具有耗尽型异质结和壳层钝化纳米颗粒的光伏装置的制作方法

文档序号:7253117阅读:119来源:国知局
专利名称:具有耗尽型异质结和壳层钝化纳米颗粒的光伏装置的制作方法
技术领域
本发明涉及光 伏电池和量子点的领域。
背景技术
通过光伏效应产生电力的太阳能电池既需要低成本,又需要高效率,以便此类电池能够提供实用的发电手段来替代常规的发电手段。一种能够降低光伏电池的制造成本的途径是通过利用溶液处理来形成作为该电池的一部分的集光材料层。然而,此类电池的效率取决于包括该集光材料在内的电池材料。最理想的集光材料是以下材料该材料通过使太阳射线的在可见光光谱和红外线光谱中的吸收都最大化来实现高的短路电流密度Js。,且该材料从每个被吸收的光子以高的开路电压V。。和高的填充因数FF的形式获取高水平的功。对于输入的太阳光强度Pstjlm (通常为100 mff cm_2),功率转换效率η被定义如下。
VJscFF~
solar文献“Infrared photovoltaics made by solution processing,,(Sargent, E. , Nat. Photonics 3,325-33 I (2009))和“Solar cells from colloidal nanocrystals:Fundamentals, materials, devices, and economics,,(H. S. , et al. , Curr.Opin. Colloid Interface Sci. 14,245-259 (2009))披露了如下内容通过将胶体量子点(colloidal quantum dot)用作集光材料,使得光伏电池具有高的功率转换效率。胶体量子点光伏提供了通过溶液处理来形成集光层的能力,还提供了在宽的范围上调谐带隙的能力,这在单结电池和多结电池中均可以带来益处。调谐带隙的能力也使得能够使用廉价的、丰富的原来不适用于光伏能量转换的超低带隙半导体。如文献 “Photovoltaic devices employing ternary PbSxSe1^ Nanocrystals,,(Ma, ff. , etal. , Nano Lett. 9,1699-1703(2009))等中的报道,通过将铅硫族化物量子点和肖特基结(Schottky junction)组合起来,实现了效率为3. 4%的光伏电池。通过使具有由胶体量子点构成的薄膜层的纳米多孔TiO2电极敏化,实现了 3. 2%的功率转换效率,由此也获得了显著的进步。例如可以参考文献“Highly efficient CdSe quantum-dot-sensitizedTi02photoelectrodes for solar cell application,,(Fan, S. , et al. , Electrochem.Commun. 11,1337-1330(2009))。然而,胶体量子点和肖特基装置均存在着对光伏效率的某些限制。在肖特基装置中,V。。值和FF值均远远落在它们的潜力之下;而在由胶体量子点光敏化的电池中,尽管V。。和FF增大了,但Jse值通常较低。

发明内容
目前已发现,通过将集光纳米颗粒层与电子接受材料层进行配对,使得在装置未被照射时这两层之间的结在该结的至少一侧上的自由电子和自由空穴都大体上被耗尽,就能够显著减少或克服如上所述的胶体量子点光伏的限制。实现上述这种耗尽的有效手段是为这两层选择具有不同带隙大小的材料。于是,因为处于上述结的两侧上的是两种不同的材料,所以这样的结是异质结,并且特别地,由于在该结的附近存在低量的自由电子和自由空穴或者不存在自由电子和自由空穴,因而这样的结是耗尽型异质结。上述耗尽是由从电子接受接触部到纳米颗粒的电荷迁移而引起的。在本发明的某些实施例中,纳米颗粒是量子点,其包括P型胶体量子点,并且电子接受层是金属氧化物或包括金属氧化物。与具有非常高的自由电子密度的肖特基结的金属接触部的电荷密度相比,上述耗尽至少部分地有助于让电子接受层中的电荷密度相对较低。
与现有技术的光伏装置相比,本发明范围内的光伏装置的特定实施例提供了另外的优点。例如,当将金属氧化物用作电子接受层时,这使得光伏装置能够被构造如下该电子接受层作为该光伏装置的前表面或作为太阳射线进入形成光伏结的两个半导体层时首先穿过的那一层。于是,由上述射线释放的电子更不容易与空穴复合,这是因为这些实施例中的电子在到达它们的目标电极之前具有更短的行程距离。而且,与金属-半导体肖特基结相比,在上述结是位于金属氧化物和量子点之间的结的实施例中,该结被更好地界定并且更容易钝化,因而更不易于出现缺陷。这就避免了在界面处出现费米能级钉扎。而且,在这些实施例中,通过在价带中引入大的不连续性并通过让界面处的电子密度最小化,与肖特基装置相比呈现出了更小的针对空穴注入的势垒。还发现,通过在纳米晶体上沉积阳离子以形成第一壳层或内壳层并且在第一壳层上沉积阴离子以形成第二壳层或外壳层,通常提高了光伏装置中和光电装置中的纳米晶体的性能,尤其是提高了具有表面阴离子的纳米晶体的性能。上述内壳层和上述外壳层一起钝化纳米晶体上的往往会破坏该纳米晶体的量子局限(quantum confinement)的表面缺陷。已知的是,通过在纳米晶体表面上布置诸如乙二硫醇(ethanedithiol)、丁胺或巯基丙酸之类的短有机配体(ligand),可以实现钝化。当使用阳离子壳层和阴离子壳层来代替这些配体时,就提供了如下优点阳离子壳层不是如同有机配体往往会结合到阳离子那样,而是结合到纳米晶体表面上的阴离子,而且这样的离子结合在暴露于空气和光中、尤其暴露于湿气、氧气和热中时是稳定的。这些阳离子壳层和阴离子壳层的其它优点在于通过避免对有机配体的需要,这些壳层使得纳米晶体能够以彼此非常靠近的方式驻留在光吸收膜中,并由此提高了电子波函数重叠(electron wave function overlap)和载流子迁移率,这些都是有机配体通常会妨碍的可贵特征。


图I是本发明范围内的耗尽型异质结光伏电池示例的电流密度和电压的关系曲线。图2是本发明范围内的耗尽型异质结光伏电池示例的电流和电压的关系曲线。
图3是本发明范围内的耗尽型异质结光伏电池示例的外量子效率(externalquantum efficiency ;EQE)和波长的关系曲线。图4是本发明范围内的耗尽型异质结光伏电池示例的装置电容和偏置电压的关系曲线以及装置电阻和偏置电压的关系曲线。图5表示了本发明范围内的具有双壳层钝化量子点的耗尽型异质结光伏电池示例的吸收光谱。图6是本发明范围内的具有双壳层钝化量子点的耗尽型异质结光伏电池示例的载流子寿命和光强度的关系曲线。图7是本发明范围内的具有双壳层钝化量子点的耗尽型异质结光伏 电池示例的电流密度和电压的关系曲线。
具体实施例方式本文所使用的用于表征异质结的邻近区域的术语“大体上被耗尽”表示该(这些)区域中的电荷密度比肖特基结的金属侧的电荷密度小多个数量级。在本发明的某些异质结区域中,电荷密度比传导性金属的电荷密度小三个以上的数量级,并且在这些区域之中的很多区域中,电荷密度比传导性金属的电荷密度小四个以上、五个以上或六个以上的数量级。当异质结的η型电子接受层侧存在耗尽电荷密度时,能够实现特别有效的结果。在本发明的很多实施例中,耗尽区域中的电荷密度的范围为IX IO12CnT1左右 I X IO18CnT1左右,或者另一种替代范围为I X IO14CnT1左右X IO17Cm-1左右,或者又一种替代范围为I X IO15CnT1左右 I X IO16CnT1左右。为了通过在结的两侧使用具有不同带隙大小的材料来实现耗尽型异质结,在很多情况下能够利用如下的带隙差(即,结的一侧的带隙大小与结的另一侧的带隙大小之间的差异)来获得有效的结果该带隙差至少为1.5eV左右,或处于1.5eV左右飞eV左右的范围内,或者甚至处于2eV左右飞eV左右的范围内以获得更有效的结果。当在结的一侧上存在η型电子接受层而在另一侧上存在P型光吸收用纳米颗粒时,在η型电子接受层中将会存在着更大的带隙。量子点作为纳米颗粒是特别有用的,且胶体量子点(B卩,由胶体化学制造的量子点)是值得注意的示例。在这些胶体量子点中,金属硫族化物量子点在本领域中是已知的,且铅硫族化物量子点(特别是硫化铅量子点)尤其受到关注。已知的是,量子点吸收具有与各个量子点的直径相关的波长的光,并且在本发明中能够利用这个特性来选择或优化量子点的光吸收特征。在很多情况下,能够有效地使用数量平均直径(number-averagediameter)在2nm左右 15nm左右的范围内的量子点,但数量平均直径在3nm左右 IOnm左右的范围内的那些量子点常常最合适,且在这样的量子点之中,数量平均直径在3nm左右飞nm左右的范围内的量子点常常甚至更有利。假如以接触的方式放置着的η型电子接受层和光吸收用纳米颗粒形成上述耗尽型异质结,该η型电子接受层的组分能够在宽的范围内变化。金属氧化物是能够有效地用作该η型电子接受层的材料的示例,且二氧化钛是该金属氧化物的特别有益的示例。在本发明的与具有阳离子内钝化壳层(inner passivating shell)和阴离子外钝化壳层(outer passivating shell)的纳米颗粒有关的那些方面中,这类纳米颗粒的内核通常是在其表面具有露出的阴离子的量子点。如上所述,在很多情况下,量子点内核是金属硫族化物胶体量子点,最常用的是金属硫化物胶体量子点。该金属硫化物的显著示例为硫化铅,并且硫化铅量子点通常是富含铅的,其表面主要含有露出的Pb2+离子,但也包含露出的S2_离子。内壳层的阳离子结合到内核表面处的s2_离子并由此使这些#_离子钝化,而外壳层中的阴离子结合到内壳层的上述阳离子并由此使这些阳离子钝化。能够用于第一壳层的阳离子的示例是Cd2+、Pb2+、Zn2+和Sn2+。在这些阳离子中,Cd2+尤其是适宜和有效的。能够有效地用作第二壳层的阴离子的示例是卤素离子和硫氰酸根离子。在这些阴离子中,卤素离子(尤其是溴离子)是最佳的,或在某些情况下是尤其适宜的。这些双壳层纳米颗粒适合用作上述耗尽型异质结的光吸收用纳米颗粒,但也适用于常规的光电装置(即,具有用于吸收光能量并将所吸收的 能量转换成电流的颗粒的任何装置)。因此,在其他方面,本发明的目的是在不使用有机配体作为钝化剂的前提下形成钝化的P型半导体纳米颗粒。这是通过以下方式来实现的使用含阳离子试剂的溶液对具有表面阴离子的P型半导体量子点进行处理,所述含阳离子试剂对上述表面阴离子进行钝化;并且接着使用含阴离子试剂的溶液对所获得的经过阳离子处理后的量子点内核进行处理,所述阴离子钝化上述阳离子。对于作为用于钝化量子点内核的阳离子的Cd2+的示例,含Cd2+试剂的示例是氯化镉-十四烷基磷酸-油胺(Cadmium(II)chloride-tetradecylphosphonic acid-oleylamine)。含阴离子试剂的不例是季铵齒化物(quaternary ammonium halide)和硫氰酸盐(thiocyanate),且具体不例是十六烧基三甲基溴化铵(cetyltrimethylammonium bromide)、己基三甲基氯化铵(hexatrimethylammonium chloride)、四丁基碘化胺(tetrabutylammonium iodide)和四丁基硫氰酸铵(tetrbutylammonium thiocyanate)。利用了一个或多个上述特征的光伏装置通常包含至少两个电极,各个电极分别电连接至异质结的两个半导体层中的对应半导体层。在位于η型金属氧化物层和P型金属硫族化物胶体量子点层之间的异质结中,例如,第一电极与η型金属氧化物层直接电接触,第二电极与胶体量子点层接触。在很多情况下,第一电极是光传输用电极,其示例为氧化铝、氧化锌、氧化铟锡(ITO)和掺杂有氟的氧化锡(FT0)。在很多情况下,第二电极是镍、氟化锂、钼、钯、银、金或铜,或者是这些金属之中的两种以上金属的合金,例如银、金和铜的合金。电极材料的一个组合示例是第一电极是掺杂有氟的氧化锡,第二电极是金。示例 I本示例示出了本发明范围内的耗尽型异质结光伏电池的制备,各个耗尽型异质结光伏电池是通过在透明的TiO2电极上分别沉积直径为3. 7nm (带隙I. 3eV)、4. 3nm (带隙I. IeV)和5. 5nm (带隙O. 9eV)的PbS胶体量子点层(近似为1017cm_3n型掺杂)而形成的。按照下列方式使用TiO2涂胶(澳大利亚新南威尔士州昆比恩市Dyesol股份有限公司,DSL-90T)在涂覆有SnO2 = F(FTO)的玻璃基板(美国印第安纳州哈特福特市HartfordGlass有限公司,Pilkington TEC 15)上制备上述TiO2电极。首先使用甲苯清洗FTO基板,接着在Triton与去离子水混合物(1°/Γ3%体积)中对该FTO基板进行二十分钟的超声波处理。单独地,通过将一份重量的TiO2纳米颗粒和三份重量的松油醇(terpineol)进行组合来制备TiO2涂胶。接着,以1500rpm的转速并且持续90秒将该涂胶旋涂在经过TiCl4处理后的FTO基板上。使用浸有异丙醇的棉签将各个基板的一个边缘上的涂胶擦拭掉,从而露出基板FTO的一部分以便用于电接触。紧接着,在加热板(hotplate)上在400° C下进行一个小时的烧结。接着,将基板放置在60mM TiCl4/去离子水溶液的浴池中,并在该浴池中以70° C进行30分钟的烘焙。接下来,使用去离子水对这些基板进行清洗,使用氮气进行干燥,并放置在520° C的管式炉中一个小时,随后将它们冷却到室温。然后,允许将样品冷却,并重复上述TiCl4处理,随后最终加热到520° C。接着,在作进一步处理之前,将各基板放置于各个基板保持器中,并在空气中贮藏至一个星期。按照下列方式来制备PbS胶体量子点。将双(三甲基硫化硅)(Bis (trimethylsilyl) sulphide) (TMS,合成级)(O. 18g, Imol)添加到经过干燥并通过在真空下以80° C加热24小时而进行了 脱气的I-十八烯(IOmL)中。油酸(I. 34g,4. 8mmol )、PbO (O. 45g, 2. OmmoI)和I-十八烯(14. 2g, 56. 2mmol)的混合物在真空下被加热到95。C并持续16小时,接着放置于氩气中。将烧瓶温度增加到120° C,并注入TMS/十八烯混合物,这导致温度降低到大约95° C,并且让烧瓶冷却到36° C。使用50mL的蒸馏丙酮来沉淀纳米晶体,并在环境条件下使纳米晶体受到离心作用。接着,丢弃上层清液,并将沉淀物再分散到甲苯中,使用20mL的丙酮再次沉淀,并进行五分钟的离心作用,然后干燥,且再次分散到甲苯中(大约200mg ml/1)。然后,将纳米晶体放置在充满N2的手套箱中,在该手套箱中使用甲烷对纳米晶体进行两次沉淀,然后最终将纳米晶体以25或50mg mL-1再分散在辛烷中。在环境条件下利用25或50mg / mL的量子点溶液对TiO2表面进行多层旋转涂覆,由此把所得到的被油酸盐(oleate)覆盖着的PbS量子点沉积在TiO2上。每个层以2500rpm进行沉积,接着使用以10%存在于甲醇中的3-巯基丙酸进行简单处理以替换油酸盐配体,并由此使量子点变得不能溶解,接着使用甲醇和辛烷进行清洗。利用25mg / mL的分散物进行的十五个沉积循环在TiO2基板上产生了厚度为22nm的热稳定层,利用50mg / mL的分散物进行的八个沉积循环也产生了相同厚度的热稳定层。然后,将各个层叠的介质转移到具有N2氛围的手套箱中,并放置整个晚上。接着,通过阴影掩模(shadow mask)以IW cnT2的功率密度在5mTorr Ar压力下使用DC(直流)溅射法在量子点层上沉积厚度为150nnT200nm的金接触部。在由聚焦离子束统削(focused-ion-beam milling)法制备的薄切片样品上进行空间分辨X射线元素分析和透射电子显微镜检查,并且结果表明量子点层和TiO2层有非常小的相互渗透。图I是按照如上方式制备的耗尽型异质结太阳能电池的光伏响应的关系曲线(表示为电流密度(mA cm_2)和电压的关系曲线),该图中下方的曲线表示暗电流,上方的曲线表示用I. 3eV带隙(3. 7nm)量子点制造的电池的照射电流。在环境条件下使用Keithley 2400数字源表来测量数据。使用把强度调整到IOOmW cm—2的Xe灯和滤光片,将AM I. 5的太阳光谱模拟至A级规格内。通过在样品位置处的O. 049cm2环形孔,使用Melles-Griot宽带功率计(在300nm至2000nm内响应)来测量源强度,并使用经过校准的太阳能电池来证实该源强度。功率测量的精度估计为±7%。对于具有I. 3eV带隙量子点的五个装置,V。。的平均值为0.53 ±O. 02V,Jsc的平均值为15. 4± I. 4mA cnT2,且FF的平均值为57 ±4%。因而,平均AM I. 5功率转换效率η为4. 9±0· 3%。对于表现最好的装置,Voc为O. 52V,Jsc为16. 4mAcnT2,且FF为58%,从而得到的η为5. 1%。图2是按照如上方式制备的耗尽型异质结太阳能电池的光伏响应的关系曲线(表示为电流(mA)和电压的关系曲线),该图中下方的曲线表示用O. 9eV带隙(5. 5nm)量子点制造的电池,中间的曲线表示用I. IeV带隙(4. 3nm)量子点制造的电池,上方的曲线表示用1.3eV带隙(3.7nm)量子点制造的电池。图2表明最大的量子点针对TiO2中的电子迁移具有最小的驱动力,但具有这些O. 9eV带隙的装置仍表现出超过lOmA/cm2的短路电流密度Jsc及O. 38V的开路电压V。。。这表明从PbS胶体量子点到TiO2电极的有效电子迁移需要最小的能带偏移。这与有机光伏相反,有机光伏在电子供体和电子受体之间具有较大的能带偏移,而较大的能带偏移严重削弱了效率。图3是外量子效率(EQE)和波长的关系曲线以及吸收和波长的关系曲线,该图中下方的曲线示出了表现最好的I. 3eV带隙量子点装置的EQE,上方的曲线示出了该装置的光谱吸收。EQE是所提取的电子与入射光子的比率,且该曲线作为入射光子转换效率光谱是已知的。通过利用单色器传递400W的Xe灯的输出并使用合适的级消除滤光片(order-sorting filters)来获得 EQE。通过 I. 5nm 孔且利用经过校准的 Newport 818-UV功率计来测量单色器的经过准直的输出。测量带宽为大约40nm,且强度随着Xe灯的光谱而变化。平均强度为O. 3mW cm_2。使用Keithley 2400数字源表来测量电流-电压响应。该 曲线表明在短波长处,EQE到达超过60%的值,而在较长波长处,EQE的峰为24%。图4是装置电容和偏置电压的关系曲线以及装置电阻和偏置电压的关系曲线。电容是由耗尽层引起的,该耗尽层是由于从TiO2到PbS胶体量子点层的电荷迁移而形成的。使用Agilent 4284A LCR(电感电容电阻)测量计直接对光伏装置进行电容-电压测量。在Cary 500UV-vis-IR (紫外可见红外)扫描分光光度计上进行吸收光谱分析。使用IOmV的信号幅值在2kHz处获取阻抗,并且对于接触面积为O. 03cm3的装置来说,在图4中通过等效的并联电阻Rp和电容Cp来表示出该阻抗。该曲线表明了 电容和它的分布于两个半导体之间的相关耗尽层持续到O. 6V的偏压,该值接近所观察到的开路电压值。这就直接表明存在有对光生载流子的分离进行有效驱动的内置场。示例 2本示例示出了本发明范围内的包含量子点内核、阳离子内壳层和阴离子外壳层的纳米颗粒的制备和使用。按照示例I中所说明的方式,合成了覆盖有油酸配体的胶体量子点,并且除去它们的油酸盐配体。在合成期间,使用过量的Pb来制备这些量子点,从而产生富含铅的体组分,但在它们的表面(来自于它们的晶体结构中的非极性面{100}和{110}或者极性面{111})上存在硫原子。为了在这些PbS内核上面形成由Cd阳离子形成的内壳层,使用CdCl2-十四烷基磷酸-油胺(CdCl2-TDPA-OLA)的溶液来处理纳米颗粒。这个处理导致激子吸收的轻微红移(在6nm和24nm之间),因此建议在上述表面上生长由非常富含阳离子的材料形成的部分单层,这可以从当进行仅包含TDPA-OLA (不包含CdCl2)的控制处理时观察到的大约30nm的蓝移来加强解释。元素分析和X射线光电子显微镜检查均表明所获得的样品的粉末中存在的镉与其它元素的原子比率为0.3%。X射线衍射表明不存在纯粹基于Cd的相(诸如CdS )。接着,使用十六烷基三甲基溴化铵的甲醇溶液来涂覆由溴离子形成的外壳层。十六烷基三甲基铵阳离子与颗粒上的任何的剩余油酸盐结合从而形成盐,然后使用最终的甲醇清洗过程来除去所形成的盐。在室温(23° C)下在空气中进行上述的十六烷基三甲基溴化铵处理和甲醇清洗,其中包括不存在肼(hydrazine)的情形。通过表明了在2922CHT1和2852CHT1处完全不存在C-H振动的FTIR (傅立叶变换红外)光谱,来证实在经过上述处理的颗粒的外表面处不存在任何可感知量的有机物。通过X射线光电子光谱仪(XPS)和能量弥散X射线光谱仪(EDX)来证实在外部涂覆膜中存在大量的溴化物,并且简单的计算表明溴化物离子与表面阳离子的合适比率为1:1。元素分析证实了 在涂覆了溴化物壳层之后,依照初始CdCl2-TDPA-OLA而存在的O. 3%的Cd阳离子仍然存在。按照与上述示例I中所说明的同一方式来制造利用了这些双壳层钝化量子点的光伏装置。扫描电子显微照片表明量子点层具有大约300nm的厚度,并且不存在任何空隙和裂缝(在由逐层沉积法制成的膜中经常会出现的空隙和裂缝)。通过包括来自Au顶部 接触部的反射在内,在双程(double pass)中获得各装置的吸收光谱。在图5中示出了使用9个、11个和13个量子点层制成的装置的光谱,图5中也包括来自仅仅FT0/Ti02基板的对应光谱。950nm处的吸收峰是PbS量子点的激子峰。这表明内核量子点的量子局限以壳层形式保持着。建议的是通过最终膜中的激子峰相对于溶液中的量子点的激子峰的红移riOOmeV),来减少颗粒间的距离。在暴露于lOOmW/cm2的太阳照射下时,装置表现出O. 45V的开路电压(1。)、21. 8mA/cm2的短路电路密度(Jse)和59%的填充系数(FF),从而产生了 5. 76%的功率转换效率η。量子点膜在AM I. 5G光谱上的净吸收的积分表明具有100%量子效率的膜将会获得24. 4mA/cm2的短路电流密度(Js。)。此短路电流密度与所测量到的21. 8mA/cm2的短路电流密度(Jse)的比较表明在400nm至1150nm整个宽带吸收区域上平均的内量子效率(IQE)超过90%,这意味着最小的复合损失和有效的载流子提取。双壳层钝化量子点膜的掺杂密度和载流子寿命分别由电容-电压(C-V)分析和Voc衰变分析来决定。C-V分析表明掺杂比最低掺杂的有机配体PbS和PbSe量子点膜中的值低一个完整数量级,且载流子寿命τ (在图6中示出)大约为通过使用双齿有机配体(bidentate organic ligand) (3_巯基丙酸,也在图6中示出)制成的控制装置的载流子寿命的两倍,该载流子寿命τ甚至在完全太阳lOOmW/cm2照射下也达到超过40 μ sec的非常长的寿命。双壳层钝化量子点膜也展示出了改善的抗氧化性。图7是电流密度和电压的关系曲线,其中比较了本发明的双壳层钝化量子点层与含3-巯基丙酸配体的量子点,每一条曲线均表明了最新(紧随在制造之后)的情形和在环境条件下在实验室工作台上存放十天之后的情形。双壳层钝化量子点表明在十天期间之后性能无显著变化,而覆盖有有机配体的量子点则在经历同一期间时遭受了完全的效率损失。为了证明由除溴化物离子以外的其他阴离子形成的内壳层的有效性,制出了包含具有各种阴离子的双壳层钝化量子点的各种装置,并对光伏性能特性进行了测量。含阴离子试剂是己基三甲基氯化铵(hexatrimethylammonium chloride ;HTAC)、十六烧基三甲基溴化铵(cetyltrimethylammonium bromide ;CTAB)、四丁基碘化铵(tetrabutylammoniumiodide ;TBAI)和四丁基硫氰酸铵(tetrabutylammonium thiocyanate ;TBAT)。被测量的参数是以mA/cm2为单位的Js。、以V为单位的V。。、以%为单位的FF、以%为单位的η、分流电阻Rsh和串联电阻Rs、以及整流(rectification)(正向偏压+IV和反向偏压-IV之间的电流),且这些参数被列出在如下表中。
权利要求
1.一种光电装置,其包括 光传输用第一电极; 第一半导体层,所述第一半导体层与所述第一电极直接电接触; 第二半导体层,所述第二半导体层与所述第一半导体层直接电接触,并且含有光吸收用纳米颗粒;以及 第二电极,所述第二电极与所述第二半导体层直接电接触, 所述第一半导体层和所述第二半导体层在它们之间形成结,当所述光电装置未被照射时,所述结的至少一侧的自由电子和自由空穴大体上被耗尽。
2.如权利要求I所述的光电装置,其中, 所述第一半导体层是η型电子接受层,且所述第二半导体层的所述光吸收用纳米颗粒是P型纳米颗粒, 并且所述η型电子接受层和所述P型纳米颗粒二者的带隙大小充分不同,以使得所述结的所述至少一侧的自由电子和自由空穴大体上被耗尽。
3 如权利要求2所述的光电装置,其中,所述η型电子接受层的所述带隙比所述P型光吸收用纳米颗粒层的所述带隙大至少I. 5eV左右。
4.如权利要求2所述的光电装置,其中,所述η型电子接受层的所述带隙比所述P型光吸收用纳米颗粒层的所述带隙大I. 5eV左右飞eV左右。
5.如权利要求2所述的光电装置,其中,所述η型电子接受层的所述带隙比所述P型光吸收用纳米颗粒层的所述带隙大2eV左右飞eV左右。
6 权利要求I所述的光电装置,其中,所述P型光吸收用纳米颗粒是胶体量子点。
7.如权利要求I所述的光电装置,其中,所述P型光吸收用纳米颗粒是金属硫族化物胶体量子点。
8.如权利要求I所述的光电装置,其中,所述P型光吸收用纳米颗粒是铅硫族化物胶体量子点。
9.如权利要求I所述的光电装置,其中,所述P型光吸收用纳米颗粒是硫化铅胶体量子点。
10.如权利要求6所述的光电装置,其中,所述胶体量子点具有3nnT6nm的数量平均直径。
11.如权利要求I所述的光电装置,其中,所述光吸收用纳米颗粒是包括量子点内核、第一壳层和第二壳层的纳米颗粒,所述量子点内核具有含有阴离子的表面,所述第一壳层包围所述量子点内核并且含有对所述内核表面上的所述阴离子进行钝化的阳离子,所述第二壳层包围所述第一壳层并且含有对存在于所述内核表面上的任何阳离子和所述第一壳层的所述阳离子进行钝化的阴离子。
12.如权利要求11所述的光电装置,其中,所述量子点内核是金属硫族化物胶体量子点。
13.如权利要求11所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点。
14.如权利要求11所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,并且所述第一壳层的所述阳离子是从由Cd2+、Pb2+、Zn2+和Sn2+组成的群组中选择的一种。
15.如权利要求11所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,并且所述第一壳层的所述阳离子是Cd2+。
16.如权利要求11所述的光电装置,其中,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是从由卤素离子和硫氰酸根离子组成的群组中选择的ー种。
17.如权利要求11所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是卤素离子。
18.如权利要求11所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是溴离子。
19.如权利要求2所述的光电装置,其中,所述η型电子接收层是ニ氧化钛。
20.如权利要求I所述的光电装置,其中,所述光传输用第一电极是从由氧化铝、氧化锌、氧化铟锡和掺杂有氟的氧化锡组成的群组中选择的ー种。
21.如权利要求I所述的光电装置,其中,所述光传输用第一电极是掺杂有氟的氧化锡。
22.如权利要求I所述的光电装置,其中,所述第二电极是从由镍、氟化锂、钼、钯、银、金和铜组成的群组中选择的ー种,或者是从由银、金和铜构成的各种合金中选择的ー种。
23.如权利要求I所述的光电装置,其中,所述第二电极是金。
24.—种纳米颗粒,其包括 量子点内核; 第一壳层,所述第一壳层含有大体上完全包围所述量子点内核的阳离子;以及 第二壳层,所述第二壳层含有大体上完全包围所述第一壳层的阴离子。
25.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫族化物胶体量子点。
26.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫化物胶体量子点。
27.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫化物胶体量子点,并且所述第一壳层的所述阳离子是从由Cd2+、Pb2+、Zn2+和Sn2+组成的群组中选择的ー种。
28.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫化物胶体量子点,并且所述第一壳层的所述阳离子是Cd2+。
29.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是从由卤素离子和硫氰酸根离子组成的群组中选择的ー种。
30.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是卤素离子。
31.如权利要求24所述的纳米颗粒,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是溴离子。
32.—种光电装置,其包括 光传输用第一电极; 第一半导体层,所述第一半导体层与所述第一电极直接电接触; 第二半导体层,所述第二半导体层与所述第一半导体层直接电接触,并且含有光吸收用纳米颗粒,各所述纳米颗粒包括量子点内核、第一壳层和第二壳层,所述第一壳层含有大体上完全包围所述量子点内核的阳离子,所述第二壳层含有大体上完全包围所述第一壳层的阴离子;以及 第二电极,所述第二电极与所述第二半导体层直接电接触。
33.如权利要求32所述的光电装置,其中,所述量子点内核是金属硫族化物胶体量子点。
34.如权利要求32所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点。
35.如权利要求32所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,并且所述第一壳层的所述阳离子是从由Cd2+、Pb2+、Zn2+和Sn2+组成的群组中选择的ー种。
36.如权利要求32所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,并且所述第一壳层的所述阳离子是Cd2+。
37.如权利要求32所述的光电装置,其中,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是从由卤素离子和硫氰酸根离子组成的群组中选择的ー种。
38.如权利要求32所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是卤素离子。
39.如权利要求32所述的光电装置,其中,所述量子点内核是金属硫化物胶体量子点,所述第一壳层的所述阳离子是Cd2+,并且所述第二壳层的所述阴离子是溴离子。
40.如权利要求32所述的光电装置,其中,所述第一半导体层是ニ氧化钛。
41.如权利要求32所述的光电装置,其中,所述光传输用第一电极是从由氧化铝、氧化锌、氧化铟锡和掺杂有氟的氧化锡组成的群组中选择的ー种,并且所述第二电极是从由镍、氟化锂、钼、钯、银、金和铜组成的群组中选择的ー种或者是从由银、金和铜构成的各种合金中选择的ー种。
42.如权利要求32所述的光电装置,其中,所述光传输用第一电极是掺杂有氟的氧化锡,并且所述第二电极是金。
43.一种用于形成钝化的P型半导体纳米颗粒的方法,所述方法包括以下步骤 Ca)使用含阳离子试剂的溶液对具有表面阴离子的P型半导体胶体量子点进行处理,所述含阳离子试剂钝化所述表面阴离子,由此形成覆盖有所述阳离子的胶体量子点;以及 (b)使用含阴离子试剂的溶液对覆盖有所述阳离子的所述胶体量子点进行处理,所述含阴离子试剂钝化所述阳离子。
44.如权利要求43所述的方法,所述P型半导体胶体量子点是金属硫族化物胶体量子点。
45.如权利要求43所述的方法,所述P型半导体胶体量子点是金属硫化物胶体量子点。
46.如权利要求43所述的方法,所述P型半导体胶体量子点是硫化铅胶体量子点。
47.如权利要求43所述的方法,所述含阳离子试剂的所述阳离子是从由Cd2+、Pb2+、Zn2+和Sn2+组成的群组中选择的ー种。
48.如权利要求43所述的方法,所述含阳离子试剂的所述阳离子是Cd2+。
49.如权利要求43所述的方法,所述含阴离子试剂的所述阴离子是从由卤素离子和硫氰酸根离子组成的群组中选择的ー种。
50.如权利要求43所述的方法,所述含阳离子试剂是氯化镉-十四烷基磷酸-油胺。
51.如权利要求43所述的方法,所述含阴离子试剂的所述阴离子是从由卤素离子和硫氰酸根离子组成的群组中选择的ー种。
52.如权利要求43所述的方法,所述含阴离子试剂的所述阴离子是卤素离子。
53.如权利要求43所述的方法,所述含阴离子试剂的所述阴离子是溴离子。
54.如权利要求43所述的方法,所述含阴离子试剂是从由十六烷基三甲基溴化铵、己基三甲基氯化铵、四丁基碘化胺和四丁基硫氰酸铵组成的群组中选择的ー种。
全文摘要
本发明制造了光伏电池,在所述光伏电池中,对光吸收层和电子接受层的组分进行选择,以使得在没有太阳照射时这两层之间的结的至少一侧的电荷载流子(即,自由电子和自由空穴)大体上被耗尽。在本发明的其它方面,所述光吸收层包括双壳层钝化的量子点,各个所述量子点具有量子点内核、内壳层和外壳层,所述量子点内核具有表面阴离子,所述内壳层含有对所述内核表面阴离子进行钝化的阳离子,所述外壳层对所述内壳层阴离子和所述内核表面上的阴离子进行钝化。
文档编号H01L31/032GK102859710SQ201180017884
公开日2013年1月2日 申请日期2011年3月25日 优先权日2010年4月6日
发明者唐将, 安德拉斯·帕坦特亚斯-亚伯拉罕, 伊利亚·克雷默, 阿伦·巴克浩斯, 王西华, 拉坦·德博纳斯, 爱德华·H·萨金特, 康斯坦塔托斯·耶拉西摩斯 申请人:多伦多大学董事局
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1