用于可再充电电池的活性物质、可再充电电池和电子装置的制作方法

文档序号:7147862阅读:221来源:国知局
专利名称:用于可再充电电池的活性物质、可再充电电池和电子装置的制作方法
技术领域
本发明涉及用于能够吸留(吸藏,occluding)和释放(放出,releasing)锂离子的可再充电电池(可充电电池,rechargeable battery)的活性物质、使用该活性物质的可再充电电池、以及使用该可再充电电池的电子装置。
背景技术
近年来,以移动电话、移动信息终端装置(PDA)等为代表的电子装置已经变得普及,与此相关,对进一步小型化、重量减轻以及增加的寿命存在强烈需求。因此,作为电源,进行了电池,特别是能够获得高能量密度的紧凑且轻量化的可再充电电池的开发。最近,不限于上述电子装置,还进行了由作为可移开电源的电池组、电动车辆如电动车、电力存储系统如家用电力服务器、和电动工具如电钻等代表的用于各种用途的可再充电电池的应用的研究。作为可再充电电池,已经广泛地提出了利用各种充放电原理的可再充电电池;然而,其中,利用锂离子等的释放和吸留的可再充电电池是有前景的。这是因为与铅电池、镍镉电池等相比,其可以获得更高的能量密度。可再充电电池设置有正极和负极以及电解液,并且负极包括能够吸留和释放锂离子等的负极活性物质。作为负极活性物质,广泛使用了碳材料如石墨;然而,最近,由于需要进一步改善电池容量的结果,研究了 Si的使用。这是因为,由于Si的理论容量(4199mAh/g)远大于石墨的理论容量(372mAh/g),因此可以预期电池容量的较大改善。然而,由于Si在充放电期间剧烈地膨胀和收缩,因此负极活性物质主要在表面层附近容易破裂(开裂)。如果 负极活性物质破裂,则由于生成高度反应性的新表面(活性表面),所以负极活性物质的表面积(反应面积)增加。以这种方式,由于用于形成源自电解液的涂覆膜的电解液伴随在新表面中发生电解液的分解反应而在新表面中被消耗,所以诸如循环特性的电池特性易于降低。此处,为了改善诸如循环特性的电池特性,关于可再充电电池的构造进行了各种研究。具体地,为了改善循环特性和初始充放电特性,在核部分(SiOx:0 ^ 0.5)的表面上设置非结晶性或低结晶性覆盖部分(SiOy:0.5<y< 1.8)(例如,参照日本未审查专利申请公开号2011-233497 )。此外,为了满足相同的目的,将锂掺杂到硅-氧化硅基复合材料中(例如,参照日本未审查专利申请公开号2009-212074)。

发明内容
由于电子装置等变得日益高性能和多功能并且其利用频率增加,因此可再充电电池倾向于被频繁充放电。因此,期望进一步改善可再充电电池的特性。期望提供一种用于能够获得优异的电池特性的可再充电电池的活性物质、可再充电电池、和电子装置。根据本发明的实施方式,提供了用于可再充电电池的活性物质,所述活性物质能够吸留和释放锂离子并且包括Si和O作为构成元素,其中在所述活性物质的表面中Si相对于Si和O的原子比率(atomic ratio) (Si/ (Si+O))为30原子%至75原子%。此外,根据本发明的另一个实施方式的可再充电电池设置有正极、包含活性物质的负极、以及电解液,其中所述活性物质具有与上面描述的根据本发明的实施方式的用于可再充电电池的活性物质相同的构造。此外,根据本发明的又一个实施方式的电子装置设置有可再充电电池,其中可再充电电池具有与上面描述的根据本发明的另一个实施方式的可再充电电池相同的构造。根据本发明的实施方式,提供了一种用于可再充电电池的活性物质或可再充电电池,其中,在包括Si和O作为构成元素的活性物质中,由于在所述活性物质的表面中Si相对于Si和O的原子比率为30原子%至75原子%,因此可以获得优异的电池特性。此外,甚至在使用根据本发明实施方式的可再充电电池的电子装置中也可以获得类似的效果。


图1是示出了使用根据本发明的实施方式的用于可再充电电池的活性物质的负极的构造的截面图。图2A和2B是示意性地示出了作为根据本发明实施方式的用于可再充电电池的活性物质的负极活性物质的构造的截面图。图3A和3B是示意性地示出了作为根据本发明实施方式的用于可再充电电池的活性物质的另一种负极活性物质的构造的截面图。图4是示出了负极活性物质(覆盖部分(涂覆部分,coating portion)=非结晶性)的放大截面结构的高角度环形暗场扫描透射电子显微镜(HAADF STEM)照片。图5是示出了负极活性物质(覆盖部分=低结晶性)的放大截面结构的HAADF STEM照片。图6是示出了负极活性物质(覆盖部分=低结晶性)的放大截面结构的另一个HAADF STEM 照片。图7是示出了负极活性物质(覆盖部分=非结晶性)的放大截面结构的HAADF STEM照片。图8是示出了根据本发明实施方式的可再充电电池(方型)的构造的截面图。图9是沿着图8所示的可再充电电池的线IX-1X的截面图。图10是示意性地示出了图9所示的正极和负极的构造的平面图。图11是示出了根据本发明的实施方式的可再充电电池(圆柱型)的构造的截面图。图12是示出了图11所示的螺旋卷绕电极体的放大部分的截面图。图13是示出了根据本发明的实施方式的可再充电电池(层压膜型)的构造的分解透视图。图14是沿着图13所示的螺旋卷绕电极体的线XIX-XIX的截面图。图15是示出了可再充电电池的应用例(电池组)的构造的框图。图16是示出了可再充电电池的应用例(电动车辆)的构造的框图。图17是示出了可再充电电池的应用例(电力存储系统)的构造的框图。图18是示出了可再充电电池的应用例(电动工具)的构造的框图。
具体实施例方式在下文中,将参考附图对本发明的实施方式进行详细描述。这里,描述的顺序如下。1.使用用于可再充电电池的活性物质的电极2.可再充电电池2-1.方型2-2.圆柱型2-3.层压膜型3.可再充电电池的使用3-1.电池组3-2.电动车辆3-3.电力存储系统3-4.电动工具1.使用用于可再充电电池的活性物质的电极图1示出了作为使用根据本发明实施方式的用于可再充电电池的活性物质的电极的负极的截面构造,并且图2A和2B以及图3A和3B示出了作为根据本发明实施方式的用于可再充电电池的活性物质的负极活性物质的截面构造。图4至图7是负极活性物质的截面结构的HAADF STEM照片(下面,简称为“TEM照片”)。负极的整体构造负极例如用于可再充电电池等中,并且如图1所示,包括在负极集电体I上的负极活性物质层2。上述负极活性物质层2可以设置在负极集电体I的两个表面上或者可以仅设置在一个表面上。然而,可以省略负极集电体I。负极集电体例如,负极集电体I由具有优异的电化学稳定性、电子传导性和机械强度的导电材料形成,并且这种导电材料是例如如Cu、N1、或不锈钢的金属材料。其中,不与Li形成金属间化合物且可以与负极活性物质层2合金化的材料是优选的。负极集电体I优选包含碳(C)和硫(S)作为构成元素。这是因为由于负极集电体I的物理强度被改善,所以即使在充放电期间负极活性物质层2膨胀和收缩时,负极集电体I也不易于变形。具体地,例如,负极集电体I是掺杂有C和S的金属箔等。C和S的含量没有特别限制;然而,其中,IOOppm以下是优选的。这是因为可以获得更大的效果。负极集电体I的表面(与负极活性物质层2接触的表面)可以被粗糙化,或者可以不被粗糙化。未被粗糙化的负极集电体I例如是辊压的(rolled)金属箔等,并且伴随此,被粗糙化的负极集电体I例如是经受电解处理、喷砂(sandblasting)处理等的金属箔等。电解处理是一种通过在电解槽中利用电解法在金属箔等的表面上形成细颗粒以提供不规则度的方法。通常,由电解法制造的金属箔被称为电解箔(例如,电解Cu箔等)。其中,负极集电体I的表面优选被粗糙化。这是因为通过锚固效应改善了负极活性物质层2相对于负极集电体I的粘附性。负极集电体I的表面粗糙度(例如,十点平均粗糙度(ten-point average roughness) Rz等)没有特别限制;然而,为了利用锚固效应来改善负极活性物质层2的粘着性,其优选尽可能大。然而,如果表面粗糙度过大,则存在负极活性物质层2的粘着性相反会降低的可能性。负极活性物质层负极活性物质层2包含能够吸留和释放电极反应物(锂离子)的颗粒形式的一种或两种以上负极活性物质,并且根据需要,可以进一步包含其他材料,例如,负极粘结剂或负极导电剂。上述负极活性物质包含Si和O作为构成元素,并且根据需要还可以包含一种或两种或更多种其他元素。然而,在负极活性物质的表面中,Si相对于Si和O的原子比率(Si/(Si+O))为30原子%至75原子%。严格地说,“表面”是在其中负极活性物质用于可再充电电池中的情况下与电解液接触的负极活性物质的最外表面(负极活性物质与电解液之间的界面)。这里,在负极活性物质的表面上形成后面待描述的导电层的情况下,“表面”是与导电层接触的负极活性物质的最外表面(负极活性物质与导电层之间的界面)。该原子比率通过原子比率(原子%) =[Si的原子量/ (Si的原子量+0的原子量)]X 100来计算。此处,例如,可以通过使用能量分散型X射线光谱法(TEM/EDX)从表面侧测量负极活性物质的截面来确定Si和O的每一个各自的原子量。TEM装置被设定为由JEOL, Ltd.制造的JEM-2100F,并且EDX装置被设定为由JEOL,Ltd制造的JED-2300T。测量条件为加速电压=200kVm、束电流=240pA、束直径=0.15mm、以及分析(总)时间=30秒。包括Si作为负极活性物质的构成元素的原因是因为可以获得更高的能量密度,由此可以获得较大的电池容量。此外,包括Si和O作为负极活性物质的构成元素的原因是因为可以获得优异的循环特性等。在负极活性物质的表面中原子比率是30原子%至75原子%的原因是因为可以获得优异的初始充放电特性和循环特性。详细地,当原子比率小于30原子%时,由于与Si的量相比,O的量变得太大,因此电阻增加。以这种方式,从初始充放电时很难获得足够的充放电效率。另一方面,当原子比率超过75原子%时,由于与O的量相比,Si的量变得太大,因此改善了锂离子的可接受性,但是如果重复充放电,则Si将容易被劣化(表面劣化)。以这种方式,很难获得足够的循环特性。因此,为了获得优异的初始充放电特性和循环特性同时确保锂离子的可接受性,原子比率应当在上述范围内。在上文中,负极活性物质的表面中的原子比率更优选为30原子%至70原子%。这是因为可以获得更大的效果。在上述负极活性物质中的至少表面附近部分(表面和其附近的部分)中,原子比率可以以任何方式朝向负极活性物质的中心过渡(transition)。换句话说,原子比率可以逐渐减少,可以逐渐增加,或者可以不变。在上文中,优选的是,原子比率从负极活性物质的表面到中心逐渐减少。这是因为,由于在负极活性物质的中心侧,与O的量相比Si的量变大,因此确保了锂离子的释放和吸留的量。以这种方式,可以获得较大的电池容量。此外,这是因为,由于在负极活性物质的表面侧,与O的量相比Si的量变小,如果负极活性物质的表面中的原子比率在上述范围内,则锂离子易于移入和移出,并且可以获得高循环特性。在负极活性物质中的至少表面附近部分的结晶性(结晶度,crystallinity)没有特别限制;然而,此处,非结晶性或低结晶性是优选的。这使得即使在充放电时负极活性物质膨胀和收缩,负极活性物质也不易于被损坏(破裂等)。此处,术语“低结晶性”是指其中结晶区域(结晶颗粒(crystal grains))散布在非结晶区域中的结晶状态,并且将在下面描述其细节。在上述负极活性物质的表面附近部分具有低结晶性的情况下,低结晶性部分中的结晶性的程度没有特别限制。在上述中,优选的是,源自Si的(111)面和(220)面的结晶颗粒的平均面积占有率(average areaoccupancy rate)为35%以下,并且结晶颗粒的平均粒径为50nm以下。这是因为可以获得更大的效果。此处,下面将给出平均面积占有率和平均粒径的测量方法的描述。如果上述负极活性物质具有上述性能,则整体上可以采用任何构造。例如,如图2A中所示,该材料物理上可以整体为一种粒状体(granularbody)(负极活性物质100)。例如,上述负极活性物质100的O相对于Si的原子比(atom ratio)z(0/Si)满足0.5≤ζ≤1.8。即,负极活性物质100包括Si的氧化物(SiOz:0.5彡ζ彡1.8)。这是因为可以获得优异的电池容量、初始充放电特性、循环特性等。如上所述,优选的是,原子比率从负极活性物质100的表面到中心逐渐减少。这是因为,由于在负极活性物质100的中心侧与O的量相比,Si的量变大并且在表面侧与O的量相比,Si的量变小,因此可以获得上述优点。在这种情况下,负极活性物质100的内侧部分(内部,inner portion)的原子比率没有特别限制;然而,此处,在从负极活性物质100的表面朝向中心的300nm的位置处,原子比率优选为35原子%至60原子%。这是因为可以获得更大的效果。此处,负极活性物质100可以包括Si和O并且还可以包括一种或两种或更多种其他元素。具体地,优选的是,负极活性物质100包括Fe作为构成元素。这是为了降低负极活性物质100的电阻。在上述负极活性物质100内,Fe可以与Si和O分开(以游离状态)存在,或者可以与Si和O中的至少一种形成合金或化合物。例如,可以使用EDX等来确认包括上述Fe的负极活性物质100的状态(Fe结合状态等)。上述负极活性物质100的结晶性没有特别限制,并且其可以具有高结晶性或低结晶性。由于关于上述负极活性物质100的低结晶性的细节与后面待描述的覆盖部分202的低结晶性相同,因此将省略其描述。可替换地,例如,如图2B所示,材料可以是包括核部分201和覆盖部分202的复合粒状体(composite granular body)(负极活性物质200)。在上述负极活性物质200中,覆盖部分202设置在核部分201的表面上并且例如可以使用扫描电子显微镜(SEM)等以这种方式来确认其中核部分201被覆盖部分202覆盖(涂覆)的状态。此外,如图4至图6所示,可以利用TEM等来确认核部分201和覆盖部分202的结晶性(结晶状态)。如上所述,优选的是原子比率从负极活性物质200的表面到核部分201与覆盖部分202的界面逐渐减小。这是因为由于在负极活性物质200的中心侧(核部分201)与O的量相比Si的量变大并且在表面侧(覆盖部分202)与O的量相比Si的量变小,可以获得上述优点。在这种情况下,负极活性物质200的内侧部分的原子比率没有特别限制;然而,此处,在核部分201和覆盖部分202的界面处,原子比率优选为35原子%至60原子%。这是因为可以获得更大的效果。
例如,核部分201包括Si和O作为构成材料,并且O相对于Si的原子比x(0/Si)满足OS X <0.5。S卩,例如,核部分201包括硅基材料(SiOx:0 < X < 0.5)。这是因为,与其中原子比X在该范围之外的情况(X > 0.5)相比,由于核部分201在充放电期间更容易吸留和释放锂离子并且不可逆容量降低,因此可以获得大的电池容量。如从上述组成(原子比X)清楚的是,核部分201的形成材料可以是Si单质(x=0),或者可以是Si的氧化物(SiOx:0〈x〈0.5)。然而,X优选尽可能小,并且x=0 (Si单质)是更优选的。这是因为,由于可以获得更高的能量密度,因此电池容量变得更大。此外,这是因为,由于核部分201的劣化被抑制,因此放电容量从充电和放电循环的初始期间不易于降低。然而,“单质”是通常意义上的简单单质并且不必指100%纯度。即,Si单质可以包括痕量杂质(除了 O以外的元素)。核部分201的结晶性可以是高结晶性、低结晶性、或非结晶性中的任何一种;然而,此处,高结晶性或低结晶性是优选的,并且高结晶性是更优选的。这是因为,由于核部分201在充放电期间更易于吸留和释放锂离子,所以可以获得高电池容量等。此外,这是因为核部分201在充放电期间不易于膨胀和收缩。在上述中,通过X射线衍射获得的源自Si的(111)晶面的衍射峰的半值宽度(half-value width) (2Θ)优选为20°以下。此外,源自Si的(111)晶面的晶粒尺寸(crystallite size)优选为IOnm以上。这是因为可以获得更大的效果。此处,核部分201可以包括Si和O并且还可以包括一种或两种或更多种其他元素。具体地,优选的是,核部分201包括Fe作为构成元素。这是为了降低核部分201的电阻。Fe相对于Si和O的比率(Fe/ (Si+O))没有特别限制;然而,其中,0.01质量%至
7.5质量%是优选的。这是为了不仅降低核部分201的电阻而且还改善锂离子的扩散。在核部分201的内部,Fe可以与Si和O分开地(以游离状态)存在,或者可以与Si和O中的至少一种形成合金或化合物。这也同样适用于后面待描述的Al等。例如可以利用EDX等来确认包括上述Fe的核部分201的状态(Fe的结合状态等)。此外,核部分201 可以包括来自 Al、Cr、N1、B、Mg、Ca、T1、V、Mn、Co、Cu、Ge、Y、Zr、Mo、Ag、In、Sn、Sb、Ta、W、Pb、La、Ce、Pr、和Nd中的至少一种元素作为构成元素。在上述之中,来自Al、Ca、Mn、Cr、Mg、和Ni中的至少一种是优选的。这种为了降低核部分201的电阻。Al等相对于Si和O的比率(Al等/ (Si+O))没有特别限制。此处,当核部分201包括Al时,结晶被降低,由此上述核部分201在充放电期间不易于膨胀和收缩并且改善了锂离子的扩散。核部分201的平均粒径(中位直径(median diameter) D50)没有特别限制;然而,此处,0.1 μ m至20 μ m是优选的。这是因为可以获得更大的效果。详细地,由于如果D50太小则表面积增大,因此存在导致安全性降低的可能性,然而如果D50太大,则存在由于在充电期间的膨胀而导致损坏负极活性物质200的可能性。此外,如果D50太小,则存在将变得难以涂覆包括负极活性物质200的浆料的可能性。覆盖部分202设置在核部分201的表面的至少一部分上。由于该原因,覆盖部分202可以仅覆盖(涂覆)核部分201的表面的一部分,或者可以覆盖(涂覆)其整体。在前者的情况下,覆盖部分202可以散布在核部分201的表面上的多个位置中。
例如,覆盖部分202包括Si和O作为构成元素,并且O相对于Si的原子比y (0/Si)满足0.5 SyS 1.8。即,例如,覆盖部分202包括硅基材料(Si0y:0.1.8)。这是为了即使当重复充放电时也能抑制负极活性物质200的劣化。以这种方式,覆盖部分202化学和物理上保护核部分201,同时确保了核部分201中的锂离子的可接受性。具体地,当覆盖部分202置于(interpose)核部分201与电解液之间时,由于高度反应性的核部分201不易于与电解液接触,因此电解液的分解反应被抑制。在这种情况下,如果覆盖部分202由具有与核部分201相同基体(基材,base )的材料(包含共同的元素(Si )作为构成元素的材料)形成,则覆盖部分202相对于上述核部分201的粘附性也变大。此外,由于覆盖部分202具有柔性(易于变形的性能),因此即使当核部分201在充放电期间膨胀和收缩时,覆盖部分202也更易于伴随此膨胀和收缩(伸缩(伸展,stretch))。以这种方式,由于覆盖部分202在核部分201的膨胀和收缩期间几乎不易于损坏(断裂(snapping)等),因此即使当重复充放电时也保持了通过覆盖部分202的核部分201的覆盖状态。因此,即使当核部分201在充放电期间破裂,由于新表面较不易于被暴露并且新表面不易于与电解液接触,所以电解液的分解反应被显著抑制。如从上述组成(原子比y)清楚的是,覆盖部分202的形成材料是Si的氧化物(SiOy)0尤其是,原子比y优选满足0.7彡y彡1.3,且更优选y=l.2,这是因为可以获得更大的效果。此处,覆盖部分202可以包括Si和O并且还可以包括一种或两种或更多种其他元素。具体地,优选的是,覆盖部分202包括来自Fe、Al、和Ca中的至少一种作为构成元素。这是为了降低覆盖部分202的电阻。Fe等相对于Si和O的比率(Fe等/ (Si+O))是任意的。覆盖部分202的结晶性没有特别限制;然而,优选低于核部分201的结晶性(接近非结晶性),并且更具体地,低结晶性或非结晶性(无定形性(amorphousness))是优选的。这是因为,即使核部分201的表面被覆盖部分202覆盖,由于与高结晶性的情况相比锂离子易于扩散,因此核部分201易于 且顺利地吸留和释放锂离子。此处,“覆盖部分202的结晶性低于核部分201的结晶性”是指,在核部分201具有高结晶性的情况下,覆盖部分202例如具有低结晶性或非结晶性。可替换地,是指,例如,在核部分201具有低结晶性的情况下,覆盖部分202具有非结晶性。尤其是,覆盖部分202更优选具有非结晶性。这是因为,由于覆盖部分202的柔性增加,所以上述覆盖部分202在充放电期间更易于跟随核部分201的膨胀和收缩。此外,这是因为,由于覆盖部分202不太可能捕获锂离子,因此更难以抑制锂离子移动到核部分201中并且移出核部分201。此处,图4至图7示出了其中核部分201是高结晶性Si并且覆盖部分202是非结晶性SiOy的情况。另一方面,在图5和图6中示出了其中核部分201是高结晶性Si并且覆盖部分202是低结晶性SiOy的情况。此处,“低结晶性”是指在利用HAADF STEM等来观察覆盖部分202的截面或表面的情况下,存在非结晶区域和结晶区域(结晶颗粒)两者的结晶状态。如果可以由TEM照片确认非结晶区域和结晶区域混合的状态,则上述覆盖部分202具有低结晶性。此处,在非结晶区域和结晶区域混合的情况下,结晶区域被观察为具有粒状轮廓的区域(结晶颗粒)。由于在上述结晶颗粒的内侧部分观察到归因于结晶性的条纹图案(结晶横条纹(结晶十字条纹,crystal cross stripes)),因此可以使结晶颗粒与非结晶区域区分开。相反,“非结晶性”与无定形态相同并且是指在利用HAADFSTEM等观察覆盖部分的情况下不存在结晶区域和仅存在非结晶区域的结晶状态。此处,例如,在观察期间的放大率设定为1.2X106倍。非结晶性与低结晶性之间的差别从图4和图5中示出的TEM照片是显然的。在覆盖部分202具有非结晶性的情况下,如图4中所示,仅观察到非结晶区域,并且没有观察到结晶区域(具有结晶横条纹的结晶颗粒)。相反,在覆盖部分202具有低结晶性的情况下,如图5所示,观察到其中结晶颗粒(由箭头示出的部分)散布在非结晶区域中的状态。由于上述结晶颗粒具有对应于Si的晶格间距d的预定间隔的结晶横条纹,因此,使得与周围的非结晶区域明显区分开。此处,由于当图5所示的TEM照片进行傅里叶变换时(当获得对应于电子衍射图的图时)点以环形状排列,证实了在覆盖部分202的内侧部分存在大量的结晶区域。此处,例如,利用HAADF STEM的外壳部分的观察程序如下。首先,在将粘合剂涂布在由Cu制成的TEM格栅(grid)的表面上之后,将样品(负极活性物质200)喷洒在粘合剂上。随后,利用真空沉积法将碳材料(石墨)沉积在粉末样品的表面上。随后,在利用聚焦离子束(FIB)法将薄膜(Pt/W)沉积在碳材料的表面上之后,进行另外的薄膜处理(加速电压=30kV)。最后,利用HAADF STEM (加速电压=200kV)来观察负极活性物质200的截面。上述观察方法是对样品的组成敏感的方法,由此通常可以获得具有大致与原子序数的平方成比例的亮对比度的图像。在图4和图5所示的TEM照片中,可以观察到以线L作为边界的具有不同结晶状态的区域。证实了,当利用EDX来分析具有这些不同结晶状态的区域时,相对于线L位于内侧的区域是具有高结晶性的核部分201 (Si),并且相对于线L位于外侧的区域是具有低结晶性或非结晶性的覆盖部分202 (SiOy)0覆盖部分202的低结晶性的程度没有特别限制;然而,优选的是源自Si的(111)面和(220)面的结晶颗粒的平均面积占有率为35%以下,更优选为25%以下,并且甚至更优选为20%以下。这是因为可以获得更大的效果。如图5中所示,“源自(111)面的结晶颗粒”是具有其中晶格间距d=0.3Inm的结晶横条纹的结晶区域,并且“由于(220)面产生的结晶颗粒”是具有其中晶格间距d=0.19nm的结晶横条纹的结晶区域。用于计算上述平均面积占有率的程序如下。最后,如图6中所示,利用HAADF STEM来观察覆盖部分202的截面以获得TEM照片。在这种情况下,进行设置使得观察放大率=1.2X IO6倍,并且观察区域=65.6nmX65.7nm。此处,图6是其中观察了与图5相同的区域的TEM照片。随后,在研究了结晶横条纹的有无、晶格间距d的值等,并且规定了其中存在源自Si的(111)面的结晶颗粒和源自Si的(220)面的结晶颗粒的范围之后,在TEM照片中描绘上述结晶颗粒的轮廓。随后,在计算每个结晶颗粒的面积之后,面积占有率(%)=(结晶颗粒的面积的总和/观察区域的面积)X 100。上述轮廓的描绘和面积占有率的计算可以人工进行,或者可以利用专用处理软件等机械地进行。最后,在对40个区域重复面积占有率的计算操作之后,计算对于每个区域计算的面积占有率的平均值(平均面积占有率)。在这种情况下,为了通过考虑结晶颗粒的分布趋势来计算平均面积占有率,优选的是,覆盖部分202在厚度方向上进行二等分(bisect),并且在内侧部分和外侧部分中各自对于20个区域计算面积占有率。
如上所述,当在厚度方向上对覆盖部分202进行二等分时,平均面积占有率在内侧部分和外侧部分中可以是相同的,或者可以是不同的。尤其是,在内侧部分中的结晶颗粒的平均面积占有率优选与外侧部分中的结晶颗粒的平均面积占有率相同或大于外侧部分中的结晶颗粒的平均面积占有率(内侧部分的平均面积占有率 > 外侧部分的平均面积占有率)。这是因为可以获得更大的效果。这对于平均粒径也同样是适用的。此处,在内侧部分和外侧部分中的平均面积占有率和平均粒径分别如上所述被设定为均对于20个区域进行计算。此外,上述结晶颗粒的平均粒径没有特别限制;然而,其中,55nm以下是优选的,并且50nm以下是更优选的。这是因为可以获得更大的效果。上述平均粒径的计算程序与计算平均面积占有率的情况相同,不同之处在于,在对于每个区域计算平均粒径之后,计算上述平均粒径的平均值(最终平均粒径)。此处,例如,在测量结晶颗粒的粒径的情况下,在结晶颗粒的轮廓被转化为圆(环形,circle)之后(在规定具有与由结晶颗粒的轮廓限定的形状相等的面积的圆之后),圆的直径被设定为粒径。与计算平均面积占有率的情况类似,可以人工或机械地计算上述粒径。此外,覆盖部分202的平均厚度没有特别限制;然而,其中,尽可能薄是优选的,并且Inm至3000nm是更优选的。这是因为核部分201更易于吸留和释放锂离子,并且覆盖部分202更有效地呈现保护功能。具体地,当平均厚度小于Inm时,存在覆盖部分202很难保护核部分201的可能性。另一方面,当平均厚度大于3000nm时,电阻变高并且存在核部分201在充放电期间很难吸留和释放锂离子的可能性。这是因为,在覆盖部分202的形成材料是SiOy的情况下,SiOy具有易于吸留锂离子但不易于释放已经吸留的锂离子的性能。覆盖部分202的平均厚度通过以下程序来计算。首先,利用SEM等来观察I个负极活性物质200。为了测量覆盖部分202的厚度,观察期间的放大率优选是可以视觉上证实(确认)核部分201与覆盖部分202的边界的放大率。随后,在10个任意点处测量覆盖部分202的厚度之后,计算其平均值(每一个的平均厚度T)。在这种情况下,优选的是设定测量位置使得被广泛地分散而不是尽可能多地集中在特定位置的附近。随后,重复上述平均值的计算操作直到利用SEM观察的个数的总数达到100。最后,计算关于100个负极活性物质200计算的平均值(每一个的平均厚度T)的平均值(平均厚度T的平均值)并将其设定为覆盖部分202的平均厚度。此外,覆盖部分202相对于核部分201的平均覆盖率(average coatingrate)没有特别限制;然而,优选尽可能大,并且此处,30%以上(30%至100%)是更优选的。这是为了改善覆盖部分202的保护功能。覆盖部分202的平均覆盖率通过以下程序来计算。首先,与计算平均厚度的情况类似,利用SEM等来观察负极活性物质200的一个样品。观察期间的放大率优选是在核部分201中可以视觉上识别被覆盖部分202覆盖的部分和未覆盖部分的放大率。随后,在核部分201的外边缘(轮廓),测量被覆盖部分202覆盖的部分的长度和未覆盖部分的长度。此处,计算覆盖率(每一个的覆盖率:%)=(被覆盖部分202覆盖的部分的长度/核部分201的外边缘的长度)X100。随后,重复上述覆盖率的计算操作,直到用SEM观察的个数的总数达到100。最后,计算关于100个负极活性物质200计算的覆盖率(每个的覆盖率)的平均值,并将其设定为覆盖部分202的平均覆盖率。
此处,覆盖部分202优选邻近核部分201 ;然而,可以在核部分201与覆盖部分202之间插入天然氧化物膜(Si02)。例如,上述天然氧化物膜是其中核部分201的表面层附近在大气中被氧化的天然氧化物膜。如果核部分201存在于负极活性物质200的中央并且覆盖部分202存在于外侧,则天然氧化物膜的存在对核部分201和覆盖部分202的功能几乎没有任何影响。此处,为了证实负极活性物质200包括核部分201和覆盖部分202,除了上面描述的SEM观察之外,例如,还可以利用X射线光电子能谱(XPS)、能量分散型X射线分析(EDX)等来分析负极活性物质200。在这种情况下,如果测量负极活性物质200的中心部分和表面部分的氧化程度(原子X,y),则可以确认核部分201和覆盖部分202的组成。此处,为了研究被覆盖部分202覆盖的核部分201的组成,可以利用诸如HF的酸来溶解并除去覆盖部分202。例如,用于测量氧化程度的详细程序如下。首先,利用燃烧法来量化负极活性物质200并且计算Si的量和O的量的总和。接下来,在利用HF等冲洗并除去覆盖部分202之后,利用燃烧法来量化核部分201并且计算Si的量和O的量。最后,从Si的量和O的量的总和减去核部分201的Si的量和O的量,并且计算覆盖部分202的Si的量和O的量。以这种方式,由于确定了核部分201的Si的量和O的量,因此可以确定核部分201的氧化程度。类似地,也可以确定覆盖部分202的氧化程度。此处,代替冲洗并除去覆盖部分202,氧化的程度可以利用被覆盖部分202覆盖的核部分201和未覆盖的核部分201来测量。此处,在负极活性物质层2中,多个负极活性物质200可以相互分开(分散),或者它们中的两个以上可以接触(或连接)。在其中两个以上负极活性物质200接触的情况下,负极活性物质200的位置关系可以是任意的。此外,覆盖部分202在其内侧部分中包括一个或两个以上空隙(spaces),并且优选在上述空隙的至少一部分中设置有导电材料。即,优选的是,导电材料插入到所述空隙中,并且所述空隙被填充有导电材料。这是因为改善了负极活性物质200的导电性,并且伴随此,抑制了电解液的分解反应而不抑制伴随上述核部分201的膨胀和收缩的覆盖部分202的膨胀和收缩性能。例如,上述导电材料优选包含碳(C)作为构成元素,并且,作为这种导电材料的具体实例,存在后面待描述为“其他负极活性物质”的碳材料等。具体地,存在于覆盖部分202的内侧部分的空隙被用作用于缓和当在充放电期间负极活性物质200膨胀和收缩时产生的内部应力的空隙。由于该原因,当覆盖部分202具有空隙时,负极活性物质200在充放电期间几乎不可能被损坏。另一方面,由于所述空隙导致高度反应性的覆盖部分202在其内侧部分中被暴露,因此在暴露的表面处电解液易于分解。关于该点,当在空隙中设置导电材料时,由于高度反应性的覆盖部分202不易于在空隙的内侧部分中暴露,因此抑制了电解液的分解反应。而且,由于碳在变形性(柔性)和高导电性方面是优异的,因此包括碳作为构成元素的导电材料不易于抑制伴随核部分201的膨胀和收缩的覆盖部分202的膨胀和收缩性能,伴随此,改善了覆盖部分202的导电性。此处,导电材料可以仅包括C作为构成元素,或者同样还可以包括C和任何一种或两种或更多种其他元素。上述“其他元素”的类型没有特别限制;然而,例如存在氢(H)、氧(O)等。上述空隙的形成因素没有特别限制。这是因为,与进行形成的因素无关,如果在覆盖部分202中存在空隙,则空隙可以实现起到用于缓和应力的空隙的作用。覆盖部分202可以是单层,或者可以是多层;然而,此处,如图7中所示,多层是优选的。这是因为用于缓和应力的空隙易于在覆盖部分202中(层之间)形成。图7中所示的虚线表示每一层的近似边界。然而,覆盖部分202可以整个是多层的,或者仅一部分可以是多层的。此处,例如,如图3A和图3B所示,优选的是,导电层210设置在负极活性物质100和200的表面上。这是因为由于高度反应性的负极活性物质100和200并不易于与电解液接触,因此抑制了电解液的分解反应。此外,这是为了降低负极活性物质100和200的电阻。导电层210可以涂布在负极活性物质100和200的表面的仅一部分上,或者可以涂布在其整体上。在前者的情况下,导电层210可以散布在负极活性物质100和200的表面上的多个位置中。导电层210优选具有比负极活性物质100和200更低的电阻,更具体地,优选包括C作为构成元素。这是因为可以获得更大的效果。这里,在导电层210的形成材料与导电材料的形成材料相同的情况下,代替导电材料,覆盖部分202的空隙可以用导电层210的一部分填充,并且可以密封空隙。这是因为可以基本上以一批来形成导电材料和导电层210。此处,通常,当利用拉曼光谱法来测量碳材料时,在拉曼光谱中在1590CHT1附近检测到源自石墨结构的G带峰(band peak)并且在1350CHT1附近检测到源自缺陷的D带峰。G带峰的强度IG和D带峰的强度ID的比率IG/ID也被称作G/D比,并且是表示碳材料的结晶性(纯度)的指数。包括C作为构成元素的导电层210的比率IG/ID没有特别限制;然而,此处,0.3至
3.2是优选的,并且约2是更优选的。这是因为可以获得优异的粘合特性、导电性和变形性。具体地,由于当比率IG/ID小于0.3时粘合特性增加,因此改善了导电层210之间的粘着性以及导电层相对于负极活性物质100和200的粘着性。然而,由于导电性降低并且发生硬化,因此存在伴随负极活性物质100和200的膨胀和收缩导电层210将不易于膨胀和收缩并且不能获得足够的导电性的可能性。另一方面,由于当比率IG/ID大于3.2时,导电性增加并且发生软化,因此伴随负极活性物质100和200的膨胀和收缩,导电层210将易于膨胀和收缩,伴随此,获得了足够的导电性。然而,由于粘合特性降低,因此存在导电层210之间的粘着性以及导电层210相对于负极活性物质100和200的粘着性会降低的可能性。相反,如果比率IG/ID为0.3至3,则导电层210的粘着性和导电性增加,并且伴随此,伴随负极活性物质100和200的膨胀和收缩,导电层210易于膨胀和收缩。此外,导电层210可以包括C并且还可以包括一种或两种或更多种其他元素。上述“其他元素”的类型没有特别限制;然而,例如,存在H、0等。作为导电层210的形成材料的具体实例,存在后面待描述为“其他负极活性物质”的碳材料等。导电层210的平均厚度没有特别限制;然而,其中,200nm以下是优选的。此外,导电层210相对于负极活性物质100和200的平均覆盖率没有特别限制;然而,此处,优选为30%以上。这是因为可以获得更大的效果。尤其是,如果平均厚度大于200nm,则由于包括负极活性物质100和200的浆料的性能劣化,存在将变得难以涂覆(覆盖)浆料的可能性。此处,导电层210的平均覆盖率和平均厚度的计算程序的细节与用于上述覆盖部分202的相同。
例如,负极粘结剂包括一种或两种或更多种任意的合成橡胶、聚合物材料等。例如,合成橡胶是苯乙烯-丁二烯类橡胶、氟类橡胶、乙烯丙烯二烯等。例如,聚合物材料是聚偏氟乙烯、聚酰亚胺、聚酰胺、聚酰胺-酰亚胺、聚丙烯酸、聚丙烯酸锂、聚丙烯酸钠、聚马来酸、它们的共聚物等。除了这些之外,聚合物材料例如可以是羧甲基纤维素、丁苯橡胶、聚乙烯醇等。例如,负极导电剂包括任意碳材料例如石墨、炭黑、乙炔黑或科琴黑中的一种或两种以上。此处,只要负极导电剂是具有导电性的材料,其可以是金属材料、导电聚合物等。此处,根据需要,负极活性物质层2可以包括上述负极活性物质,以及与其一起的一种或两种或更多种任何其他类型的负极活性物质。“其他类型的负极活性物质”包括例如碳材料。这是因为负极活性物质层2的电阻降低,并且伴随此,负极活性物质层2在充放电期间不易于膨胀和收缩。例如,上述碳材料是易石墨化碳、(002)面的面间距为0.37nm以上的难石墨化碳、(002)面的面间距为0.34nm以下的石墨等。更具体地,碳材料是热解碳、焦炭、玻璃化碳纤维、有机高分子化合物烧成体、活性炭、炭黑等。其中,焦炭包括浙青焦炭、针状焦炭、石油焦炭等。有机高分子化合物烧成体是其中在适当的温度下将酚醛树脂、呋喃树脂等烧成并碳化的烧成体。碳材料的形状可以是纤维状、球形、粒状或鳞片状中的任何一种。此外,其他负极活性物质可以是金属氧化物或高分子化合物。例如,金属氧化物是氧化铁、氧化钌、氧化钥等。例如,高分子化合物是聚乙炔、聚苯胺、聚吡咯等。例如,负极活性物质层2利用涂布法、烧成法(烧结法)或组合它们中的两种或更多种的方法来形成。例如,涂布法是在将负极活性物质与负极粘结剂等混合之后,将负极活性物质分散在有机溶剂等中的涂布方法。烧成法是在利用与涂布法相同的程序进行涂布之后,在高于负极粘结剂的熔点的温度下进行热处理的方法。可以使用常用的方法作为烧成法。例如,烧成法包括气氛烧成法、反应烧成法、热压烧成法等。制造负极的方法例如通过以下程序来制造负极。此处,由于关于负极集电体I和负极活性物质层2的形成材料已经给出了细节,因此将省略其描述。在使用负极活性物质100的情况下,首先,例如,利用气体雾化方法、水雾化方法、熔融和粉碎方法等来获得颗粒状(粉末状)的Si氧化物(SiOz:0.5 ≤ Z ≤ 1.8)。在这种情况下,金属材料与原料一起熔融并且在Si氧化物中可以包括金属元素诸如Fe等。随后,在高温(例如,1000° C以下)下加热该Si氧化物。以这种方式,由于Si氧化物的表面经受还原处理并且表面处的原子比率变化,因此可以获得负极活性物质100。在这样的情况下,根据需要,可以使用H2气体等。例如,根据诸如压力、加热温度、和引入的H2气体的量的条件来控制负极活性物质100的表面的原子比率。在使用负极活性物质200的情况下,首先,例如,利用气体雾化方法、水雾化方法、熔融和粉碎方法等来获得颗粒状(粉末状)的核部分201 (SiOx:0 ≤ X ≤ 0.5)。此处,在核部分201中包括诸如Fe的金属元素的情况下,使金属材料与原料一起熔融。随后,例如,通过使用气相生长法诸如气相沉积法或溅射法,在核部分201的表面上形成覆盖部分202(Si0y:0.1.8)。当使用这种气相生长法时,存在覆盖部分202易于变成非结晶性的趋势。在这种情况下,通过在加热的同时进行沉积处理,或者在形成覆盖部分202之后加热,可以使得覆盖部分202具有低结晶性。例如,根据诸如加热的温度、持续时间等的条件来控制低结晶性的程度。通过上述加热处理,可以从覆盖部分202的内部除去水分,并且伴随此,改善了覆盖部分202相对于核部分201的粘着性。随后,利用与在获得负极活性物质100的情况中相同的程序,在高温(例如,1000° C以下)下加热(还原)覆盖部分202,并且改变覆盖部分202的表面的原子比率,由此获得负极活性物质200。例如,根据诸如引入的H2气体的压力、温度和量的条件来控制覆盖部分202的表面的原子比率。在形成覆盖部分202的情况下,根据需要,优选通过在旋转核部分201的同时利用开关机构如开闭器(shutter)来控制是否进行沉积工艺而从几个方向移动穿过多次来在核部分201的表面上进行沉积工艺。这是因为利用覆盖部分202易于均匀地覆盖核部分201的表面。此外,这是因为,由于覆盖部分202为多层,因此用于缓解应力的空隙易于在层之间形成。在覆盖部分202具有空隙的情况下,优选的是,利用热分解化学气相沉积(CVD)法等来沉积导电材料并且将导电材料填充在覆盖部分202的空隙中。在使用上述热分解CVD法的情况下,作为碳源(有机气体),例如,使用了甲烷、乙烷、乙烯、乙炔、丙烷等。通过使用热分解CVD法,由于碳源达到细空隙的内侧部分并且热分解,因此可以容易地用导电材料填充细空隙。如上所述,其中以这种方式将导电材料填充在覆盖部分202的细空隙中的结构是首次通过利用热分解CVD法等与覆盖部分202分开地形成导电材料而实现的特征结构。在获得负极活性物质100和200之后,根据需要,可以利用气相生长法、湿涂布法等在负极活性物质100和200的表面上形成导电层210。例如,气相生长法是气相沉积法(蒸汽沉积法)、派射法、热分解CVD法、电子束沉积法、糖碳化法(sugar carbonizationmethod)等。其中,热分解CVD法是优选的。这是因为导电层210易于以均匀的厚度形成。例如,当使用气相沉积法时,蒸气直接吹在负极活性物质100和200的表面上以形成导电层210。例如,当使用溅射法时,在引入Ar气体的同时利用粉末溅射法来形成导电层210。例如,当使用CVD法时,在将其中使金属氯化物升华的气体和H2、N2等的混合气体混合使得金属氯化物的摩尔比变为0.03至0.3之后,进行加热(1000 ° C以上)并且形成导电层210。例如,当使用湿涂布法时,通过在将含金属的溶液加入到包括负极活性物质100和200的浆料中的同时加入碱性溶液来形成金属氢氧化物。之后,通过利用氢进行还原处理(450° C)在负极活性物质100和200的表面上形成导电层210。此处,在使用碳材料作为导电层210的形成材料的情况下,在将负极活性物质100和200引入到室中并且将有机气体引入到室中之后,通过进行加热处理(10000Pa、1000° C以上X5小时)来形成导电层210。有机气体的类型没有特别限制,只要其通过热分解产生碳即可;然而,例如,存在甲烷、乙烧、乙稀、乙块、丙烧等。此处,在形成导电层210的情况下,在形成步骤中,可以进行表面还原处理和导电层210的形成处理。在这种情况下,根据需要,其还原量可以通过利用过氧化氢和浓硫酸的氧化反应来将表面变成SiO2而有意地减少还原操作来控制。随后,在将负极活性物质和其他材料诸如负极粘结剂混合并将其设定为负极混合物之后,将混合物溶解在诸如有机溶剂的溶剂中并且将其设定为负极混合物浆料。最后,在负极集电体I的表面上涂布负极混合物浆料之后通过进行干燥来形成负极活性物质层2。之后,如果有必要,可以使负极活性物质层2经受压缩成型和加热(烧成)。负极的作用和效果根据上述负极,负极活性物质包括Si和O作为构成元素,并且在负极活性物质的表面中Si相对于Si和O的原子比率为30原子%至75原子%。以这种方式,如上所述,由于负极活性物质的表面处的原子比率被优化,因此实际上保持了锂离子的顺利吸留和释放,抑制了电阻的增加,并且还抑制了在重复充放电的情况下Si的表面劣化。因此,可以改善利用该负极的可再充电电池的性能。特别地,只要原子比率在负极活性物质的至少表面附近的部分中从负极活性物质的表面朝向中心减小,或不变,就可以获得更大的效果。此外,只要负极活性物质的至少表面附近的部分为非结晶性或低结晶性并且结晶颗粒的平均面积占有率为35%以下且平均粒径为50nm以下,就可以获得更大的效果。此外,在负极活性物质的原子比ζ满足0.5 ^ z ^ 1.8的情况下,只要原子比率朝向负极活性物质的中心逐渐减小并且从负极活性物质的表面朝向其中心的300nm位置的原子比率为35原子%至60原子%,就可以获得更大的效果。此外,在负极活性物质包括核部分201 (原子比X为O < X < 0.5)和覆盖部分202(原子比y为0.5 < y < 1.8)的情况下,只要原子比率从负极活性物质的表面朝向核部分201和覆盖部分202的界面逐渐减小并且界面处的原子比率为30原子%至60原子%,就可以获得更大的效果。在这种情况下,只要核部分201的中位直径(D50)、覆盖部分202的平均厚度或平均覆盖率、当覆盖部分202在厚度方向上二等分时在外侧部分和内侧部分中的平均面积占有率与平均粒径之间的大小关系、覆盖部分202中的结晶颗粒的平均面积占有率和平均粒径在合适的范围内,就可以获得更大的效果。

此外,只要覆盖部分202包括空隙,并且空隙设置有导电材料,就可以获得更大的效果。此外,只要导电层210设置在负极活性物质的表面上,就可以获得更大的效果。在这种情况下,只要导电层210包括C作为构成元素,并且导电层210的比率IG/ID为0.3至
3.2,就可以获得甚至更大的效果。此外,只要导电层210的平均厚度和平均面积占有率在合适的范围内,就可以获得更大的效果。2.可再充电电池接着,将给出使用上述用于可再充电电池的负极的可再充电电池的描述。2-1.方型图8和图9表示方型可再充电电池的截面构造,并且图9示出了沿图8所示的线IX-1X的截面。此外,图10示意性地示出了图9所示的正极21和负极22的平面构造。可再充电电池的整体构造方型可再充电电池主要将电池元件20容纳在电池壳11的内部。上述电池元件20是其中正极21和负极22通过隔膜23层压并卷绕的卷绕和层压体,并且被构造成具有与电池壳11的形状相应的扁平形状。例如,电池壳11是具有方形外壳(square exterior)的外部构件。如图9中所示,具有方形外壳的构件具有的纵向方向上的截面具有矩形形状或基本矩形形状(包括其部分弯曲),并且可应用于具有卵形形状以及方形形状的方型电池。即,具有方形外壳的构件是具有带有基本矩形形状(卵形形状)的开口部分的有底矩型或有底卵型的容器形构件(vessel-shapedmember),其中用直线连接方形形状或弧。此处,图9示出了电池壳11具有矩形截面形状的情况。例如,存在电池壳11由导电材料诸如Fe、Al或其合金形成并且具有作为电极端子的功能的情况。尤其是,在充放电期间,为了利用坚固性(抗变形性)来抑制电池壳11的膨胀,比Al更硬的Fe是优选的。此处,在电池壳11由Fe制成的情况下,在电池壳11的表面上可以镀有Ni等。此外,电池壳11具有其中一个端部敞开而另一个端部封闭的中空结构,并且用附着至其开口端部的绝缘板12和电池盖13密封。绝缘板12设置在电池元件20与电池盖13之间,且例如由绝缘材料如聚丙烯形成。例如,电池盖13由与电池壳11相同的材料形成,并且可以以与电池壳11相同的方式用作电极端子。作为正极端子的端子板14设置在电池盖13的外部,并且端子板14通过绝缘套(insulating case) 16与电池盖13电绝缘。例如,绝缘套16由绝缘材料如聚对苯二甲酸丁二醇酯形成。在电池盖13的大致中央设置通孔,并且将正极销15插入到通孔中,以便电连接至端子板14并且通过垫圈17与电池盖13电绝缘。例如,垫圈17由绝缘材料形成,并且可以在垫圈17的表面上涂布浙青。在电池盖13的外缘附近,设置打开阀(opening valve) 18和注入孔19。打开阀18电连接至电池盖13,并且在电池的内部压力由于内部短路、来自外部的加热等而为设定量以上的情况下,通过与电池盖13分离来释放内部压力。例如,注入孔19通过由不锈钢球形成的密封构件19A阻塞。将由如Al的导电材料形成的正极引线24连接至正极21的端部(例如,内端部),并且将由如Ni的导电材料形成的负极引线25连接至负极22的端部(例如,外端部)。将正极引线24焊接至正极销15的一个端部并且电连接至端子板14,并且将负极引线25焊接至电池壳11并电连接至电池壳11。正极例如,正极21具有在正极集电体21A的两个表面上的正极活性物质层21B。然而,正极活性物质层21B可以设置在正极集电体21A的仅一侧上。例如,正极集电体21A由如Al、N1、或不锈钢的导电材料形成。正极活性物质层21B包含能够吸留和释放锂离子的任何一种或两种以上正极材料作为正极活性物质,并且根据需要,可以进一步包含其他材料例如正极粘结剂或正极导电剂。此处,例如,正极粘结剂或正极导电剂的细节与前面描述的负极粘结剂和负极导电剂相同。作为正极材料,含锂化合物是优选的。这是因为可以获得高能量密度。例如,含锂化合物是包含Li和过渡金属元素作为构成元素的复合氧化物、包含Li和过渡金属元素作为构成元素的磷酸盐化合物等。在上述中,过渡金属元素优选是Co、N1、Mn和Fe中的任何一种或两种以上。这是因为可以获得更高的电压。例如,其化学式由LixMllO2 *LiyM12P04表不。在该式中,Mll和M12表不一种或多种过渡金属兀素。X和y的值根据充放电状态而变化,并且通常为0.05 < X < 1.10和0.05 < y < 1.10。特别地,当正极材料包含Ni或Mn时,存在体积稳定性比率(volume stability ratio)提高的倾向。例如,包含Li和过渡金属元素的复合氧化物是由LixCo02、LixNi02(x是任意值)或下式(I)表示的锂镍基复合氧化物(lithium nickel basedcomposite oxide)。例如,包含Li和过渡金属元素的磷酸盐化合物是LiFeP04、LiFei_uMnuP04 (u〈l)等。这是因为可以获得大的电池容量以及优异的循环特性。此处,正极材料可以是除了上述材料外的材料。例如,该材料可以是LixMHyO2 (M14是来自Ni和式(I)中所示的M13中的至少一种,χ>1,并且y是任意值)等。LiNihMnxO2 (I) (M13 是来自 Co、Mn、Fe、Al、V、Sn、Mg、T1、Sr、Ca、Zr、Mo、Tc、Ru、Ta、W、Re、Y、Cu、Zn、Ba、B、Cr、S1、Ga、P、Sb 和 Nb 中的至少一种,并且 x 满足 0.005〈χ〈0.5。)此外,例如,正极材料可以是氧化物、二硫化物、硫属元素化物(硫族化物)、导电聚合物等。例如,氧化物可以是氧化钛、氧化钒、二氧化锰等。例如,二硫化物可以是二硫化钛、硫化钥等。例如,硫属元素化物可以是硒化铌等。例如,导电聚合物可以是硫磺、聚苯胺、聚噻吩等。负极例如,负极22具有与上述用于可再充电电池的负极相同的构造,并且具有在负极集电体22Α的两个表面上的负极活性物质层22Β。负极集电体22Α和负极活性物质层22Β的构造分别与负极集电体I和负极活性物质层2的构造相同。能够吸留和释放锂离子的负极材料的可充电容量优选大于正极21的放电容量。这是为了防止Li金属在充放电期间无意沉积。如图10中所示,例如,正极活性物质层21Β设置在正极集电体21Α的表面的一部分上(例如,纵向方向的中央区域)。相反,例如,负极活性物质层22Β设置在负极集电体22Α的整个表面上。以这种方式,负极活性物质层22Β设置在负极集电体22Α中的面对正极活性物质层21Β的区域(面对区域(对向区域)Rl)以及非面对区域(非对向区域)(非面对区域R2)。在这种情况下,在负极活性物质层22Β中,设置在面对区域Rl中的部分与充电关联,而设置在非面对区域R2中的部分几乎不与充电关联。此处,在图10中,正极活性物质层21Β和负极活性物质层22Β被阴影化。如上所述,在负极活性物质层22Β中包括的负极活性物质的原子比率在其表面在预定的范围内。然而,当在充放电期间锂离子移动到负极活性物质中并移出负极活性物质时,负极活性物质的原子比率可以从形成负极活性物质层22Β期间的状态变化。然而,在非面对区域R2中,几乎不存在充电影响,并且负极活性物质层22Β的形成状态被保持原样。由于该原因,与负极活性物质的表面中的原子比率相关,优选检查非面对区域R2的负极活性物质层22Β。这是因为可以以良好的再现性来精确地检查负极活性物质的表面中的原子比率,而不取决于充电历史(充电的有无、次数等)。上述还适用于其他系列的参数如负极活性物质的物理性能(结晶颗粒的平均粒径和平均面积占有率)以及其组成(原子比X至ζ)。负极22的完全充电状态下的最大利用率(下文,简称为“负极利用率”)没有特别限制,并且可以根据正极21的容量与负极22的容量的比率任意地设定。上述“负极利用率”由利用率Z (%) = (Χ/Υ) X 100表示。此处,X是在负极22的完全充电状态下每单位面积的锂离子的吸留量,且Y是每单位面积负极22的能够电化学吸留的锂离子的量。
可以例如使用以下程序来确定吸留量X。首先,在对可再充电电池进行充电从而达到完全充电状态(满充电状态)之后,将可再充电电池拆开并且切掉负极22中的与正极21面对的部分(检查负极)。随后,利用该检查负极,使评价电池组装有设置为对电极的金属锂。最后,在对评价电池进行放电并测量初始放电期间的放电容量之后,通过用放电容量除以检查负极的面积来计算吸留量X。在上述情况中的“放电”是指电流在从检查负极释放锂离子的方向流动,例如,在0.1mA/cm2的电流密度下进行恒定电流(固定电流)放电,直至电池电压达到1.5V。另一方面,例如,在对以恒定电流和恒定电压(固定电压)完成上述放电的评价电池充电直到电池电压达到OV并进行充电容量的测量之后,通过用其充电容量除以检查负极的面积来计算吸留量Y。在上述情况下的“充电”是指电流在从检查负极吸留锂离子的方向流动,例如,进行电流密度为0.1mA/cm2和电池电压为OV的恒定电压充电直到电流密度达到 0.02mA/cm2。尤其是,负极利用率优选为35%至80%。这是因为可以获得优异的初始充放电特性、循环特性、负荷特性等。隔膜隔膜23将正极21与负极22分开,并且使锂离子通过其中同时防止由于两个电极的接触引起的电流的短路。例如,隔膜23是由合成树脂或陶瓷形成的多孔膜,并且可以是其中层压了两种或更多种多孔膜的层压膜。例如,合成树脂可以是聚四氟乙烯、聚丙烯、聚乙烯等。电解液用作为液体形式电解质的电解液浸溃隔膜23。电解液是其中将电解质盐溶解在溶剂中的电解液,并且如果有必要,可以进一步包含其他材料,如添加剂。例如,溶剂包含一种或两种以上任何非水溶剂,如有机溶剂。例如,非水溶剂可以是碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、Y-丁内酯、Y-戊内酯、1,2_ 二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、四氢吡喃、1,3- 二氧戊环、4-甲基-1,3- 二氧戊环、1,3- 二噁烷、1,4- 二噁烷、乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丁酸甲酯、异丁酸甲酯、三甲基乙酸甲酯、三甲基乙酸乙酯、乙腈、戊二腈、己二腈、甲氧基乙腈、3-甲氧基-丙腈、N,N-二甲基甲酰胺、N-甲基吡咯烷二酮、N-甲基噁唑烷酮、N,N’-二甲基咪唑烷酮、硝基甲烷、硝基乙烷、环丁砜、磷酸三甲酯、二甲亚砜等。这是因为可以获得优异的电池容量、循环特性、保存特性等。在上述中,来自碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯、碳酸二乙酯、和碳酸甲乙酯中的至少一种是优选的。这是因为可以获得优异的特性。在这种情况下,高粘度(高介电常数)溶剂(例如,相对介电常数ε ≥30)如碳酸亚乙酯或碳酸亚丙酯与低粘度溶剂如碳酸二甲酯、碳酸甲乙酯或碳酸二 乙酯(例如,粘度≤ImPa *s)的组合是更优选的。这是因为改善了电解质盐的离解性和离子的移动程度。特别地,优选的是,溶剂包含不饱和环状碳酸酯。这是因为,由于在充电和放电期间在负极22的表面上形成稳定的涂层,从而抑制了电解液的分解反应。不饱和环状碳酸酯是具有一个或两个以上不饱和碳键的环状碳酸酯。例如,不饱和环状碳酸酯是碳酸亚乙烯酯、碳酸乙烯基亚乙酯、碳酸亚甲基亚乙酯等。溶剂中不饱和环状碳酸酯的含量没有特别限制;然而,例如,可以为0.01wt%M 10wt%。另外,溶剂优选包括卤代碳酸酯,S卩,来自卤代链状碳酸酯和卤代环状碳酸酯中的至少一种。这是因为,由于在充电和放电期间在负极22的表面上形成稳定的涂层,从而抑制了电解液的分解反应。卤代链状碳酸酯是具有卤素作为构成元素的链状碳酸酯,并且卤代环状碳酸酯是具有卤素作为构成元素的环状碳酸酯。卤素的类型没有特别限制;然而,此处,F、Cl或Br是优选的,并且F是更优选的。这是因为与其他卤素相比可以获得更大的效果。然而,卤素的数目与一个相比更优选两个,并且此外,可以是三个以上。这是因为,由于形成保护膜的能力增加且形成了更坚固和更稳定的涂层,因此抑制了电解液的分解反应。例如,卤代链状碳酸酯是碳酸氟甲基甲酯(碳酸氟甲酯甲酯)、碳酸二(氟甲基)酯、或碳酸二氟甲基甲酯(碳酸二氟甲酯甲酯)等。卤代环状碳酸酯是4-氟-1,3-二氧戊环-2-酮;4,5-二氟-1,3-二氧戊环-2-酮等。卤代环状碳酸酯还包括几何异构体。溶剂中卤代碳酸酯的含量没有特别限制;然而,例如,可以为0.01被%至50wt%。此外,溶剂优选包含磺内酯(环状磺酸酯)。这是因为提高了电解液的化学稳定性。例如,磺内酯是丙烷磺内酯(丙磺酸内酯)、丙烯磺内酯(丙烯磺酸内酯)等。溶剂中磺内酯的含量没有特别限制;然而,例如,其可以为0.5被%至5wt%。此外,优选溶剂包含酸酐。这是因为提高了电解液的化学稳定性。例如,酸酐是羧酸酐、二磺酸酐、羧酸磺酸酐等。例如,羧酸酐是琥珀酸酐、戊二酸酐、马来酸酐等。例如,二磺酸酐是乙烷二磺酸酐、丙烷二磺酸酐等。例如,羧酸磺酸酐是磺基苯甲酸酐、磺基丙酸酐、磺基丁酸酐等。溶剂中酸酐的含量没有特别限制;然而,例如,其可以为0.5被%至5wt%。例如,电解质盐包含一种或两种以上任何轻金属盐,如锂盐。例如,锂盐是LiPF6、LiBF4' LiClO4' LiAsF6, LiB (C6H5) 4、LiCH3SO3' LiCF3SO3' LiAlCl4, Li2SiF6' LiCl、LiBr 等,并且可以是另一种锂盐。这是因为可以获得优异的电池容量、循环特性、保存特性等。在上述中,任意LiPF6、LiBF4, LiClO4、和LiAsF6中的一种或两种以上是优选的,LiPF6或LiBF4是更优选的,且LiPF6是甚至更优选的。这是因为,由于内侧部分的内阻降低,所以可以获得优异的特性。优选的是电解质盐相对于溶剂的含量为0.3mol/kg以上至3.0moI/kg以下。这是因为可以获得高离子传导性。可再充电电池的作用在该方型可再充电电池中,例如,在充电期间,从正极21释放的锂离子通过电解液被负极22吸留,并且,在放电期间,从负极22释放的锂离子通过电解液被正极21吸留。在该可再充电电池中,尤其是,在未充电状态下负极活性物质中的Si的至少一部分优选预先与Li合金化,即,优选在未充电状态下在负极22 (负极活性物质)中预先吸留(换句话说,预掺杂(pre-doped))锂离子。这是因为,由于在充电和放电的初始时间时不可逆容量降低,与不进行预掺杂的情况相比,初始充放电特性、循环特性等被改善。关于预掺杂的有无,如参照图10描述的,优选检查非面对区域R2的负极活性物质层22B。制造可再充电电池的方法例如,通过以下程序来制造可再充电电池。在制造正极21的情况下,首先,在通过混合正极活性物质以及如果需要的正极粘结剂、正极导电剂等来设置正极混合物之后,在有机溶剂等中进行分散从而形成糊状正极混合物浆料。随后,通过利用涂布装置如刮刀或棒式涂布机将该正极混合物浆料涂布在正极集电体21A上,然后进行干燥,来形成正极活性物质层21B。最后,如果有必要在进行加热的同时,使用辊压机等对正极活性物质层2IB进行压缩成形。在这种情况下,重复压缩成形多次。例如,在制造负极22的情况下,利用与用于上述负极相同的制造程序在负极集电体22A上形成负极活性物质层22B。此处,例如,在锂离子预掺杂到负极22中的情况下,在使正极活性物质等与Li金属粉末混合之后,在惰性气体(例如,诸如Ar气体)的气氛中进行加热(例如,在500° C下)。可替换地,例如,在制造负极22之后,可以利用气相沉积法等在负极活性物质层22B上沉积Li金属。在制造电池元件20的情况下,首先,利用焊接法等,将正极引线24连接至正极集电体21A,并且将负极引线25连接至负极集电体22A。随后,在隔膜23的任一侧层压正极21和负极22之后,在纵向方向上对它们卷绕。最后,使卷绕体成型,从而具有扁平形状。在组装可再充电电池的情况下,首先,在将电池元件20容纳在电池壳11的内部中之后,将绝缘板12安装在电池元件20上。随后,利用焊接法等,将正极引线24连接至正极销15,并且将负极引线25连接至电池壳11。在这种情况下,利用激光焊接法等将电池盖13固定至电池壳11的开口端部。最后,在将电解液从注入孔19注入到电池壳11的内部并浸溃到隔膜23中之后,用密封构件19A来封闭注入孔19。可再充电电池的作用和效果根据方型可再充电电池,由于负极22采用与上述负极相同的构造,因此可以获得优异的电池特性。其他效果与用于负极的相同。2-2.圆柱型图11和图12表示圆柱型可再充电电池的截面构造,并且图12示出了图11中所示的卷绕电极体40的放大部分。下面,如果有必要将参考前述方型可再充电电池的构成要素(构成元件)。可再充电电池的构造圆柱型可再充电电池在具有基本中空圆柱体形状的电池壳31的内部中主要容纳卷绕电极体40以及一对绝缘板32和33。卷绕电极体40是在隔膜43的任一侧层压并卷绕正极41和负极42的卷绕层压体。电池壳31具有其中一个端部封闭且另一端部敞开的中空结构,并且由例如与电池壳11相同的材料形成。一对绝缘板32和33从上部和下部夹住卷绕电极体40,并且设置为使得垂直于卷绕周面延伸。在电池壳31的开口端部中,通过垫圈37嵌塞电池盖34、安全阀机构35和热敏电阻器(PTC元件)36,并且密封电池壳31。例如,电池盖34由与电池壳31相同的材料形成。安全阀机构35和热敏电阻器36设置在电池盖34的内部,并且安全阀机构35通过热敏电阻器36电连接至电池盖34。在安全阀机构35中,在内部压力由于内部短路、外部加热等为固定值或更高的情况下,盘状板35A反转并且切断电池盖34与卷绕电极体40之间的电连接。热敏电阻器36通过随着温度的升高而增大电阻来防止由于大电流导致的异常生热。例如,垫圈37由绝缘材料形成,并且在其表面上可以涂布有浙青。中心销44可以插入到卷绕电极体40的中央。将由如Al的导电材料形成的正极引线45连接至正极41,并将由如Ni的导电材料形成的负极引线46连接至负极42。将正极引线45焊接等至安全阀机构35并电连接至电池盖34。将负极引线46焊接等至电池壳31。例如,正极41具有在正极集电体41A的两个表面上的正极活性物质层41B。例如,负极42具有与上述用于可再充电电池的负极相同的构造,并且具有在负极集电体42A的两个表面上的负极活性物质层42B。正极集电体41A、正极活性物质层41B、负极集电体42A、负极活性物质层42B和隔膜43的构造分别与正极集电体21A、正极活性物质层21B、负极集电体22A、负极活性物质层22B和隔膜23的各自构造相同。此外,浸溃在隔膜43中的电解液的组成与在方型可再充电电池中的电解液的组成相同。可再充电电池的操作在该圆柱型可再充电电池中,例如,在充电期间,从正极41释放的锂离子通过电解液被负极42吸留,并且,在放电期间,从负极42释放的锂离子通过电解液被正极41吸
&3甶O制造可再充电电池的方法例如,通过下列程序来制造圆柱形可再充电电池。首先,例如,利用与用于正极21和负极22相同的制造程序,通过在正极集电体41A的两侧上形成正极活性物质层41B来制造正极41,并且通过在负极集电体42A的两侧上形成负极活性物质层42B来制造负极42。随后,利用焊接法等,将正极引线45连接至正极41,并将负极引线46连接至负极42。随后,在通过在隔膜43的任一侧上层压和卷绕正极41和负极42来制造卷绕电极体40之后,将中心销44插入到卷绕体的中心。随后,将卷绕电极体40容纳在电池壳31的内部同时被一对绝缘板32和33夹住。在这种情况下,利用焊接法等,将正极引线45连接至安全阀机构35,并且将负极引线46的引出部分连接至电池壳31。随后,将电解液注入到电池壳31的内部并将其浸溃到隔膜43中。最后,在将电池盖34、安全阀机构35、和热敏电阻器36连接至电池壳31的开口端部之后,利用垫圈37在其上进行嵌塞。可再充电电池的作用和效果根据该圆柱型可再充电电池,由于负极42采用与上述负极相同的构造,因此可以获得与方型可再充电电池相同的效果。2-3.层压膜型图13表示层压膜型可再充电电池的分解透视图,并且图14示出了沿图13所示的卷绕电极体50的线XIV-XIV的放大截面。可再充电电池的构造层压膜型可再充电电池在膜状外部构件60的内部主要容纳卷绕电极体50。卷绕电极体50是这样的卷绕层压体,在该卷绕层压体中,在隔膜55和电解质层56的任一侧层压并卷绕正极53和负极54。将正极引线51连接至正极53,并且将负极引线52连接至负极54。卷绕电极体50的最外周部用保护带57保护。例如,正极引线51和负极引线52以同一方向从外部构件60的内部引出到外部。正极引线51由例如如Al的导电材料形成,且负极引线52由例如如Cu、Ni或不锈钢的导电材料形成。例如,上述材料具有薄板状或网目状。例如,外部构件60为其中以该顺序层压了粘合层、金属层和表面保护层的层压膜。例如,在层压膜中,通过粘合、粘合剂等使得粘合层对应于卷绕电极体50将两片膜的粘合层中的外周边缘部(outer peripheral edgeportion)粘合在一起。例如,粘合层为聚乙烯、聚丙烯等的膜。例如,金属层为Al箔等。例如,表面保护层为尼龙、聚对苯二甲酸乙二醇酷等的月吴。其中,关于外部构件60,其中以该顺序层压了聚乙烯膜、铝箔和尼龙膜的铝层压膜是优选的。然而,外部构件60可以是具有其他层压结构的层压膜,或者可以是诸如聚丙烯的聚合物膜或金属膜。在外部构件60与正极引线51和负极引线52之间,插入用于防止外部空气侵入的粘合膜61。粘合膜61由对正极引线51和负极引线52具有粘着性的材料形成。例如,这种材料是聚烯烃树脂,如聚乙烯、聚丙烯、改性聚乙烯或改性聚丙烯。例如,正极53具有在正极集电体53A的两个表面上的正极活性物质层53B。例如,负极54具有与上述用于可再充电电池的负极相同的构造,并且具有在负极集电体54A的两个表面上的负极活性物质层54B。正极集电体53A、正极活性物质层53B、负极集电体54A和负极活性物质层54B的构造分别与正极集电体21A、正极活性物质层21B、负极集电体22A、和负极活性物质层22B的各自构造相同。此外,隔膜55的构造与隔膜23的构造相同。电解质层56是其中使用高分子化合物保持电解液的电解质层,且如果需要可以进一步包含其他材料,如添加剂。电解质层56是所谓的凝胶电解质。凝胶电解质优选是能够获得高离子传导率(例如,在室温下为lmS/cm以上)并且防止电解液泄漏的电解质层。例如,高分子化合物优选包括任意聚丙烯腈、聚偏氟乙烯、聚四氟乙烯、聚六氟丙烯、聚环氧乙烷、聚环氧丙烷、聚磷腈、聚硅氧烷、聚氟乙烯、聚乙酸乙烯酯、聚乙烯醇、聚甲基丙烯酸甲酯、聚丙烯酸、聚甲基丙烯酸、丁苯橡胶、丁腈橡胶、聚苯乙烯、聚碳酸酯、偏二氟乙烯和六氟丙烯的共聚物等中的一种或两种以上。其中,聚偏氟乙烯或偏二氟乙烯和六氟丙烯的共聚物是优选的。这是因为它们在电化学上是稳定的。例如,电解液的组成与方型可再充电电池中的电解液的组成相同。然而,在作为凝胶电解质的电解质层56中,电解液的溶剂是很宽的概念,不仅包括液体溶剂而且还包括能够离解电解质盐的具有离子传导性的材料。由于该原因,在使用具有离子传导性的高分子化合物的情况下,高分子化合物也包括在溶剂中。此处,代替凝胶电解质层56,可以使用电解液。在这种情况下,电解液浸溃到隔膜55中。可再充电电池的操作在该层压膜型可再充电电池中,例如,在充电期间,从正极53释放的锂离子通过电解质层56被负极54吸留。此外,例如,在放电期间,从负极54释放的锂离子通过电解质层56被正极53吸留。制造可再充电电池的方法例如,通过下列三种程序来制造设置有凝胶电解质层56的层压膜型可再充电电池。在第一种程序中,首先,根据与正极21和负极22相同的制造程序来制造正极53和负极54。在这种情况下,通过在正极集电体53A的两个面上形成正极活性物质层53B来制造正极53,并且通过在负极集电体54A的两个面上形成负极活性物质层54B来制造负极54。随后,在制备包含电解液、高分子化合物、有机溶剂等的前体溶液之后,将前体溶液涂布在正极53和负极54上从而形成凝胶电解质层56。随后,利用焊接法等,将正极引线51连接至正极集电体53A,并且将负极引线52连接至负极集电体54A。随后,通过在隔膜55的任一侧上层压并卷绕由电解质层56形成的正极53和负极54而制造卷绕电极体50之后,将保护带57粘附至其最外周部。最后,在将卷绕电极体50夹在具有两片膜形状的外部构件60中之后,利用诸如热熔合的方法将外部构件60的最外周缘部粘合在一起,并且将卷绕电极体50封闭在外部构件60中。在这种情况下,将粘合膜61插入在正极引线51和负极引线52与外部构件60之间。在第二种程序中,首先,将正极引线51连接至正极53,并且将负极引线52连接至负极54。随后,在通过在隔膜55的任一侧上层压并卷绕正极53和负极54来制造作为卷绕电极体50的前体的卷绕体之后,将保护带57粘附至其最外周部。随后,在将卷绕体夹在具有两片膜形状的外部构件60中之后,利用诸如热熔合的方法将除了最外周缘部的一边以外的外部构件60的最外周缘部粘合,且将卷绕体容纳在袋状外部构件60的内部。随后,在制备含有电解液、作为高分子化合物原料的单体、聚合引发剂、以及如果有必要的其它材料如聚合抑制剂的用于电解质的组合物,并将其注入到袋状外部构件60的内部之后,将外部构件60的开口部分利用诸如热熔合的方法密封。最后,使单体经受热聚合以变成高分子化合物,并且形成凝胶电解质层56。在第三种程序中,首先,除了使用在两个表面上涂布有高分子化合物的隔膜55夕卜,以与上述第二种程序相同的方式,制造卷绕体并将其容纳在袋状外部构件60的内部。例如,涂布在隔膜55上的高分子化合物是设定偏二氟乙烯作为组分等的共聚物(均聚物、共聚物、或多元共聚物)。具体地,高分子化合物是其中设定聚偏氟乙烯、偏二氟乙烯和六氟丙烯作为组分的二元共聚物,或者其中设定偏二氟乙烯、六氟丙烯和三氟氯乙烯作为组分的三元共聚物等。此处,可以与其中设定偏二氟乙烯作为组分的共聚物一起,使用一种或两种以上其他高分子化合物。随后,在制备电解液并将其注入到外部构件60的内部中之后,利用诸如热熔合的方法密封外部构件60的开口部分。最后,通过在将重物施加至外部构件60的同时进行加热,使隔膜55通过高分子化合物而粘附至正极53和负极54。以这种方式,由于电解液浸溃到高分子化合物中,所以使高分子化合物凝胶化从而形成电解质层56。在该第三种程序中,与第一种程序中相比,电池的膨胀很大程度上被抑制。此外,与第二种程序相比,作为高分子化合物的原料的单体、有机溶剂等中的任一种几乎不会保留在电解质层56中,从而有利地控制了高分子化合物的形成工艺。以这种方式,使正极53、负极54、和隔膜55充分地粘附至电解质层56。可再充电电池的作用和效果根据该层压膜型可再充电电池,由于负极54采用与上述负极相同的构造,因此可以获得与方型可再充电电池相同的效果。3.可再充电电池的应用接下来,将对上述可再充电电池的应用例给出描述。可再充电电池的应用没有特别限制,只要其被用于能够使用电池作为驱动电源或用于储存电力的电力存储源的机器、装置、仪器、设备、系统(多个装置的集合体等)即可。在可再充电电池被用作电源的情况下,电池可以是主电源(被优先使用的电源)、或辅助电源(代替主电源使用的电源,或当从主电源切换时使用的电源)。后者情况中的主电源的类型不限于可再充电电池。可再充电电池的应用的实例包括诸如以下的应用。这样的实例包括便携式电子装置,如摄像机、数字照相机、移动电话、笔记本式计算机、无绳电话、立体声耳机、便携式无线电、便携式电视机、便携式信息终端等。然而,电子装置的应用不限于便携式装置。其可以是用于日常生活的便携式设施,如电动剃须刀。其可以是存储装置如后备电源或存储卡。其可以是电动工具,如电钻或电锯。其可以是用作笔记本式计算机等的电源的电池组。其可以是医用电子装置,如起搏器或助听器。其可以是电动车辆,如电动车(包括混合动力车辆)。其可以是电力存储系统,如存储应急情况等准备的电力的家用电池系统。自然地,不排除除了上述之外的应用。特别地,可再充电电池可以被有效地应用于电池组、电动车辆、电力存储系统、电动工具、电子装置等。这是因为,由于需要优异的电池特性,通过使用根据本发明实施方式的可再充电电池,可以获得特性的有效改善。此处,电池组是使用可再充电电池的电源,换句话说,是组装电池。电动车辆利用可再充电电池作为用于驱动的电源而操作(运行),并且如上所述,可以是还设置有除了可再充电电池之外的驱动源的车辆(混合动力车等)。电力存储系统是使用可再充电电池作为电力存储源的系统。例如,在家用电力存储系统中,电力被存储在作为电力存储源的可再充电电池中,并且由于该电力当需要时被消耗,因此可用于家用电器等。电动工具是利用可再充电电池作为驱动电源能够移动可动部(例如,钻头等)的工具。电子装置是利用可再充电电池作为驱动电源来执行各种功能的装置。此处,将具体地描述可再充电电池的一些应用例。此处,由于下面描述的每个应用例的构造仅是示例性的,因此可以对其进行适当的变化。3-1.电池组图15表示电池组的方框构造。例如,如图15中所示,在由塑性材料等形成的外壳60的内部,该电池组设置有控制单元61、电源62、开关单元63、电流测量单元64、温度检测单元65、电压检测单元66、开关控制单元67、存储器68、温度检测元件69、电流检测电阻器(current detectingresistor) 70、正极端子 71 和负极端子 72。控制单元61控制整个电池组的操作(包括电源62的使用状态),例如包括中央处理单元(CPU)等。电源62包括一个或两个以上可再充电电池(未显示)。例如,电源62可以是包括两个以上可再充电电池的组装电池,其可以串联、并联、或以两种类型的混合来连接。例如,电源62可以包括三个串联的两个并联排连接的六个可再充电电池。开关单元63根据来自控制单元61的指令来切换电源62的使用状态(电源62与外部设备是否连接)。例如,开关单元63包括充电控制开关、放电控制开关、充电二极管、和放电二极管(未显示)等。例如,充电控制开关和放电控制开关是半导体开关,例如使用金属氧化物半导体的场效应晶体管(M0SFET)。电流测量单元64利用电流检测电阻器70测量电流并将测量结果输出至控制单元61。温度检测单元65利用温度检测元件69测量温度并被设置成将测量结果输出至控制单元61。例如,在异常生热期间控制单元61执行充电和放电控制,或者当控制单元61计算剩余容量时进行校正处理的情况下,使用这种温度测量结果。电压检测单元66测量电源62中的可再充电电池的电压,利用模拟/数字(A/D)转换来转换测量的电压,并进行将其供应至控制单元61。开关控制单元67根据来自电流测量单元64和电压检测单元66的信号输入来控制开关单元63的操作。例如,在电池电压达到过充电检测电压的情况下,开关控制单元67设置为断开开关单元63(充电控制开关),并且执行控制使得充电电流不在电源62的电流通路中流动。以这种方式,在电源62中,仅通过放电二极管放电是可行的。此处,例如,在充电期间大电流流动的情况下,开关控制单元67被设置为中断充电电流。此外,例如,在电池电压达到过放电检测电压的情况下,开关控制单元67设置为断开开关单元63 (放电控制开关),并且执行控制使得放电电流不在电源62的电流通路中流动。以这种方式,在电源62中,仅通过充电二极管充电是可行的。此处,例如,在放电期间大电流流动的情况下,开关控制单元67被设置为中断放电电流。这里,例如,在可再充电电池中,过充电检测电压为4.20V±0.05V,并且过放电检测电压为2.4V±0.1V。例如,存储器68是作为非易失性存储器的EEPROM等。例如,在存储器68中存储由控制单元61计算的数值和关于在生产工艺阶段期间测量的可再充电电池的信息(例如,初始状态的内阻等)。此处,如果可再充电电池的完全充电容量存储在存储器68中,则控制单元61能够获得诸如剩余容量等的信息。温度检测元件69测量电源62的温度并将测量温度输出至控制单元61,并且是热敏电阻器等。正极端子71和负极端子72是连接至通过使用电池组操作的外部设备(例如,笔记本式个人计算机等)或连接至用于对电池组进行充电的外部设备(例如,充电器等)的端子。通过正极端子71和负极端子72进行电源62的充电和放电。3-2.电动车辆图16表示作为电动车辆的实例的混合动力车的方框构造。例如,如图16中所示,在由金属制成的外壳73的内部,电动车辆设置有控制单元74、发动机75、电源76、驱动马达77、差动装置78、发电机79、变速器(传动装置,transmission)80、和离合器(clutch)81、逆变器(反相器,inverters) 82和83、以及各种类型的传感器84。此外,例如,电动车辆设置有连接至差动装置78和变速器80的前轮驱动轴85和前轮86、以及后轮驱动轴87和后轮88。该电动车辆能够利用发动机75或马达77中的任一个作为驱动源而运行。发动机75是主电源,例如汽油发动机等。在发动机75被设置为电源的情况下,例如,发动机75的驱动力(旋转力)通过作为驱动部件的差动装置78、变速器80和离合器81而传送至前轮86和后轮88。此处,发动机75的旋转力还被传送至发电机79,由此使发电机79根据该旋转力产生交流(AC)电力,并且伴随此,AC电力通过逆变器83而转换成直流(DC)电力,并存储在电源76中。另一方面,在作为转换单元的马达77被设置为动力源的情况下,从电源76供应的电力(DC电力)通过逆变器82而转换成AC电力,并且马达77根据AC电力而被驱动。例如,通过马达77由电力转换的驱动力(旋转力)通过作为驱动部件的差动装置78、变速器80和离合器81而传送至前轮86和后轮88。此处,如果电动车辆通过制动机构(未显示)而被减速,则在减速期间的阻力可以以旋转力的形式被传送至马达77,并且马达77可以被设置为根据该旋转力而产生AC电力。优选的是,通过逆变器82将该AC电力转换成DC电力,并且将新产生的DC电力储存在电源76中。控制单元74控制整个电动车辆的操作,并且例如包括CPU等。电源76包括一个或两个以上可再充电电池(未显示)。电源76通过与外部电源连接且从外部电源接收电力供应而能够存储电力。例如,各种类型的传感器84被用于控制发动机75的转数且控制节流阀(未显示)的打开程度(节流开口)。例如,这些各种类型的传感器84包括速度传感器、加速传感器、发动机转数传感器等。此处,在上面的描述中,作为电动车辆已经描述了混合动力车;然而,电动车辆可以是在没有使用发动机75的情况下仅使用电源76和马达77操作的车辆(电动车辆)。3-3.电力存储系统图17显示了电力存储系统的方框构造。例如,如图17中所示,在房屋89如普通住宅或商业建筑物的内部,电力存储系统设置有控制单元90、电源91、智能仪表(智能计量器)92和功率枢纽(电源集线器)93。此处,例如电源91连接至位于房屋89的内部的电气设备94,并且伴随此,能够连接至停靠在房屋89外面的电动车辆96。此外,例如,电源91经由功率枢纽93连接至位于房屋89中的家庭发电机95,并且伴随此,能够经由智能仪表92和功率枢纽93连接至外部集中电力系统97。此处,例如,电气设备94包括一种或两种以上家用电器,如冰箱、空调、电视或热水器。例如,家庭发电机95是太阳能发电机、风力涡轮机等中的一种或两种以上。例如,电动车辆96是电动汽车、电动自行车、混合动力车等中的一种或两种以上。例如,集中电力系统97是热力发电站、核能发电站、水力发电站、风力发电站等中的一种或两种以上。控制单元90控制例如包括中央处理单元(CPU)等的电力存储系统的操作(包括电源91的使用状态)。电源91包括一个或两个以上可再充电电池(未显示)。例如,智能仪表92是位于房屋89中电力需求侧且能够与电力供应侧通信的网络启用电力仪表(network-enabled power meter)。伴随此,例如,智能仪表92控制房屋89中的供应和需求的平衡,同时如果需要与外部单元通信,并且能够有效地提供稳定的电力供应。例如,在该电力存储系统中,电力从作为外部电源的集中电力系统97经由智能仪表92和功率枢纽93存储在电源91中,并且伴随此,电力从作为独立电源的太阳能发电机95经由功率枢纽93存储在电源91中。由于存储在电源91中的电力如果需要根据来自控制单元91的指令而供应至电气设备94或电动车辆96,因此电气设备94变得可操作,并且电动车辆96能够被充电。S卩,电力存储系统利用电源91并且使得能够在房屋89中存储和供应电力。可以任意使用在电源91中存储的电力。由于该原因,例如,电力可以在电力消费低的深夜从集中电力系统97存储在电源91中,并且存储在电源91中的电力可以在电力消费闻的白天使用。此处,上述电力存储系统可以位于每个房屋(一个家庭)中或者可以位于多个房屋(多个家庭)中。3-4.电动工具图18显示了电动工具的方框构造。例如,如图18中所示,电动工具是电钻并且在由塑性材料(塑料)等形成的工具主体98的内部设置有控制单元99和电源100。例如,作为可动部的钻头部101能够以可操作(可旋转地)的方式连接至工具主体98。控制单元99控制例如包括中央处理单元(CPU)等的电动工具的操作(包括电源100的使用状态)。电源100包括一个或两个以上可再充电电池(未显示)。如果需要,该控制单元99将电力从电源100供应至钻头部101,使得能够根据操作开关(未示出)的操作来使其移动。实施例将给出本发明的实施例的详细描述。实施例1-1 至 1-12根据以下程序,制造图13和图14中所示的层压膜型可再充电电池。在制造正极53的情况下,首先,将91质量份的正极活性物质(LiCoO2)、6质量份的正极导电材料(石墨)、和3质量份的正极粘结剂(聚偏氟乙烯:PVDF)混合以形成正极混合物。随后,将该正极混合物分散在有机溶剂(N-甲基-2-吡咯烷酮:NMP)中以形成糊状正极混合物浆料。随后,通过利用涂布装置将该正极混合物浆料涂布在正极集电体53A(具有12 μ m厚度的Al箔带)的两个面上,然后进行干燥而形成正极活性物质层53B。最后,利用辊压机对正极活性物质层53B进行压缩成型。在这种情况下,调节正极活性物质层53B的厚度使得当在完全充电时Li金属不沉积在负极54上。在制造负极54的情况下,首先,利用气体雾化法来获得高度结晶的Si氧化物(SiOx中位直径D50=4ym)。在这种情况下,通过在原料(Si)的熔融和固化期间调节O2引入量来控制组成(原子比ζ)。随后,通过加热(1000° C以下)Si氧化物,同时供应H2气体,并使Si氧化物的表面还原来获得负极活性物质。负极活性物质的构造如表I中所示。在原子比率中,“表面”是最外表面的原子比率,“内部”是从表面朝向中心的300nm的位置的原子比率,“过渡(变化,transition)”是在表面与上述内侧部分位置之间的原子比率的过渡(原子比率倾向于在朝向中心的方向上变化)。最后,如果有必要,利用气相沉积法在负极活性物质的表面上形成导电层(C)。此处,导电层的平均厚度=IOOnm,平均覆盖率=80%,并且比率 IG/ID=1.8。随后,在以90:10的干重量比混合负极活性物质和负极粘结剂的前体之后,用NMP稀释所得物从而形成糊状负极混合物浆料。负极粘结剂的前体是包含NMP和N,N- 二甲基乙酰胺(DMAC)的聚酰胺酸。随后,利用涂布装置将负极混合物浆料涂布在负极集电体54A(具有15 μ m厚度的辊压Cu箔)的两个表面上并干燥。最后,为了提高粘结性能,在对涂布膜进行热压之后,在真空气氛中进行烧成(400° C 乂1小时)。以这种方式,由于形成了负极粘结剂(聚酰亚胺),形成了包含负极活性物质和负极粘结剂的负极活性物质层54B。此处,以使得负极利用率变为65%的方式调节负极活性物质层54B的厚度。在制备电解液的情况下,将电解质盐(LiPF6)溶解在溶剂(碳酸亚乙酯(EC)和碳酸二乙酯(DEC))中。在这种情况下,溶剂的组成设定为按重量比EC:DEC=50:50,并且电解质盐相对于溶剂的含量设定为lmol/kg。
在组装可再充电电池的情况下,首先,将由Al制成的正极引线51焊接至正极集电体53A的一端,并且伴随此,将由Ni制成的负极引线52焊接至负极集电体54A的一端。随后,在依次层压正极53、隔膜55、负极54和隔膜55且在纵向方向上卷绕从而形成作为卷绕电极体50的前体的卷绕体之后,用保护带57 (胶粘带)来固定卷绕体的端部。隔膜55是这样的层压膜(厚度20 ym),其中多孔聚乙烯是主要组分的膜被多孔聚丙烯是主要组分的膜夹住。随后,在将卷绕体夹在外部构件60中之后,使除了最外周缘部的一边之外的最外周缘部热熔合,并且将卷绕体容纳在袋状外部构件60的内部中。从外部,外部构件60是其中层压了尼龙膜(厚度30 u m)、Al箔(厚度40 u m)、和非延展聚丙烯膜(厚度30 u m)的铝层压膜。随后,将电解液从外部构件60的开口部分注入,并浸溃到隔膜55中,从而形成卷绕电极体50。最后,在真空气氛中热熔合外部构件60的开口部分。当检查可再充电电池的初始充放电特性和循环特性时,获得了表I中所示的结果。在检查初始充放电特性的情况下,首先,为了使电池状态稳定化,在室温(23° C)的气氛中对可再充电电池进行充电和放电一次循环。随后,在通过在相同气氛中对可再充电电池进行再次充电而测量充电容量之后,通过放电来测量放电容量。最后,计算初始效率(%)=(放电容量/充电容量)X 100。在充电期间,在3mA/cm2的恒定电流密度下进行充电直到电压达到4.2V之后,在4.2V的恒定电压下再次进行充电直到电流密度达到0.3mA/cm2。在放电期间,在3mA/cm2的恒定电流密度下进行放电直到电压达到2.5V。在检查循环特性的情况下,首先,在为了使电池状态稳定化对可再充电电池进行充电和放电一次循环之后,再次进行充电和放电并且测量放电容量。随后,通过对可再充电电池进行充电和放电直到循环的总数达到100次来测量放电容量。最后,计算容量保持率(容量维持率,capacitymaintenance efficiency) (%)=(第100次循环的放电容量/第2次循环的放电容量)X 100。气氛温度和充放电条件设置为与检查充放电特性的情况相同。表I`
权利要求
1.一种可再充电电池,包括: 正极; 包含活性物质的负极;和 电解液, 其中,所述活性物质能够吸留和释放锂离子并且包括Si和O作为构成元素,并且其中,在所述活性物质的表面中Si相对于Si和O的原子比率(Si/ (Si+O))为30原子%至75原子%。
2.根据权利要求1所述的可再充电电池,其中,至少在所述活性物质中的表面附近部分中,所述原子比率从所述活性物质的表面朝向中心减少,或者不变。
3.根据权利要求1所述的可再充电电池,其中,至少所述活性物质中的表面附近部分是非结晶性,或者是结晶区域(结晶颗粒)散布在非结晶区域中的低结晶性。
4.根据权利要求3所述的可再充电电池,其中,在所述活性物质的低结晶性部分中,由Si的(111)面和(220)面引起的结晶颗粒的平均面积占有率为35%以下,并且所述结晶颗粒的平均粒径为50nm以下。
5.根据权利要求1所述的可再充电电池, 其中,所述活性物质的O相对于Si的原子比Z (O/Si)满足0.5 < Z < 1.8, 其中,所述原子比率在所述活性物质的表面与从所述表面朝向中心的300nm的位置之间朝向中心逐渐减小,并且 其中,从所述活性物质的表面朝`向所述中心的300nm的位置处的所述原子比率为35原子%至60原子%。
6.根据权利要求1所述的可再充电电池, 其中,所述活性物质包括核部分和至少设置在所述核部分的表面的一部分上的覆盖部分, 其中,所述核部分的O相对于Si的原子比X (O/Si)满足O < x〈0.5, 其中,所述覆盖部分的O相对于Si的原子比y (O/Si)满足0.5 SyS 1.8, 其中,所述原子比率从所述活性物质的表面朝向所述核部分与所述覆盖部分的界面逐渐减小,并且 其中,所述界面处的所述原子比率为35原子%至60原子%。
7.根据权利要求6所述的可再充电电池, 其中,所述核部分的中位直径(D50)为0.1 μ m至20 μ m, 其中,所述覆盖部分的平均厚度为Inm至3000nm,并且 其中,所述覆盖部分相对于所述核部分的平均覆盖率为30%以上。
8.根据权利要求6所述的可再充电电池, 其中,所述覆盖部分的结晶性低于所述核部分的结晶性,并且所述覆盖部分具有低结晶性, 其中,当所述覆盖部分在厚度方向上二等分时,在源自Si的(111)面和(220)面的所述结晶颗粒的内侧部分中的平均面积占有率和平均粒径与在外侧部分中的平均面积占有率和平均粒径相同或大于在外侧部分中的平均面积占有率和平均粒径,并且 其中,在所述覆盖部分中,由Si的(111)面和(220)面引起的所述结晶颗粒的所述平均面积占有率为35%以下,并且所述结晶颗粒的所述平均粒径为50nm以下。
9.根据权利要求6所述的可再充电电池, 其中,所述覆盖部分具有多层,其中在所述层之间具有空隙,并且 其中,包括C作为构成元素的导电材料设置在所述空隙中的至少一部分上。
10.根据权利要求1所述的可再充电电池, 其中,在所述活性物质的所述表面的至少一部分上设置导电层, 其中,所述导电层包括C作为构成元素, 其中,通过拉曼光谱法测量的所述导电层的G带峰强度IG和D带峰强度ID的比率IG/ID 为 0.3 至 3.2。
11.根据权利要求10所述的可再充电电池, 其中,所述导电层的平均厚度为200nm以下,并且 并且,所述导电层相对于所述活性物质的平均覆盖率为30%以上。
12.根据权利要求1所述的可再充电电池, 其中,所述负极具有在集电体上的活性物质层并且所述活性物质层包括所述活性物质,并且 其中,所述集电体包括C和S作为构成元素,并且C和S的含量为IOOppm以下。
13.根据权利要求1所述的可再充电电池, 其中,在未充电状态下,将所述活性物质中的Si的至少一部分与Li合金化。
14.根据权利要求1所述的可再充电电池, 其中,所述活性物质包括Fe作为构成元素。
15.一种用于可再充电电池的活性物质,所述活性物质能够吸留和释放锂离子并且包括Si和O作为构成元素,并且在所述活性物质的表面中,Si相对于Si和O的原子比率(Si/(Si+O))为30原子%至75原子%。
16.一种电子装置,包括: 作为电力供应源的可再充电电池, 其中,所述可再充电电池包括正极、包含活性物质的负极、以及电解液, 其中,所述活性物质能够吸留和释放锂离子并且包括Si和O作为构成元素, 其中,在所述活性物质的表面中,Si相对于Si和O的原子比率(Si/ (Si+O))为30原子%至75原子%。
全文摘要
本发明提供了用于可再充电电池的活性物质、可再充电电池和电子装置。所述可再充电电池包括正极;包含活性物质的负极;和电解液,其中所述活性物质能够吸留和释放锂离子并且包括Si和O作为构成元素,并且在所述活性物质的表面中Si相对于Si和O的原子比率(Si/(Si+O))为30原子%至75原子%。
文档编号H01M4/48GK103178249SQ201210541209
公开日2013年6月26日 申请日期2012年12月13日 优先权日2011年12月20日
发明者广濑贵一, 川濑贤一, 田中伸史, 藤永卓士, 高椋辉 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1