的基极区域,和 掺杂的背面外延发射极区域,其极性与所述掺杂的基极区域相反; 在所述背面发射极区域上的背面钝化介电层和图案化反射层,其中所述背面钝化介电层和所述图案化反射层形成朗伯镜; 背面发射极触点和背面基极触点,其连接至在所述背结背触点薄太阳能电池的背面形成交叉指状电极和汇流条的金属化图案的金属互连件;和 在所述背结背触点薄太阳能电池的背面设置的永久性栅格状背面支撑增强物。
15.一种从晶体半导体层制造背结背触点薄太阳能电池的方法,所述方法为所述晶体半导体层提供结构性支撑,所述方法包括 在模板上形成多孔半导体层,其中所述模板提供结构性支撑,且在背结背触点太阳能电池背面处理步骤中充当高温临时性载具,所述背面处理步骤包括 在所述多孔半导体层上沉积掺杂的基极晶体半导体层; 在所述掺杂的基极晶体半导体层上形成掺杂的发射极层; 在所述掺杂的发射极层上沉积背面钝化介电层; 在交叉指状电极图案中形成穿越所述介电层的背面基极和发射极触点开口 ;和 对暴露的基极区域进行掺杂以形成掺杂的基极触点区域; 沿着所述多孔半导体层将所述掺杂的基极晶体半导体层与所述模板分离,其中,在分离之前将电池背面临时性载具附着到所述太阳能电池背面以为电池正面处理步骤提供支撑,所述正面处理步骤包括形成具有钝化层的光捕获正面表面; 将透明的永久性加强物支撑附着到所述电池正面,并且分离所述电池背面临时性载具;和 将所述电池背面金属化,以形成交叉指状背面基极和发射极金属化。
16.如权利要求15所述的方法,其中沉积掺杂的基极晶体半导体层的步骤还包括沉积厚度在15至50微米范围内的掺杂的基极外延硅层。
17.如权利要求15所述的方法,其中在所述掺杂的基极晶体半导体层上形成掺杂的发射极层的步骤还包括形成掺杂的发射极外延层。
18.如权利要求15的方法,还包括在所述发射极层蚀刻沟槽图案,曝光下面的所述掺杂的基极半导体层以形成所述掺杂的基极区域的步骤。
19.如权利要求15所述的方法,其中在交叉指状电极图案中使用激光烧蚀形成穿越所述介电层的背面基极和发射极触点开口。
20.如权利要求15所述的方法,其中所述交叉指状电极图案是分布式汇流条阵列。
21.一种从晶体半导体层制造背结背触点薄太阳能电池的方法,所述方法为所述晶体半导体层提供连续的结构性支撑,所述方法包括 在模板上形成多孔半导体层,其中所述模板提供结构性支撑,并且在背结背触点太阳能电池的背面处理步骤中充当高温临时性载具,所述背面处理步骤包括 在所述多孔半导体层上沉积掺杂的基极晶体半导体层; 在所述掺杂的基极晶体半导体层上形成掺杂的发射极层; 在所述掺杂的发射极层上沉积背面钝化介电层; 在交叉指状电极图案中形成穿越所述介电层的背面基极和发射极触点开口 ;和 对暴露的基极区域进行掺杂,以形成发射极区域和基极区域; 沿着所述多孔半导体层将所述掺杂的基极晶体半导体层与所述模板分离,其中在分离之前将永久性电池背面支撑连接到所述太阳能电池背面以为电池的处理步骤提供支撑,所述电池处理步骤包括 形成具有钝化层的光捕获正面表面;和 将所述电池的背面金属化,以在交叉指状电极和汇流条的图案中形成背面基极和发射极触点。
22.如权利要求21所述的方法,其中沉积掺杂的基极晶体半导体层的步骤还包括沉积厚度在15至50微米范围内的掺杂的基极外延硅层。
23.如权利要求21所述的方法,其中在所述掺杂的基极晶体半导体层上形成掺杂的发射极层的步骤还包括形成掺杂的发射极外延层。
24.如权利要求21的方法,还包括在所述发射极层蚀刻沟槽图案,曝光下面的所述掺杂的基极半导体层以形成所述掺杂的基极区域的步骤。
25.如权利要求21所述的方法,其中在交叉指状电极图案中使用激光烧蚀形成穿越所述介电层的背面基极和发射极触点开口。
26.如权利要求21所述的方法,其中所述交叉指状电极图案是分布式汇流条阵列。
27.如权利要求21所述的方法,其中所述永久性电池背面支撑是栅格状的。
全文摘要
本发明提供了背结背触点太阳能电池及其制造方法。所述背结背触点太阳能电池包括衬底,所述衬底具有具有钝化层的光捕获正面表面,掺杂的基极区域,以及掺杂的背面发射极区域,所述背面发射极区域的极性与掺杂的基极区域相反。发射极上的背面钝化层和图案化的反射层形成光捕获背面反射镜。在所述太阳能电池的背面设置交叉指状金属化图案,并且为该电池的支撑提供永久性加强物。
文档编号H01L31/042GK102763226SQ201080063494
公开日2012年10月31日 申请日期2010年12月9日 优先权日2009年12月9日
发明者A·卡尔卡特拉, D·X·王, E·范·科斯查伟, K·J·克拉默, M·M·穆斯利赫, P·卡普尔, S·苏特, V·V·雷纳 申请人:速力斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1