用于氮化镓肖特基二极管的端接结构的制作方法

文档序号:7144884阅读:477来源:国知局
专利名称:用于氮化镓肖特基二极管的端接结构的制作方法
技术领域
本发明涉及氮化镓半导体器件,尤其是用于氮化镓肖特基二极管的端接结构。
背景技术
肖特基二极管是利用金属接触半导体层制成的一种半导体器件。金属和半导体层之间的结为整流结,其表征是通过自由载流子低于PN结的能量势垒,以及与PN结中的双极电流传导相反的单极电流传导。就这点来说,肖特基二极管开始电流传导的正向偏压低于普通的PN结二极管,但反向偏压泄漏电流大于普通的PN结二极管。由于肖特基二极管为双极器件,它们的开关速度通常大于PN结二极管。肖特基二极管对于开关损耗是主要的能耗来源的器件(例如开关模式电源(SMPS))来说,是非常理想的选择。已知许多氮化物化合物半导体材料制成的电子器件。这种电子器件也称为II1-氮半导体器件,正如基于III族氮材料制成的半导体器件。氮化物化合物半导体器件较宽的带隙以及较高的击穿电压等优良特性,使得它们非常适用于高压和高温器件。尤其是提出了一种具有高击穿电压和低导通电阻的II1-V氮化镓化合物半导体肖特基二极管。通过使用II1-氮半导体肖特基势垒二极管,可以提高开关模式电源的效率。然而,氮化物半导体肖特基二极管与以硅衬底的肖特基二极管相比,具有明显的不足。以硅衬底的肖特基二极管采用垂直传导路径,而氮化物肖特基二极管经常依赖水平传导路径。这是因为,氮化物半导体器件通常形成在绝缘衬底和/或绝缘缓冲层上方,绝缘缓冲层外延生长在导电或非导电衬底上。因此,肖特基二极管的阳极和阴极都形成在器件的顶面上,与衬底相对,形成水平传导器件。当器件正向偏置时,由于正向电流必须流经一段相当长的传导路径,并且产生非均匀的电流分布,因此带有水平传导路径的肖特基二极管具有较高的接通电阻。更确切地说,氮化物半导体器件通常作为生长在衬底材料上的外延层,衬底材料包括硅、蓝宝石、碳化硅以及降压氮化镓衬底。虽然在大块氮化镓结晶衬底上生长氮化镓层的效果最好,但是降压氮化镓衬底所用的材料非常昂贵,大多数的电子器件使用降压氮化镓衬底并不现实。SiC衬底也是如此。同时,尽管硅衬底是成本最低的材料,但是由于氮化镓外延层和硅衬底之间的晶格失配很显著,因此在硅衬底上生长一个氮化镓层的所产生的效果最差。蓝宝石衬底对于氮化物半导体器件来说,是很好的选择,其成本较低,大量使用于LED制备和充分的晶格匹配,形成高质量的外延层。因此,建立在绝缘蓝宝石衬底上的氮化镓半导体器件为水平传导器件或准垂直传导器件。在绝缘蓝宝石衬底上制备垂直传导的氮化镓器件存在许多困难与挑战。此外,可靠的氮化镓半导体器件需要有效的端接结构,降低阳极电极边缘处的电场拥挤效应,尤其是高压器件。传统的端接结构包括P-型保护环,在氮化镓肖特基二极管的阳极端有场板结构。然而,由于氮化物半导体器件本身具有很宽的带隙,利用传统的植入和退火工艺,难以形成退火的或激活的P-型区。因此,用于氮化物半导体器件的传统的保护环结构,并不能被激活。美国专利号7,229,866提出了一种在传导和非传导衬底上制备氮化镓肖特基二极管,还提出了使用未激活的保护环。制备未激活的保护环是通过离子植入到半导体接触层中,在半导体接触层中植入区并没有完全退火,植入的粒子未被激活。植入区构成一个高阻抗区,嵌入的缺陷密度使运行时的可靠性变差。

发明内容
依据本发明的另一方面,氮化物肖特基二极管包括一个第一导电类型的氮化物半导体衬底;一个第一金属层,形成在氮化物半导体衬底正面,构成一个肖特基结,第一金属层构成肖特基二极管的阳极电极;一个阴极电极,与氮化物半导体衬底电接触;以及一个端接结构,形成在氮化物半导体衬底的正面,以及阳极电极的边缘处,配置端接结构,以降低阳极电极边缘处的电场拥挤。在一个实施例中,端接结构包括一个含有第二导电类型的氮化物外延层,第二导电类型与第一导电类型相反,外延层形成在第一金属层边缘处的氮化物半导体衬底的正面,部分氮化物外延层在第一金属层下方延伸。氮化物外延层具有一个步阶凹陷,朝着肖特基二极管的肖特基结,除去厚度较薄的一部分外延层。端接结构还包括一个电介质场板,形成在氮化物外延层顶面上,电介质场板最多延伸到氮化物外延层的步阶凹陷。在另一个实施例中,一种用于制备氮化物肖特基二极管的方法,包括制备一个第一导电类型的氮化物半导体衬底;制备一个第二导电类型的氮化物外延层,第二导电类型与第一导电类型相反,外延层位于氮化物半导体衬底正面;在氮化物外延层上制备一个第一电介质层;利用第一掩膜,刻蚀氮化物外延层和第一电介质层,直到氮化物外延层的步阶凹陷深度,第一掩膜限定了一个大于阳极电极的开口 ;利用第二掩膜,刻蚀氮化物外延层,直到氮化物半导体衬底,第二掩膜限定了一个阳极电极的开口 ;在氮化物半导体衬底正面,制备一个第一金属层,以便在半导体衬底的裸露顶面上制备一个肖特基结,第一金属层构成肖特基二极管的阳极电极;并且制备一个阴极电极,与氮化物半导体衬底电接触。因此,氮化物外延层构成一个保护环,第一电介质层构成一个电介质场板。保护环与电介质场板共同构成肖特基二极管的端接结构。配置端接结构,以降低阳极电极边缘处的电场拥挤。阅读以下详细说明并参照附图之后,将更好地理解本发明。


图1表示依据本发明的一个实施例,一种垂直氮化镓肖特基二极管的剖面 图2表示依据本发明的实施例,用于制备垂直氮化镓肖特基二极管的制备工艺的流程
图3a-m表示依据本发明的实施例,在图2所示制备工艺的中间过程中,垂直氮化镓肖特基二极管的剖面 图4表不依据本发明的一个实施例,一种以娃衬底的PN结二极管的剖面 图5表示依据本发明的一个实施例,一种用于制备氮化镓肖特基二极管和以硅衬底的PN结二极管的并联组合结构的俯视 图5a表图5所结构的等效电路图;图6表示依据本发明的一个实施例,引入端接结构的氮化镓肖特基二极管的剖面图;图7表示依据本发明的一个可选实施例,引入端接结构的氮化镓肖特基二极管的剖面
图8表示依据本发明的一个第二可选实施例,引入端接结构的氮化镓肖特基二极管的剖面 图9a_f表示依据本发明的实施例,在图8所示的端接结构的制备工艺中间过程中,氮化镓肖特基二极管的剖面 图10表示依据本发明的一个第三可选实施例,引入端接结构的氮化镓肖特基二极管的剖面 图11表示依据本发明的一个第四可选实施例,引入端接结构的氮化镓肖特基二极管的剖面图。
具体实施例方式依据本发明的原理,利用绝缘衬底制备垂直传导的氮化物化合物半导体肖特基二极管(“垂直氮化物肖特基二极管”),在带有晶圆级成型化合物的正面,封装二极管器件之后,剥离绝缘衬底。晶圆级成型化合物在二极管器件的正面提供结构支撑,使绝缘衬底可以被剥离,从而在二极管器件的表面形成一个导电层,作为阴极电极。这样就实现了垂直传导的氮化物肖特基二极管。依据本发明的另一方面,氮化物肖特基二极管的端接结构包括一个保护环,它的制备是通过外延生长P-型氮化物化合物半导体层以及形成在保护环上的电介质场板。端接结构形成在肖特基二极管的阳极电极边缘处,具有较低阳极边缘处电场拥挤的效果,尤其是当肖特基二极管反向偏置时。在一个实施例中,P-型外延层包括一个步阶凹陷,从而进一步提高端接结构的场扩散效应。最终,依据本发明的另一方面,垂直氮化镓肖特基二极管的保护电路采用一个以硅衬底的垂直PN结二极管并联到氮化镓肖特基二极管上,以分流反向偏置雪崩电流。在以下说明中,“氮化物化合物半导体”或“II1-氮化合物半导体”一词是指形成在氮和元素周期表III族元素(通常为铝、钾和铟)之间的那些II1-V化合物半导体材料。该词也指三相和三元化合物,例如氮化铝镓和氮化铝铟镓。氮化物化合物半导体肖特基二极管比较适用的材料包括氮化镓和氮化铝镓。在以下说明中,利用镓-氮(GaN)化合物半导体制备的肖特基二极管有时也称为“氮化镓肖特基二极管”。然而,利用氮化镓作为氮化物半导体材料仅用于解释说明,可以利用已知或将要研发其他的II1-V化合物半导体材料,制备本发明所述的氮化物化合物半导体肖特基二极管。垂直氮化镓肖特基二极管
图1表示依据本发明的一个实施例,一种垂直氮化镓肖特基二极管的剖面图。参见图1,利用氮化物化合物半导体衬底14和与肖特基金属层24,制备垂直氮化镓肖特基二极管
10。在本发明的实施例中,通过一个或多个氮化镓半导体层,制备氮化物化合物半导体衬底14,一个或多个氮化镓半导体层通常为N-型导电类型,但掺杂浓度不同。肖特基结形成在肖特基金属层24和N-型氮化镓衬底14的结处。氮化镓肖特基二极管10的阳极端形成在器件结构的正面,而阴极端形成在器件结构的背面,产生垂直电流,实现了垂直传导的肖特基二极管器件。更确切地说,通过焊锡球35,制备氮化镓肖特基二极管10的阳极电极,焊锡球35形成在器件结构正面的肖特基金属层24上的结合金属层30上。在阳极端的边缘处,可以通过钝化层32,使肖特基金属层24和结合金属层30钝化。通过晶圆级成型化合物36,封装氮化镓肖特基二极管10的正面,包括形成在上面的阳极电极,晶圆级成型化合物36为氮化镓肖特基二极管10提供结构支撑,从而除去绝缘衬底,氮化镓衬底14最初就形成在绝缘衬底上,这将在下文中详细介绍。通过形成在器件结构背面的阴极金属层50,制备氮化镓肖特基二极管10的阴极电极,阴极金属层50与氮化镓衬底14电接触。从阳极电极到阴极电极的二极管电流通路垂直穿过氮化镓肖特基二极管10,从焊锡球35到阴极金属层50。在本说明中,一个或多个垂直氮化镓肖特基二极管(器件I和器件2)形成在公共氮化镓衬底14上。二极管器件并联,作为一个肖特基二极管阵列。还可选择,在一个实施例中,单独使用氮化镓肖特基二极管,作为单独的垂直传导肖特基二极管。例如,图1中的肖特基二极管器件I和肖特基二极管器件2可以在它们之间的钝化层32处分开。参见图2和图3a_m,下文将详细介绍图1所示的垂直氮化镓肖特基二极管10的制备工艺。图2表示依据本发明的实施例,图1所示的垂直氮化镓肖特基二极管制备工艺的流程图。图3a-m表示依据本发明的实施例,图2所示的垂直氮化镓肖特基二极管制备工艺的中间步骤的剖面图。参见图2和图3a_3m,制备过程从制备绝缘衬底12开始,并在绝缘衬底12上制备氮化镓半导体衬底14 (步骤102),如图3a所示。在本实施例中,绝缘衬底102为蓝宝石衬底。此外,在本实施例中,氮化镓半导体衬底14包括一个重掺杂的N-型氮化镓层16(“n++氮化镓层16”)形成在蓝宝石衬底12上,以及一个轻掺杂的氮化镓层18(“n-氮化镓层18”)形成在重掺杂的氮化镓层16上。本发明所述的制备工艺使用蓝宝石衬底制备氮化镓肖特基二极管,利用的是蓝宝石与氮化镓层的晶格非常匹配,蓝宝石的材料成本也比较合理,从而构成高质量的氮化镓层。通过制备氮化镓肖特基二极管的端接结构,进行制备工艺(步骤104 )。端接结构用于抑制阳极电极边缘处形成的电场拥挤。传统的端接结构包括P-型保护环结构或电介质场板结构,形成在阳极电极的周围。端接结构的作用是重新分配阳极电极端接区的电场,从而增加肖特基二极管器件的击穿电压。在本实施例,端接结构所采用的是P-型保护环和电介质场板。使用P-型保护环和电介质场板作为端接结构仅用于解释说明。已知或将要研发的其他端接结构,可以用于本发明所述的氮化镓肖特基二极管。为了制备P-型保护环,要在氮化镓半导体衬底14 (图3a)上形成光致抗蚀剂图案40。更确切地说,是在η-氮化镓层18的顶面上形成光致抗蚀剂图案40。然后,利用光致抗蚀剂图案40作为掩膜,进行P-型掺杂物的离子注入工艺。注入后,在η-氮化镓层18的顶面上形成一个P-型区20,作为保护环,如图3b所示。在图3b中的剖面图中,所表示的P-型保护环20形成在η-氮化镓层18的两边。在实际器件中,P-型保护环20包围着氮化镓肖特基二极管的阳极电极,以抑制沿阳极电极整个边缘的电场拥挤。在后续处理中,P-型保护环20可以被或不被激活或退火。形成P-型保护环20之后,除去抗蚀剂图案,在η-氮化镓层18的表面上方沉积一个氧化硅层22 (图3b)。形成氧化硅层22的图案,限定阳极电极的开口,也制备电介质场板作为端接结构的一部分(图3c)。然后,在η-氮化镓层18的顶面上沉积一个肖特基金属层24,并形成图案,制备带有轻掺杂氮化镓层18的肖特基结(步骤106),如图3d所示。用于制备肖特基结的肖特基金属层 24 可以从 N1、Pt、Au、Co、Pd、Cr、Rh、Re、PtS1、V、W、WSi 和 NiSi 中选取。肖特基金属层24也可以是一种化合物或由本族金属制成的合金,例如Ni/Au。然后,在肖特基金属层24上方沉积一个第二氧化硅层26,并形成图案,限定阳极电极的一个开口,也使肖特基金属层的边缘钝化,如图3e所示。氧化硅层26还用于端接结构一个额外的场板层。然后,在肖特基金属层24的顶面上沉积一个结合金属层30,并形成图案,制备阳极电极的结合垫(步骤108),如图3f所示。在结合金属上沉积一个钝化层32 (例如聚酰亚胺层),并形成图案,限定结合垫的一个开口,而钝化层32保护了氮化镓肖特基二极管的边缘区域,如图3g所示。因此,氮化镓肖特基二极管形成在绝缘蓝宝石衬底12上。在本发明的实施例中,重掺杂氮化镓层16的厚度约为1-3 μ m,掺杂浓度约为I X IO18-X 1019cm_3,轻掺杂氮化镓层18的厚度约为3-20 μ m,掺杂浓度约为l-2X1014_17cm_3。在本发明的实施例中,肖特基金属层为Ni/Au层,结合金属层30为Ti/Al层。为了利用像图3g中的器件结构,制备垂直传导的氮化镓肖特基二极管,要除去绝缘蓝宝石衬底12,从而形成背面阴极电极。依据本发明的实施例,晶圆级封装层形成在器件结构正面,封装层作为支撑层,在除去绝缘蓝宝石衬底12之后,确保安全高效地处理器件结构。在晶圆封装层中形成阳极电极的电连接,打通晶圆封装层下方到肖特基二极管阳极的连通性。因此,参见图3h,在结合金属层30上形成一个焊锡球35(步骤110)。利用焊锡球35,形成到阳极电极的电连接。然后,如图3i所示,在器件结构的正面形成一个晶圆级封装层36 (步骤112)。在一个实施例中,晶圆级封装层36为一个晶圆级成型层,可以利用集成电路的成型混料(例如环氧树脂成型混料)制备。晶圆级型层36部分覆盖焊锡球35。然后,对图3i中器件结构的正面进行机械抛光,使焊锡球35突出到成型层36外面的部分平整化(步骤114)。从而如图3j所示,形成了氮化镓肖特基二极管平整的正面。阳极电极穿过平整的焊锡球35。在本发明的实施例中,可以利用铜夹或其他连接技术,形成到氮化镓肖特基二极管阳极的电连接。肖特基器件结构的正面完成后,成型层36作为一个支撑层,使器件结构的绝缘蓝宝石衬底12从氮化镓半导体衬底上除去,从而裸露出氮化镓半导体衬底14的底面。实际上,在公共蓝宝石衬底上的氮化镓肖特基二极管器件阵列上,使用的是晶圆级封装层。因此,晶圆级成型层36作为晶圆传送,以便使氮化镓半导体衬底薄膜从结合的衬底上分离下来后,传送氮化镓半导体衬底薄膜。在本发明的实施例中,利用激光剥离工艺,从氮化镓半导体衬底上分离蓝宝石衬底12(步骤116),如图3k所示。Cheung等人提出的美国专利号6,071,795的专利中,提出了一种从氮化镓薄膜上分离蓝宝石衬底的激光剥离方法,特此引用其全文,以作参考。在一个实施例中,用扫描的激光束照射蓝宝石衬底12,蓝宝石并不吸收所用波长。激光照射束穿过蓝宝石衬底12,照向氮化镓半导体衬底14和蓝宝石衬底12之间的交界面。优化激光照射能量,使其在交界面处或交界面周围区域中被吸收,所吸收的照射能量降低了交界面处氮化镓半导体衬底14的分解,从而使蓝宝石衬底12与器件结构分离。裸露出氮化镓半导体衬底14的背面后,在氮化镓半导体衬底14的表面形成一个阴极金属层50 (步骤118),如图31所示。阴极金属层50形成到氮化镓半导体衬底14的欧姆接触,并作为氮化镓肖特基二极管的阴极电极。更确切地说,阴极金属层50同重掺杂的N-型氮化镓层16形成欧姆接触。用于形成欧姆接触的阴极金属层可以从Al、AlS1、T1、TiSi, Mo和MoSi中选取。因此所形成的垂直氮化镓肖特基二极管10,穿过形成在器件结构正面的焊锡球35,接入阳极电极,穿过器件结构的背面,接入阴极电极。从而在氮化镓肖特基二极管10中,形成从阳极到阴极的垂直电流通路。如上所述,实际上,垂直氮化镓肖特基二极管的一个阵列(例如器件I和器件2)形成在一个公共衬底上。激光剥离公共衬底之后,垂直氮化镓肖特基二极管阵列仍然形成在公共氮化镓半导体衬底14和晶圆级成型层36上。垂直氮化镓肖特基二极管的阵列可以一起使用,或者在单独的氮化镓肖特基二极管中分开。在本发明的可选实施例中,垂直氮化镓肖特基二极管60的阳极金属层62形成在晶圆级成型层36和平整的焊锡球35上方,形成可结合的顶面。当垂直氮化镓肖特基被分成单独的二极管器件时,阳极金属层62作为金属结合垫,使阳极连接到封装中的结合引线上。二极管保护电路
依据本发明的另一方面,上述垂直氮化镓肖特基二极管与垂直的以硅为衬底的PN结二极管并联,作为一个保护电路。即使具有设计良好的端接结构,氮化镓肖特基二极管在雪崩击穿方面的承受性也非常有限。击穿电压较低的以硅为衬底的PN结二极管与氮化镓肖特基二极管并联,作为保护电路。当氮化镓肖特基二极管正向偏置时,以硅为衬底的PN结二极管并不传导。但是以硅为衬底的PN结二极管在电压较低时击穿,从而使反向偏置雪崩电流转向。图4表不依据本发明的一个实施例,一种以娃为衬底的PN结二极管的剖面图。以硅为衬底的PN结二极管700形成在N+衬底704上的N-闭锁层702的顶面上。P-型区708形成在N断流层的顶面上。电介质场板710形成在由P-型区708构成的阳极区的边缘附近。在本实施例中,多晶硅PN结二极管712形成在场板710上。然后,利用绝缘电介质层714使PN结二极管的边缘钝化。形成电介质层714的图案,使阳极金属层716欧姆接触到P-型区708和多晶硅二极管712的P+区。还提供到多晶硅二极管712的N+区的金属接触718。最后,在N+衬底704的背面形成一个阴极金属层706,以制备掺杂PN结二极管的阴极电极。因此,单独的垂直硅PN结二极管Dl可以与垂直氮化镓肖特基二极管SDl匹配,作为肖特基二极管的保护电路,如图5所示。掺杂氮化镓肖特基二极管SDl以及垂直硅PN结二极管Dl可以形成在公共金属垫850上,作为阴极端。肖特基二极管SDl和PN结二极管Dl的阳极电极可以通过引线接合,连接到公共金属垫852上。在这种情况下,如图5a所示,形成并联的肖特基二极管以及PN结二极管。当肖特基二极管反向偏置时,PN结二极管为氮化镓肖特基二极管提供保护。肖特基二极管端接结构
依据本发明的另一方面,以氮为衬底的肖特基二极管的端接结构包括一个P-型氮化物化合物半导体外延层(“P-型外延层”)作为一个保护环,以及一个形成在外延层上的电介质场板。P-型外延层和电介质场板形成在氮化镓肖特基二极管阳极电极的边缘上,用于扩散该区域的电场,从而降低阳极电极边缘的电场浓度。更重要的是,充分激活通过外延工艺形成的P-型外延层,更加有效地保护环在扩散电场方面更加有效。在一个实施例中,P-型外延层包括后退一步,以便进一步提高端接结构的场扩散效应。当氮化镓肖特基二极管上使用端接结构时,端接结构确保阳极电极边缘处最优的电场结构,从而提高肖特基二极管的可靠性。此外,由于ns (非箝位电感式开关)性能,端接结构使氮化镓肖特基二极管更加坚固耐用。图6表示依据本发明的一个实施例,引入端接结构的氮化镓肖特基二极管的剖面图。参见图6,氮化镓肖特基二极管200为形成在氮化镓半导体衬底上的垂直传导的氮化镓肖特基二极管,包括一个轻掺杂的N-型氮化镓层(n-氮化镓)204以及一个重掺杂的N-型氮化镓层(n++氮化镓)202。氮化镓肖特基二极管200包括一个形成在轻掺杂N-型氮化镓层204上方的肖特基金属层206,以构成阳极电极。肖特基结形成在肖特基金属层206和n-氮化镓层204之间的交界面处。阴极金属层220形成在重掺杂的N-型氮化镓层202表面上,以构成阴极电极。在本发明的实施例中,参见图2和3a_m,利用上述制备垂直氮化镓肖特基二极管的工艺,制备垂直氮化镓肖特基二极管200。因此,垂直氮化镓肖特基二极管200最初形成在绝缘衬底上,例如蓝宝石,使用正面晶圆级成型层之后,剥去绝缘衬底。然后,在n++氮化镓层202的背面形成阴极金属层,以构成欧姆接触。在本说明中,本发明所述的端接结构形成在垂直氮化镓肖特基二极管上。所用的垂直氮化镓肖特基二极管仅用于解释说明。本发明所述的端接结构可以使用任意结构的氮化镓肖特基二极管,包括横向、准横向、或垂直传导的二极管。氮化镓肖特基二极管的准确结构对于本发明的实施并非关键。在本发明的实施例中,氮化镓肖特基二极管200的端接结构210包括一个外延生长的P-型氮化物化合物半导体层(“P-型外延层”)212,电介质场板214形成在上面。P-型外延层212形成在氮化镓半导体衬底的顶面上(即n-氮化镓层204的顶面上)以及阳极电极的边缘处,包围着肖特基金属层206。在本发明的实施例中,P-型外延层212为P-型氮化镓层。在一个实施例中,P-型氮化镓外延层为利用金属有机化学气相沉积(MOCVD)工艺制备的一个外延生长层。在其他实施例中,可以使用其他外延工艺,制备P-型外延层212,包括分子束外延(MBE)以及氢化物气相外延(HVPE)。在本发明的实施例中,端接结构210包括形成在P-型外延层212上的电介质场板214,以增强端接结构的电场扩散性能。在一个实施例中,电介质场板214为氮化硅层,通过数量“fpl”从P-型外延层212的底部拉回。此外,在本发明的实施例中,电介质场板214后退一步,进一步提闻电场扩散效应。在本实施例中,电介质场板214包括步阶凹陷,长度为“fp2”。在其他实施例中,可以通过一个或多个步阶凹陷,实现氮化镓肖特基二极管器件最优的电场结构。在制备工艺中,在沉积肖特基金属层206之前,制备端接结构210。当所沉积的肖特基金属层形成图案,构成阳极电极时,肖特基金属层206与电介质场板214重叠“fp3,,。
在本发明的实施例中,P-型外延层212的掺杂浓度为IX 1017cnT3。在本发明的实施例中,P-型外延层212的厚度为tl,在一个实施例中,tl约为0.5至2Mm。电介质场板214的厚度为t2,在一个实施例中,t2约为0.5-2Mm。在本发明的一个可选实施例中,氮化镓肖特基二极管的端接结构具有倾斜结构,以改善电场结构。图7表示依据本发明的一个可选实施例,引入端接结构的氮化镓肖特基二极管的剖面图。参见图7,氮化镓肖特基二极管300的端接结构310的制备方式,与图6所示的端接结构210类似,端接结构310包括P-型外延层312和电介质场板314。氮化镓半导体衬底包括一个重掺杂的氮化镓层(n++氮化镓层)302以及一个轻掺杂的氮化镓层(n-氮化镓层)304。阴极金属层320形成在重掺杂的N-型氮化镓层302的背面,构成阴极电极。然而,在本实施例中,P-型外延层312和电介质场板314绝缘倾斜结构,也就是一个光滑斜坡从P-型外延层312的底部开始延伸到电介质场板314的顶部。该斜坡形成在端接结构的内表面上,面对肖特基金属层306。端接结构310的斜坡结构有利于实现平滑电场结构,从而具有最优的击穿性能。在本发明的另一个可选实施例中,氮化镓肖特基二极管的端接结构具有步阶凹陷P-型外延层和电介质场板。图8表示依据本发明的第二可选实施例,引入端接结构的氮化镓肖特基二极管的剖面图。参见图8,氮化镓肖特基二极管400的端接结构410的制备方式,与图6所示的端接结构210类似,端接结构410包括一个P-型外延层412和一个电介质侧壁414。氮化镓半导体衬底包括一个重掺杂的氮化镓层(n++氮化镓层)402和一个轻掺杂的氮化镓层U-氮化镓层)404。阴极金属层420形成在重掺杂N-型氮化镓层402的背面,构成阴极电极。然而,在本实施例中,P-型外延层412和电介质场板414具有步阶凹陷结构。更确切地说,P-型外延层412具有一个长度为“fpl”的步阶凹陷,电介质场板414具有一个长度为“fp2”的步阶凹陷。P-型外延层412和电介质场板414的步阶凹陷结构适用于阳极电极边缘处的电场,从而降低了阳极电极边缘处的电场拥挤。在本发明的实施例中,P-型外延层412的步阶凹陷430的长度约为l-10Mm。制备端接结构410的工艺包括在P-型外延层412中的步阶凹陷,参见图9a至9f,将在以下文字中介绍电介质场板414。图9a至9f表示依据本发明的实施例,在制备图8所示的端接结构的中间步骤时,氮化镓肖特基二极管的剖面图。参见图9a至9f,氮化镓肖特基二极管490包括一个形成在绝缘蓝宝石衬底403上的氮化镓半导体衬底。氮化镓半导体衬底包括一个重掺杂的氮化镓层(n++氮化镓层)402以及一个轻掺杂的氮化镓层(n-氮化镓层)404。为了制备端接结构,要在轻掺杂的氮化镓层404上外延生长一个P-型氮化镓层412。然后,在P-型氮化镓外延层412上方,沉积一个氮化硅层440。在氮化硅层440上形成一个光致抗蚀剂图案442,限定制备端接结构的区域(图9a)。然后,利用光致抗蚀剂图案442作为掩膜,进行刻蚀工艺。刻蚀工艺将氮化硅层440和P-型外延层412都向下刻蚀到P-型外延层中的步阶凹陷深度,如图中点划线445所示(图%)。然后,利用另一个光致抗蚀剂图案,覆盖端接结构,并将P-型外延层412向下刻蚀到n-氮化镓层404 (图%)。在氮化硅层440、P-型外延层412以及n_氮化镓层404的裸露表面上沉积肖特基金属层406 (图9c)。然后,在器件结构上方,沉积第二个氮化硅层446,并形成图案,在场板结构中形成一个步阶凹陷,如图9d所示。从而构成了电介质场板结构414。在本实施例中,肖特基金属层406形成在场板结构的两个氮化硅层440、446之间。在其他实施例中,可以在第二个氮化娃层446上方,制备肖特基金属层406,如图8所不。完成端接结构410之后,沉积一个结合金属层448,与肖特基金属层406形成电接触。形成结合金属层448的图案,构成氮化镓肖特基二极管490的阳极电极,如图9e所示。最后,通过钝化层(例如聚酰亚胺层452),使氮化镓肖特基二极管的边缘钝化,如图9f所示。从而形成包括端接结构410的氮化镓肖特基二极管490。在图9f中,在绝缘蓝宝石衬底403上制备氮化镓肖特基二极管490,因此氮化镓肖特基二极管490为横向或准横向二极管器件。肖特基二极管的阴极电极可以提到器件的正面,远离阳极电极和端接结构的位置上。在本发明的实施例中,当需要垂直氮化镓肖特基二极管时,氮化镓肖特基二极管可以制成一个垂直氮化镓肖特基二极管,如图8所示,参见上述图2。首先封装氮化镓肖特基二极管490的正面,随后激光剥离绝缘蓝宝石衬底403,制备垂直氮化镓肖特基二极管。然后,在n++氮化镓层402的背面,沉积一个阴极金属层,构成背面阴极电极。从而形成了一个垂直氮化镓肖特基二极管。在本发明的另一个可选实施例中,氮化镓肖特基二极管的端接结构包括多个保护环/场板结构,以便进一步提高击穿性能。图10表示依据本发明的第三个可选实施例,引入端接结构的氮化镓肖特基二极管的剖面图。参见图10,氮化镓肖特基二极管500包括一个含有多个保护环/场板结构550、560、570的端接结构510。每个保护环/场板结构都可以利用上述结构制备,参见图6、7和8。在本实施例中,利用图8所示的步阶凹陷结构,制备保护环/场板结构,在该处,P-型外延层和场板都含有步阶凹陷,适用于电场结构。在实际器件中,多个保护环/场板结构550、560、570构成同心外壳,包围着肖特基金属层构成的阳极电极。多个保护环/场板结构550、560、570通过进一步扩散电场,提高了氮化镓肖特基二极管500的击穿性能。在本发明的另一个可选实施例中,氮化镓肖特基二极管包括一个端接结构,在阳极电极的边缘处,以及一个结势垒二极管结构,在肖特基结处,用于适应肖特基结处的电场。图11表示依据本发明的第四可选实施例,引入端接结构的氮化镓肖特基二极管的剖面图。参见图11,氮化镓肖特基二极管600包括一个含有多个保护环/场板结构650、660、670的端接结构610。氮化镓肖特基二极管600还包括一个结势垒二极管680阵列,利用P-型外延层的岛,形成在肖特基二极管结处。P-型外延层的岛与n-氮化镓层604相接触,构成一个结势垒二极管阵列。结势垒二极管的作用是沿n-氮化镓层的顶面,形成耗尽区,以降低电荷浓度。从而提高氮化镓肖特基二极管600的击穿性能。在其他实施例中,可以使用带有一个或多个保护环/场板结构的结势垒二极管680。使用带有多个保护环/场板结构的结势垒二极管680仅用于解释说明。上述详细说明用于解释说明本发明的典型实施例,并不作为局限。本发明范围内可能存在各种修正和变化。本发明的范围应由所附的权利要求书限定。
权利要求
1.一种氮化物肖特基二极管,包括: 一个第一导电类型的氮化物半导体衬底; 一个第一金属层,形成在氮化物半导体衬底正面,构成一个肖特基结,第一金属层构成肖特基二极管的阳极电极; 一个阴极电极,与氮化物半导体衬底电接触;以及 一个端接结构,形成在氮化物半导体衬底的正面,以及阳极电极的边缘处,配置端接结构,降低阳极电极边缘处的电场拥挤,该端接结构包括: 一个含有第二导电类型的氮化物外延层构成的保护环,第二导电类型与第一导电类型相反,外延层形成在第一金属层的边缘处氮化物半导体衬底的正面,一部分氮化物外延层延伸到第一金属层下方,氮化物外延层具有一个步阶凹陷,较薄的外延层部分朝着肖特基二极管的肖特基结;以及 一个电介质场板,形成在氮化物外延层的顶面上,电介质场板最多延伸到氮化物外延层的步阶凹陷。
2.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的第一导电类型的氮化物半导体衬底包括: 一个第一导电类型的重掺杂氮化镓层;以及 一个第一导电类型的轻掺杂氮化镓层,形成在重掺杂氮化镓层上, 其中第一金属层形成在轻掺杂氮化镓层的顶面上。
3.如权利要求2所述的氮化物肖特基二极管,其特征在于,所述的氮化物外延层制备保护环,包括一个第二导电类型的氮化镓层,电介质场板包括一个氮化硅层。
4.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的第一导电类型包括N-型导电类型,第二导电类型包括P-型导电类型。
5.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的阴极电极形成在氮化物半导体衬底的正面,远离阳极电极和端接结构的区域中。
6.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的阴极电极形成在氮化物半导体衬底的背面,阴极电极与氮化物半导体衬底构成欧姆接触。
7.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的端接结构的电介质场板具有一个步阶凹陷,较薄的电介质场板部分朝着肖特基二极管的肖特基结。
8.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的端接结构的保护环和电介质场板在面对肖特基 二极管的肖特基结的一侧,具有一个斜坡结构。
9.如权利要求1所述的氮化物肖特基二极管,其特征在于,所述的端接结构还包括多个保护环和场板结构,每个保护环都形成于具有步阶凹陷和电介质场板的氮化物外延层,多个保护环和场板结构构成对阳极电极的同心包围。
10.如权利要求1所述的氮化物肖特基二极管,其特征在于,还包括多个形成在肖特基结处的结势垒二极管,利用第二导电类型的氮化物外延层,制备结势垒二极管的阳极电极。
11.一种用于制备氮化物肖特基二极管的方法,包括: 制备一个第一导电类型的氮化物半导体衬底; 制备一个第二导电类型的氮化物外延层,第二导电类型与第一导电类型相反,在氮化物半导体衬底的正面;在氮化物外延层上制备一个第一电介质层; 利用第一掩膜,刻蚀氮化物外延层和第一电介质层,一直到氮化物外延层的步阶凹陷深度,第一掩膜限定了一个大于阳极电极的开口 ; 利用第二掩膜,刻蚀氮化物外延层,一直到氮化物半导体衬底,第二掩膜限定了一个阳极电极的开口; 在氮化物半导体衬底的正面,制备一个第一金属层,以便在半导体衬底的裸露顶面上形成一个肖特基结,第一金属层构成肖特基二极管的一个阳极电极;并且 制备一个阴极电极,与氮化物半导体衬底电接触, 其中氮化物外延层构成一个保护环,第一电介质层构成一个电介质场板,保护环和电介质场板共同构成肖特基二极管的端接结构,配置端接结构,以降低阳极电极边缘处的电场拥挤。
12.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,所述的制备第一导电类型的氮化物半导体衬底包括: 制备一个第一导电类型的重掺杂氮化镓层;并且 在重掺杂氮化镓层上,制备一个第一导电类型的轻掺杂氮化镓层, 其中第一金属层形成在轻掺杂氮化镓层的顶面上。
13.如权利要求12所述的用于制备氮化物肖特基二极管的方法,其特征在于,所述的氮化物外延层包括一个第二导电类型的氮化镓层,电介质场板包括一个氮化硅层。
14.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,所述的第一导电类型是由N-型导电类型构成,第二导电类型是由P-型导电类型构成。
15.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,还包括制备一个绝缘衬底,其中氮化物半导体衬底形成在绝缘衬底上,其中制备一个与氮化物半导体衬底电接触的阴极电极包括在氮化物半导体衬底的正面制备阴极电极,远离端接结构的阳极电极。
16.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,所述的制备一个与氮化物半导体衬底电接触的阴极电极包括在氮化物半导体衬底的背面制备一个第二金属层,第二金属层与氮化物半导体衬底构成欧姆接触。
17.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,还包括:在第一电介质层中,制备一个步阶凹陷,较薄的第一电介质层部分朝着肖特基二极管的肖特基结。
18.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,还包括: 在第一金属层和第一电介质层上,制备一个第二电介质层;并且刻蚀第二电介质层,使第一金属层裸露出来,从肖特基结附近的第一电介质层末端,拉回第二电介质层。
19.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,所述的所形成的端接结构的保护环和电介质场板,在面对肖特基二极管的肖特基结的一侧,具有一个斜坡结构。
20.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,还包括:制备多个保护环和场板结构,每个保护环都形成于具有步阶凹陷和电介质场板的氮化物外延层,多个保护环和场板结构构成对阳极电极的同心包围。
21.如权利要求11所述的用于制备氮化物肖特基二极管的方法,其特征在于,还包括:在肖特基结上制备多个结势垒二极管,利用第二导电类型的氮化物外延层制备结势垒二极管的阳 极电极。
全文摘要
一种用于氮化物肖特基二极管的端接结构,包括一个通过外延生长的P-型氮化物化合物半导体层构成的保护环,以及一个形成在保护环上的电介质场板。端接结构形成在肖特基二极管的阳极电极边缘处,以降低阳极电极边缘处的电场拥挤,尤其是当肖特基二极管反向偏置时。在一个实施例中,P-型外延层含有一个步阶凹陷,以进一步提高端接结构的场扩散效应。
文档编号H01L29/872GK103107151SQ20121044313
公开日2013年5月15日 申请日期2012年11月8日 优先权日2011年11月11日
发明者朱廷刚, 安荷·叭剌, 马督儿·博德 申请人:万国半导体股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1