半导体器件的含导电颗粒的绝缘体与半导体构成的耐压层的制作方法

文档序号:7166199阅读:104来源:国知局
专利名称:半导体器件的含导电颗粒的绝缘体与半导体构成的耐压层的制作方法
半导体器件的含导电颗粒的绝缘体与半导体构成的耐压层技术领域
本发明属于半导体技术领域,特别涉及高压和/或功率器件的耐压结构。
背景技术
在本发明人以前提出的发明专利ZL01139957.0(申请日2001年11月21日)及US 7, 230,310B2(申请日2007年I月12日)中曾经提出了一种用高介电系数介质与半导体构成的半导体器件的耐压层的结构。利用该结构可以使耐压层有较重的掺杂而这种掺杂又不会导致较高的电场。其原理和超结器件的结构类似。
可是,高介电系数的材料固然不少,但它们不一定和半导体有相同的膨胀系数。而功率器件在使用时温度会有变化。此外,一般高介电系数的材料为铁电材料,其介电系数与所加电场的历史有关。用铁电材料做这种结构内的高介电系数材料显然是对高速度功率器件较为不利。发明内容
本发明的发明人发现上述现有技术中存在问题,并因此针对所述问题中的至少一个问题提出了一种新的技术方案。
本发明实施例的内容包括:
1.根据本发明的一个方面,提供一种半导体器件,在该半导体器件两个相对的主表面(第一主表面和第二主表面)内至少含有一个元胞,每个元胞在紧贴第一主表面(各图中除电极以外的最上表面)内有一个器件的第一特征区(例如图2和图3中的P+区24,或图7中的M区21,或图8中的P区22及M区21,或图9中的p区57及n+区56,或图10-13中的P+区29、η.区30及栅绝缘区32),在紧贴第二主表面(各图中除电极以外的最下表面)内有一个器件的第二特征区(图2、图3和图7中的η+区25,或图8中的η区20及η+区25,或图10中的η+区28与η区45,或图11中的η+区28,或图12中的ρ+区36,或图13中的P+区36与η区46,或图14中的ρ+区54与η区55,或图16中的η+区51),在器件的第一特征区和第二特征区之间存在一个耐压区(图2 (a)、图3、图7、图8、图9、图14、图16中的η区27与I区38,或图2 (b)中的P区37与I区38,或图2 (c)、图2 (d)、图11、图12、图13中的η区27与P区37及I区38,或图10中的η区43与I区38),所述耐压区包括至少一个半导体区(图2(a)、图3、图7、图8、图9、图14、图16中的η区27,或图2 (b)中的P区37,或图2(c)、图2(d)、图11、图12、图13中的η区27与p区37,或图10中的η区43)和一个含导电颗粒的绝缘体区(各图中的I区38),所述半导体区和所述含导电颗粒的绝缘体区之间有相互直接连接的面(例如图2 (a)中的η区27与I区38之间的接触面)。这种耐压区结构不仅可利用来制造高耐压的器件,还可以用作高耐压器件的结边缘技术。
所述耐压区中的含导电颗粒的绝缘体区中的导电颗粒是均匀分布的,或是不均匀分布的,含导电颗粒的绝缘体区中的绝缘体是一种单一化学成分的材料,或不是一种单一化学成分的材料。
所述半导体器件的电极在各图中用粗线表示,是在上表面之上或是在下表面之下。
2.(参见图4、图5)根据发明内容I所述的半导体器件是由多个元胞的密堆积形成的。在器件的第一特征区和第二特征区之间的一个剖面上,耐压区的构造是叉指条形结构(参见图4 (a)、图5(a)),或六角形结构(参见图4(g)、图4(h)、图5(g)或图5(h)),或长方形结构(参见图4(d)、图4(e)、图5(d)或图5(e)),或方块形结构(参见图4(b)、图4 (c)、图5 (b)、图5 (c)),或镶嵌方块形结构(参见图4 (f)、图5 (f))。
在离开第一主表面的不同距离的剖面上,含导电颗粒的绝缘体区的面积与半导体区的面积的比例是不变的(例如图2、图3所示)或是变化的(例如图15、图16所示)。
3.(参见图2、图3)根据发明内容I所述的耐压区中的半导体区是第一种导电类型的半导体区与/或第二种导电类型的半导体区构成(例如图2(a)中的耐压区中的半导体区是η型区27,图2(b)中的耐压区中的半导体区是P型区37,图2(c)中的耐压区中的半导体区是由η型区27与P型区37共同构成)。
4.(参见图2、图3及图9-11)根据发明内容I所述的半导体器件,器件的第二特征区是一个第一种导电类型的半导体区(例如图2、图3中的η+区25)。
器件的第一特征区包含一个与耐压区中的半导体区直接连接的第二种导电类型的半导体区(例如图2、图3中的P+区24,及图10中的P+区29)。
器件的第一特征区还包含一个与耐压区中含导电颗粒的绝缘体区(图2、图3及图9-11中的I区38)相连接的第二种导电类型的半导体区(例如图2、图3中的P+区24,及图9中的P区57)或一个导体区。
5.(参见图13)根据发明内容I所述的半导体器件,器件的第二特征区有一个第二种导电类型的半导体区(P+区36)紧贴在第二主表面,还有一个与第二种导电类型的半导体区相连接的第一种导电类型的半导体区(η区46),此第一种导电类型的半导体区又与耐压区(η区27与P区37及I区38)相连接。
器件的第一特征区(栅绝缘体区32、ρ+区29、η+区30)包含一个与耐压区中第一种导电类型的半导体区(η区27)直接连接的第二种导电类型的半导体区(P+区29)。
器件的第一特征区还包含一个与耐压区中含导电颗粒的绝缘体区(I区38)相连接的第二种导电类型的半导体区或一个导体区(区23)。
本发明的实施例在具体实践上提供下面一些器件:
6.(参见图7)根据发明内容I所述的半导体器件是一个金-半接触的肖特基二极管,器件的第二特征区是一个第一种导电类型的半导体区(η+区25)。
器件的第一特征区是一个金属(Μ区21),所述金属与耐压区(I区38与η区27)中的第一种导电类型的半导体材料(η区27)直接连接。
器件的第一特征区及器件的第二特征区各有导体连出分别作为肖特基二极管的两个电极(各为电极A和电极K)。
器件的第一特征区还包含一个与耐压区中含导电颗粒的绝缘体区(I区38)相连接的第二种导电类型的半导体区或一个导体区(Μ区21)。
7.(参见图8)根据发明内容I所述的半导体器件是一个JBS整流器或一个MPS整流器,器件的第二特征区是一个第一种导电类型的半导体区(η+区25和η区20)。
器件的第一特征区含有一个金属区(M区21),所述金属区与耐压区(η区27与I区38)中的第一种导电类型的半导体区(η区27)有直接连接。
器件的第一特征区还含有第二种导电类型的半导体区(P区22),它与耐压区中的第一种导电类型的半导体区(η区27)有直接连接还与所述金属区直接连接。
器件的第一特征区及器件的第二特征区各有导体连出分别作为JBS整流器或一个MPS整流器的两个电极(阳极A及阴极K)。
8.(参见图9)根据发明内容4所述的半导体器件是一个双极型晶体管,器件的第二特征区是一个第一种导电类型的半导体区(η+区58)。
所述耐压区中至少有第一种导电类型的半导体区(η区27),构成双极型晶体管的集电区。
所述器件的第一特征区所包含的第二种导电类型的半导体区(P区57),构成双极型晶体管的基区。
所述器件的第一特征区内还有一个除在半导体表面外均被所述基区所包围的第一种导电类型的半导体区(η+区56),构成双极型晶体管的发射区。
在所述器件的第二特征区的第一种导电类型的半导体区(η+区58)有导体连出作为集电极(电极C),在所述基区(P区57)有导体连出作为基极(基极B),在所述发射区(η+区56)有导体连出作为发射极(发射极Ε)。
9.(参见图10、图11)根据发明内容4所述的半导体器件是一个金属_绝缘体_半导体场效应晶体管,器件的第二特征区是一个第一种导电类型的半导体区(η+区28),构成金属-绝缘体-半导体场效应晶体管的漏区。
所述耐压区中至少有第一种导电类型的半导体区(图10中的η区43、图11中的η区27),构成金属-绝缘体-半导体场效应晶体管的漂移区。
所述器件的第一特征区所包含的第二种导电类型的半导体区(P+区29),构成金属-绝缘体-半导体场效应晶体管的源衬底区。
所述金属-绝缘体-半导体场效应晶体管的源区是第一种导电类型的半导体区(η+区30),它除在半导体表面外均被源衬底区(P+区29)所包围。
从源区的一部分出发、经过源衬底区的一部分、直到耐压区中的第一种导电类型的半导体区为止的半导体表面上覆盖有一层绝缘体(32),构成金属-绝缘体-半导体场效应晶体管的栅区;
在所述漏区(η+区28)有导体连出作为漏电极(电极D),在所述源区(η+区30)有导体与源衬底区相连接作为源电极(电极S),在所述的栅区有导体连出作为栅电极(电极G)。
10.(参见图12、图13)根据发明内容5所述的半导体器件是一个绝缘体栅晶体管(IGBT),器件的第二特征区的第二种导电类型的半导体区(P+区36)是IGBT的阳极区。
所述器件的第一特征区所包含的第二种导电类型的半导体区(P+区29),构成IGBT所含的绝缘栅场效应晶体管的源衬底区。
所述IGBT所含的绝缘栅场效应晶体管的源区是一个第一种导电类型的半导体区(η+区30),它除在半导体表面外均被源衬底区(P+区29)所包围。
从源区的一部分出发、经过源衬底区的一部分、直到耐压区中的第一种导电类型的半导体区为止的半导体表面上覆盖有一层绝缘体(32),构成IGBT所含的绝缘栅场效应晶体管的栅区。
在所述阳极区有导体连出作为阳极(电极A),在所述源区有导体与源衬底区相连接作为阴极(电极K),在所述的栅区有导体连出作为栅电极(电极G)。
11.(参见图14)根据发明内容5所述的半导体器件是一个晶闸管,器件的第二特征区的第二种导电类型的半导体区(P+区54)是晶闸管的阳极区。
所述器件的第一特征区所包含的第二种导电类型的半导体区(P区53),构成晶闸管的栅区。
所述晶闸管的阴极区是第一种导电类型的半导体区(η区52),它除在半导体表面外均被栅区所包围。
从栅区的一部分出发、到耐压区中的含导电颗粒的绝缘体区之上覆盖有一层导体,构成晶闸管的门极(电极G)。
在所述阳极区(P+区54)有导体连出作为阳极(阳极Α),在所述阴极区(η区52)上有导体连出作为阴极(阴极K)。
显然,除上述器件以外,本发明自然可以应用于光控晶闸管(LCT),门极关断晶闸管(GTO),MOS控制晶闸管(MCT),结型场效应晶体管(JFET),静电感应晶体管(SIT),等等,坐坐寸寸ο
最后应当指出,本发明还可用于作为结边缘的耐压技术。
12.(参见图16)根据发明内容I所述的元胞是位于一个半导体器件的工作区的边缘(例如图2的最边缘),作为结边缘的耐压技术,其特征在于:所述耐压区中的含导电颗粒的绝缘体区(I区38)与器件的第一特征区中的第二种导电类型的半导体区(例如图2中P+区24)通过一个第二种导电类型的半导体区(图16(a)中的P区50)或一个导体(图16(b)中的电极Α)相连接。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。


构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:
图1绝缘体中含有导电颗粒在电场作用下导电颗粒感应出一对正、负电荷的示意图。
图2半导体与含导电颗粒的绝缘体构成的耐压层的示意2 (a)含导电颗粒的绝缘体与η型半导体构成的耐压层;
2 (b)含导电颗粒的绝缘体与P型半导体构成的耐压层;
2(c)含导电颗粒的绝缘体与η型半导体区及P型半导体区构成的耐压层,含导电颗粒的绝缘体的周围是P型半导体区;
2(d)含导电颗粒的绝缘体与η型半导体区及P型半导体区构成的耐压层,绝缘体的周围一边是P型半导体区,一边是η型半导体区。
图3耐压区中含导电颗粒的绝缘体与半导体的宽度及厚度的比较示意3(a)n型半导体区与含导电颗粒的绝缘体区的宽度并不一定相等的情形的示意3(b)耐压区中含导电颗粒的绝缘体的厚度比η型半导体的厚度为短,且它没有达到下面的器件的第二特征区中的η+区25的情形的示意3(c)含导电颗粒的绝缘体的厚度比η型半导体的厚度为长,它的下部位置低于n区27的下部位置,且已经达到下面的器件的第二特征区中的n+区25的情形的示意3(d)含导电颗粒的绝缘体的厚度也比η型半导体的厚度为长,它的上部位置超过了 η区27的上部位置;
图4沿图2(a)中II-II'剖面的含导电颗粒的绝缘体的耐压层的各种不同结构示意图,各个元胞是用虚点线分开的;
4(a)叉指条图形;
4(b)S区全连通的方块形元胞图形;
4(c)含导电颗粒的绝缘体区全连通的方块形元胞图形;
4(d)S区全连通的矩形元胞图形;
4(e)含导电颗粒的绝缘体区全连通的矩形元胞图形;
4(f)镶嵌方块图形;
4(g)S区全连通的六角形密堆积图形;
4(h)含导电颗粒的绝缘体区全连通的六角形密堆积图形。
图5表示一个沿图2(d)中ΙΙΙ-ΙΙI'剖面的含有P区及n区的含导电颗粒的绝缘体的耐压层的各种不同结构示意5(a)叉指条图形;
5(b)n区全连通的方块形元胞图形;
5 C)P区全连通的方块形元胞图形;
5(d)n区全连通的矩形元胞图形;
5(e)P区全连通的矩形元胞图形;
5(f)镶嵌方块图形之一;
5(g)镶嵌方块图形之二 ;
5(h)n区全连通的六角形密堆积图形;
5(i)p区全连通的六角形密堆积图形。
图6含导电颗粒的绝缘体与半导体材料之间有一个薄的低介电系数的SiO2层的含导电颗粒的绝缘体的耐压层示意图。
图7 —个利用含导电颗粒的绝缘体与半导体构成的耐压层形成的Schottky 二极管的不意图。
图8利用含导电颗粒的绝缘体与半导体构成的耐压层形成的Schottky整流器的示意8(a) 一个利用含导电颗粒的绝缘体与半导体构成的耐压层形成的耐高压的组合P-1-N Schottky整流器的示意8(b)另一个利用含导电颗粒的绝缘体与半导体构成的耐压层形成的耐高压的结势鱼控制的Schottky整流器的示意图。
图9 一个利用含导电颗粒的绝缘体与半导体构成的耐压层形成的耐高压的双极型晶体管的示意图。
图10—个含导电颗粒的绝缘体经过一个轻掺杂η区再和n+漏区接触构成的n-VDMOST的示意图。
图11 一个利用图5(d)的含导电颗粒的绝缘体与半导体构成的耐压层的n-VDMOST的示意图。
图12—个利用图5(d)的含导电颗粒的绝缘体与半导体构成的耐压层形成的IGBT的示意图。
图13—个利用图5(d)的含导电颗粒的绝缘体与半导体构成的耐压层形成的具有缓冲层的IGBT的示意图。
图14 一个利用含导电颗粒的绝缘体与半导体构成的耐压层形成的晶闸管的示意图。
图15利用含导电颗粒的绝缘体的耐压层结构的VDMOST的一种制造过程的示意15 (a)在η.衬底上长有η外延层;
15(b)n+衬底上有η外延层的硅片上刻了深度接近于外延层厚度的槽;
15 (C)在槽中填满了含导电颗粒的绝缘体的材料;
15(d)形成电极接触。
图16利用半导体与含导电颗粒的绝缘体构成的结边缘的示意16(a)用含导电颗粒的绝缘体作为一个ρ-η结二极管的最边缘的元胞的一个例子的不意16(b)含导电颗粒的绝缘体在第一主表面与阳极A直接连接;
16(c)含导电颗粒的绝缘体之上不一定要有导体覆盖,而它本身覆盖了相当一部分的P区的情形的示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
首先,对物质的介电系数(permittivity) ε异于真空中的介电系数Stl的由来作一说明,以便于理解为何绝缘体中含有导电颗粒可以在宏观上表现为一个高介电系数的材料。在一个物质中,在一个频率远低于可见光频率的电场下,电场导致原子中电子相对于原子核的移动,或离子晶体中正负离子之间的移动,或有极性的分子的物体中电偶极矩的定向化移动,这些移动造成了沿电场方向的极化。如果用E代表电场强度(electricfield strength), D代表电位移(electric displacement)或称电通量密度,P代表电极化强度(electric polarization)或单位体积中的总电偶极矩(dipole moment per unitvolume), ε C1代表真空中的介电系数。由于极化强度等于是增加了电位移强度,而它本身又正比于电场强度,因此D = ε 0Ε+Ρ = ε jE,显然,ε工〉ε。。
在本专利所述的耐压区中含导电颗粒的绝缘体区域中,并不要求导电颗粒一定是均匀分布的。
在本专利所述的耐压区中含导电颗粒的绝缘体区域中的绝缘体也可以不是各处都是一种单一化学成分的材料。
本发明公开提出一种方案,采用一般的绝缘体,其中含有许多导电的颗粒,来取代背景技术中上述发明的高介电系数材料。这种含有导电颗粒的绝缘体的介电性质在宏观上与高介电系数介质一样,但这种绝缘体可以是固体,也可以是胶体,也可以是塑料,可以是液体,甚至可以是它们之间所组合的混合体。因此,可以回避膨胀系数不一致的问题,也可以做到没有铁电性能。
如图1所示,绝缘体12中能导电的颗粒11在电场的作用下同样有极化作用。当外加电场的方向为从纸面的下方指向上方时,则每个颗粒11的下表面会感应出负电荷,为图中的号,而上表面为正电荷,为图中的“+”号,正负电荷大小相等,颗粒的总电荷不变。但颗粒本身造成了电偶极矩(dipole moment),电偶极矩对其外部产生了电通量。如有许多这样的电偶极矩,那么总体效果是有一个平均电通量,其方向是从下向上,从而产生了一个P值。也就是说,宏观而言,一个绝缘体中含有导电的颗粒,可以使该绝缘体的有效介电系数增高。
下面参照附图对本发明进行更全面的描述,其中说明本发明的示例性实施例。在附图中,相同的标号表示相同或者相似的组件或者元素;附图中电极接触用的导体统一用粗线表示,在以后不再赘述。在本专利所示的各图中,用I代表这种含导电颗粒的绝缘体。它可以取代发明专利ZL011399570或US7,230, 310B2中的高K区。在这种方法形成的耐压区的两个相反的接触面上,各有器件的第一特征区及第二特征区。图2(a)示出一个以η型半导体区27与这种绝缘体38为耐压区所作二极管的情形,其中P+区24是器件的第一特征区,它与阳极A相联接。η+区25是器件的第二特征区,它与阴极K相联接。绝缘体中的小黑点代表导电颗粒。图2(a)的耐压区的η型区改为P型区则成了图2(b)。在图2(c)中,耐压区中除含有导电颗粒的绝缘体38之外,还含有η型半导体材料27及P型材料37,绝缘体38夹在两个P型半导体37之间,在图2 (d)中耐压区中的含有导电颗粒的绝缘体的一边是P型半导体37,一边是η型半导体27。
应当说明,在耐压区中含导电颗粒的绝缘体不一定要和半导体有同样的宽度和厚度。图3(a)中的a及b分别代表图2(a)中η区27宽度及I区38的宽度。我们并不要求a与b相等。图3(b)中的耐压区中含导电颗粒的绝缘体38的厚度W1比η型半导体27的厚度Ws为短,而且它没有达到下面的器件的第二特征区25,图3 (c)中含导电颗粒的绝缘体38的厚度W1比η型半导体27的厚度Ws为长,而且它已经达到下面的器件的第二特征区25。图3(d)中含导电颗粒的绝缘体38的厚度W1也比η型半导体27的厚度Ws为长,使得它与器件的第一特征区中的P+区24的接触面不在同一平面上。
含导电颗粒的绝缘体区与半导体区的安排有许多结构图形。图4示出了一些沿图2(a)的ΙΙ-ΙΓ剖面的许多含导电颗粒的绝缘体区38与半导体区39的安排方法。图中由虚点线(除图4(a)外是虚线)划分出许多元胞。这些图形包括叉指条图形(图4(a)),半导体区全连通的方块形元胞图形(图4(b)),含导电颗粒的绝缘体区全连通的方块形元胞图形(图4(c)),半导体区全连通的矩形元胞图形(图4(d)),含导电颗粒的绝缘体区全连通的矩形元胞图形(图4(e)),镶嵌方块图形(图4(f)),半导体区全连通的六角形密堆积图形(图4(g)),含导电颗粒的绝缘体区全连通的六角形密堆积图形(图4(h))。图5示出在图2(d)沿II1-1II’剖面的含导电颗粒的绝缘体区38与η型半导体区27及ρ型半导体区37的安排的许多结构示意图。这些图形包括叉指条图形(图5(a)),η区27全连通方块形元胞图形(图5(b)),ρ区37全连通方块形元胞图形(图5(c)),η区27全连通的矩形元胞图形(图5(d)),ρ区37全连通的矩形元胞图形(图5(e)),镶嵌方块图形之一(图5(f)),镶嵌方块图形之二(图5 (g)),η区27全连通的六角形密堆积图形(图5 (h)),ρ区37全连通的六角形密堆积图形(图5(i))。
上述半导体如果是Si,它与所采用的含导电颗粒的绝缘体之间可以有一个薄的SiO2层40隔开,如 图6所示。图中的阴影区代表SiO2层40。尽管SiO2的介电系数很小,但只要SiO2层40足够薄,并不妨碍半导体S的电通量线进入含导电颗粒的绝缘体中去,或电通量线从含导电颗粒的绝缘体进入半导体S中去。
本专利的图2的ρ+区24是ρ-η结二极管的器件的第一特征区,在P+区24的上面有一个电极A与之相联,A是阳极。图2的η+区25是ρ-η结二极管的器件的第二特征区,在η+区25的下面有一个电极K与之相联,K是阴极。
如果把图2的ρ+区24改为一个金属,如图7所示。那么就形成了一种Schottky二极管,这时器件的第一特征区是一个金属Μ,即图中的21。
利用本专利也可以制造耐高压的结势鱼控制的Schottky整流器,或称夹断整流器(Junction Barrier Controlled Schottky rectifier,JBS,or pinch rectifier)。同理,也可制造耐高压的组合 P-1-N Schottky 整流器(Merged P-1-N/Schottky rectifier,MPS rectifier),它们的结构均可用图8表示。
图8(a)及图8(b)的器件的第一特征区包括一个金属层M,及与M直接连接的ρ区22。在器件的第一特征区的顶部有一个电极A的联接线。该两图的器件的第二特征区包括η区20及η+区25,在η+区25下面有电极K与之相联。
利用本发明也可以制造耐高压的双极型晶体管,如图9所示。这里示出一个ηρη双极型晶体管,器件的第一特征区含有一个P基区57,在基区之上的中心部分含有一个η+发射区56。在器件的第一特征区的顶部有发射极E联于η+发射区56。在基区57上,还有一个基极B与之相联接。该双极型晶体管的第二特征区是η.区58,其下有集电极C与之相联接。
图10示出利用本发明构成的一种n-VDMIST。其中p+区29是它的源衬底区、n+区30是它的源区,绝缘体区32是它的栅绝缘区。其中含导电颗粒的绝缘体区38并不与n+漏区28直接接触,而是经过一个η区45来接触。由于这个η区45的存在,VDMIST在导通时靠近η+漏区28的电阻会进一步减小。在漏极D与源极S加反向电压时,图中44区及45区也有小部分电压,但器件的耐压主要靠η区43及含导电颗粒的绝缘体区38,这里器件的第二特征区包括η区45及η+漏区28。
图11示出利用本发明的图5(d)结构作耐压层的n-VDMIST的另一种元胞的示意图。在这种元胞中,耐压区还包括P区37。
图12示出利用本发明所构成的一种IGBT。它与图11的VDMIST的主要区别是图11的第二特征区内的η.区28现在变成P+区36。
图13示出利用本发明构成的一种带有缓冲层(46区)的IGBT。它与图12的主要区别是在器件的第二特征区内,除有P+的衬底36外,还有在ρ+衬底36上的一个η缓冲层46。此图中的区23可以是一个ρ+区,也可以是一个导体。
本发明的耐压层中的含导电颗粒的绝缘体,当然并非要求和半导体区有同样的深度。例如,图10中的38的最下部是一个比η+区28略高的η区45,但此绝缘体也可以是深入到η+区28内部。
利用本发明当然也可用来制造晶闸管的耐压区,其中一个例子如图14所示,图中示出的是其Pnpn的一个元胞。器件的第一特征区包括ρ区53,及被该ρ区所包围的η区52,η区52上有阴极K与之相联。在ρ区53的上有一个门极G,门极G通过导体与含导电颗粒的绝缘体的顶部相连。该晶闸管的器件的第二特征区包括η区55及ρ+区54。在ρ+区54底部有阳极A与之相联。
不难理解,本发明还可用于许许多多其它高压器件中,例如可用于光控晶闸管(LCT),门极关断晶闸管(GTO),MOS控制晶闸管(MCT),结型场效应晶体管(JFET),静电感应晶体管(SIT),等等,等等。
图15示出一个制造像图10那样的VDMIS的方法。首先,在衬底η+区28上长有外延层η区27。其次,用通常制造VDMIS的方法做出ρ+源衬底区29及η.源区30,以及栅绝缘层32。采用掩膜掩蔽需要不被刻槽的地方。然后用化学腐蚀的方法或等离子刻蚀的方法刻出深槽,即图15(b)的两η区27间的凹处。然后将硅片放在真空的器皿中抽空。抽空之后立即以含导电颗粒的胶体覆盖。由于槽内是真空,因此会把该种胶体吸入。将有导电颗粒的胶体表面平整化以后,形成图15(c)的结构。最后是将上、下两表面形成电极D、S、G,结果如图15(d)所示。
本发明的耐压区不仅可以用于各种器件的工作区,也可以作为各种器件的结边缘技术。图16(a)示出了一个ρ-η结二极管的最边缘的元胞用含导电颗粒的绝缘体的一个例子。其中图的左边连接到器件的工作区,右边的含导电颗粒的区域只要有一定的宽度,上面有与P区50相同的ρ区,或有与ρ区相联的导体,如图16 (b)所示,即可作为该二极管的结边缘。
图16(c)示出另一个利用导电颗粒的绝缘体作为结边缘技术的例子。在这里,含导电颗粒的绝缘体38之上不一定要有导体覆盖,而它本身覆盖了相当一部分的ρ区50。
显然,上述各例中所有的η型区与所有的P型区均可对换,对换后成为一种相反导电类型的器件。
显然,对于熟悉本领域的技术人员而言,还可以在本发明的思想下,作出其它许多应用例子而不超过本发明的权利要求保护范围。
至此,已经详细描述了根据本发明的半导体器件。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。
权利要求
1.一种半导体器件,所述半导体器件包括一个第一主表面和一个与所述第一主表面相对的第二主表面,在所述第一主表面和所述第二主表面内至少含有一个元胞,所述元胞在紧贴所述第一主表面内有一个器件的第一特征区,在紧贴所述第二主表面内有一个器件的第二特征区,在器件的所述第一特征区和所述第二特征区之间存在一个耐压区,其特征在于:所述耐压区包括至少一个半导体区和一个含导电颗粒的绝缘体区,所述半导体区和所述含导电颗粒的绝缘体区之间有相互直接连接的面; 所述半导体器件至少有两个电极;一个电极紧贴于所述第一主表面的部分区域或全部区域;另一个电极紧贴于所述第二主表面的部分区域或全部区域;两个电极在所述第一主表面和所述第二主表面所夹的空间的外部。
2.根据权利要求1所述的半导体器件,其特征在于, 所述耐压区中的含导电颗粒的绝缘体区中的导电颗粒是均匀分布的,或是不均匀分布的,含导电颗粒的绝缘体区中的绝缘体是一种单一化学成分的材料,或不是一种单一化学成分的材料。
3.根据权利要求1所述的半导体器件,其特征在于,所述的半导体器件由多个元胞的密堆积形成的;在器件的所述第一特征区和所述第二特征区之间的一个剖面上,耐压区的构造是叉指条形结构,或六角形结构,或长方形结构,或方块形结构,或镶嵌方块形结构; 在离开所述第一主表面的不同距离的剖面上,含导电颗粒的绝缘体区的面积与半导体区的面积的比例是不变的或是变化的。
4.根据权利要求1所述半导体器件,其特征在于,所述耐压区中的半导体区包括第一种导电类型的半导体区与/或第二种导电类型的半导体区。
5.根据权利要求1所述的半导体器件,其特征在于,所述器件的第二特征区为一个第一种导电类型的半导体区; 所述器件的第一特征区包含一个与耐压区中的半导体区直接连接的第二种导电类型的半导体区; 所述第一特征区还包含一个与耐压区中含导电颗粒的绝缘体区相连接的第二种导电类型的半导体区或一个导体区。
6.根据权利要求1所述的半导体器件,其特征在于,所述器件的第二特征区有一个第二种导电类型的半导体区紧贴在所述第二主表面,还有一个与第二种导电类型的半导体区相连接的第一种导电 类型的半导体区,所述第一种导电类型的半导体区又与耐压区相连接; 所述器件的第一特征区包含一个与耐压区中第一种导电类型的半导体区直接连接的第二种导电类型的半导体区; 所述器件的第一特征区还包含一个与耐压区中含导电颗粒的绝缘体区相连接的第二种导电类型的半导体区或一个导体区。
7.根据权利要求1所述的半导体器件,其特征在于,所述半导体器件是金-半接触的肖特基二极管,所述器件的第二特征区是一个第一种导电类型的半导体区; 所述器件的第一特征区为金属,所述金属与耐压区中的第一种导电类型的半导体材料直接连接; 所述器件的第一特征区及所述器件的第二特征区各有导体连出分别作为肖特基二极管的两个电极; 所述器件的第一特征区还包含一个与耐压区中含导电颗粒的绝缘体区相连接的第二种导电类型的半导体区或一个导体区。
8.根据权利要求1所述的半导体器件,其特征在于,所述半导体器件是一个JBS整流器或一个MPS整流器,所述器件的第二特征区是一个第一种导电类型的半导体区; 所述器件的第一特征区含有一个金属区,所述金属区与耐压区中的第一种导电类型的半导体区有直接连接; 所述器件的第一特征区还含有第二种导电类型的半导体区,它与耐压区中的第一种导电类型的半导体区有直接连接还与所述金属区直接连接; 所述器件的第一特征区及所述器件的第二特征区各有导体连出分别作为JBS整流器或一个MPS整流器的两个电极。
9.根据权利要求5所述的半导体器件,其特征在于,所述半导体器件是一个双极型晶体管,所述器件的第二特征区是一个第一种导电类型的半导体区; 所述耐压区中至少有第一种导电类型的半导体区,构成双极型晶体管的集电区; 所述器件的第一特征区所包含的第二种导电类型的半导体区,构成双极型晶体管的基区; 所述器件的第一特征区内 还有一个除在半导体表面外均被所述基区所包围的第一种导电类型的半导体区,构成双极型晶体管的发射区; 在所述器件的第二特征区的第一种导电类型的半导体区有导体连出作为集电极,在所述基区有导体连出作为基极,在所述发射区有导体连出作为发射极。
10.根据权利要求5所述的半导体器件,其特征在于,所述半导体器件是一个金属-绝缘体-半导体场效应晶体管,器件的第二特征区是一个第一种导电类型的半导体区,构成金属-绝缘体-半导体场效应晶体管的漏区; 所述耐压区中至少有第一种导电类型的半导体区,构成金属-绝缘体-半导体场效应晶体管的漂移区; 所述器件的第一特征区所包含的第二种导电类型的半导体区,构成金属-绝缘体-半导体场效应晶体管的源衬底区; 所述金属-绝缘体-半导体场效应晶体管的源区是第一种导电类型的半导体区,它除在半导体表面外均被源衬底区所包围; 从源区的一部分出发、经过源衬底区的一部分、直到耐压区中的第一种导电类型的半导体区为止的半导体表面上覆盖有一层绝缘体,构成金属-绝缘体-半导体场效应晶体管的栅区; 在所述漏区有导体连出作为漏电极,在所述源区有导体与源衬底区相连接作为源电极,在所述的栅区有导体连出作为栅电极。
11.根据权利要求6所述的半导体器件,其特征在于,所述半导体器件是一个绝缘体栅晶体管(IGBT),器件的第二特征区的第二种导电类型的半导体区是IGBT的阳极区; 所述器件的第一特征区所包含的第二种导电类型的半导体区,构成IGBT所含的绝缘栅场效应晶体管的源衬底区; 所述IGBT所含的绝缘栅场效应晶体管的源区是一个第一种导电类型的半导体区,它除在半导体表面外均被源衬底区所包围; 从源区的一部分出发、经过源衬底区的一部分、直到耐压区中的第一种导电类型的半导体区为止的半导体表面上覆盖有一层绝缘体,构成IGBT所含的绝缘栅场效应晶体管的栅区; 在所述阳极区有导体连出作为阳极,在所述源区有导体与源衬底区相连接作为阴极,在所述的栅区有导体连出作为栅电极。
12.根据权利要求6所述的半导体器件,其特征在于,所述半导体器件是一个晶闸管,器件的第二特征区的第二种导电类型的半导体区是晶闸管的阳极区; 所述器件的第一特征区所包含的第二种导电类型的半导体区,构成晶闸管的栅区; 所述晶闸管的阴极区是第一种导电类型的半导体区,它除在半导体表面外均被栅区所包围; 从栅区的一部分出发、到耐压区中的含导电颗粒的绝缘体区之上覆盖有一层导体,构成晶闸管的门极; 在所述阳极区有导体连出作为阳极,在所述阴极区上有导体连出作为阴极。
13.根据权利要求1所述半导体器件,其特征在于,所述半导体器件的元胞是位于一个半导体器件的工作区的边缘,作为结边缘的耐压技术,所述耐压区中的含导电颗粒的绝缘体区与器件的第一特征区中的第二种导电类型的半导体区通过一个第二种导电类型的半导体区或一个导体相连接。
全文摘要
本发明公开了一种半导体器件,涉及半导体技术领域。该半导体器件在器件的两个相对的主表面内含有至少一个元胞,每个元胞在第一主表面内有一个器件的第一特征区,在第二主表面内有一个器件的第二特征区,在两个器件的特征区之间存在一个耐压区,耐压区包括至少一个半导体区和一个含导电颗粒的绝缘体区,半导体区和含导电颗粒的绝缘体区均有相互直接连接的面。这种耐压区结构不仅可利用来制造高耐压的器件,还可以用作高耐压器件的结边缘技术。
文档编号H01L29/739GK103137658SQ20111038759
公开日2013年6月5日 申请日期2011年11月30日 优先权日2011年11月30日
发明者陈星弼 申请人:成都成电知力微电子设计有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1