存储器单元、集成装置及形成存储器单元的方法

文档序号:7253986阅读:99来源:国知局
存储器单元、集成装置及形成存储器单元的方法
【专利摘要】一些实施例包含例如存储器单元的集成装置。所述装置可包含:硫族化物材料;导电材料,其在所述硫族化物材料上方;及散热片,其在所述导电材料与所述硫族化物材料之间。所述散热片可具有包含与所述导电材料相同的元素且包含与所述硫族化物材料相同的元素的组合物。一些实施例包含一种形成存储器单元的方法。可在加热器材料上方形成硫族化物材料。可在所述硫族化物材料上方形成导电材料。可在所述导电材料与所述硫族化物材料之间形成散热片。所述散热片可具有包含与所述导电材料相同的元素且包含与所述硫族化物材料相同的元素的组合物。
【专利说明】存储器单元、集成装置及形成存储器单元的方法

【技术领域】
[0001]本发明涉及存储器单元、集成装置及形成存储器单元的方法。

【背景技术】
[0002]存储器是一种类型的集成电路,且在电子系统中用于存储数据。集成存储器通常经制作为一或多个个别存储器单元阵列。存储器单元经配置而以至少两种不同的可选择状态保持或存储存储器。在二进制系统中,所述状态被视为“O”或“I”。在其它系统中,至少一些个别存储器单元可经配置以存储两个以上信息电平或信息状态。
[0003]一种类型的存储器为相变存储器(PCM)。此存储器利用相变材料作为可编程材料。可在PCM中利用的实例相变材料为硫族化物材料。
[0004]通过施加适当电刺激,相变材料从一个相可逆地变换为另一相。每一相可用作一存储器状态,且因此个别PCM单元可具有对应于相变材料的两个可诱发相的两个可选择存储器状态。
[0005]可在编程PCM阵列的存储器单元期间发生的问题是邻近存储器单元之间可能存在热传递(所谓的“热扰动”)。因此,一存储器单元的存储器状态可在编程邻近存储器单元时被扰动,此可导致存储器阵列内的数据存储的不可靠性。所述问题可随着集成规模缩小的增加而增加。
[0006]将期望开发减轻或防止以上所论述问题的PCM单元架构及开发形成此类PCM单元架构的方法。

【专利附图】

【附图说明】
[0007]图1到5是在形成存储器单元的实例实施例方法的各个工艺阶段的构造的示意性横截面图。
[0008]图6到8是在形成存储器单元的另一实例实施例方法的各个工艺阶段的构造的示意性横截面图。图6的工艺阶段可在图1的工艺阶段之后。
[0009]图9及10是在形成存储器单元的另一实例实施例方法的各个工艺阶段的构造的示意性横截面图。图9的工艺阶段可在图1的工艺阶段之后。

【具体实施方式】
[0010]PCM单元的编程可包括加热存储器单元内的硫族化物材料以导致硫族化物材料内的相变。可加热单元内的硫族化物材料的总体积的仅小部分。一些实施例包含以下认识:可通过在存储器单元的编程期间控制所述存储器单元内的硫族化物材料的经加热小部分的大小来减少邻近存储器单元之间的热扰动。
[0011]PCM单元可包括在加热器与顶部电极之间的硫族化物材料。可在编程期间用加热器来加热硫族化物材料以导致硫族化物材料内的所要相变。硫族化物材料的经加热小部分的大小可受沿着硫族化物材料到顶部电极的总体热电阻(包含不同热电阻贡献)的影响。所述不同热电阻贡献可包含:硫族化物材料热电阻、顶部电极热电阻及两种材料之间的界面热电阻。
[0012]一些实施例包含提供夹层以减小(且在一些情况中,最小化)界面热电阻。此夹层可称为“散热片材料”。散热片材料在硫族化物材料与顶部电极之间且相对于常规PCM单元变更沿着硫族化物材料的上部区的热电阻。此散热片材料的利用可减轻或防止在存储器阵列的编程期间邻近PCM单元之间的热扰动。
[0013]参考图1到10来描述实例实施例。
[0014]参考图1,构造10包括延伸穿过电介质材料12的一对导电互连件14及16。
[0015]电介质材料12可包括任何适合组合物或组合物的组合;且在一些实施例中可包括二氧化硅、氮化硅及各种经掺杂硅酸盐玻璃(举例来说,硼磷硅酸盐玻璃、磷硅酸盐玻璃、氟硅酸盐玻璃等)中的任一者中的一或多者、基本上由所述一或多者组成或由所述一或多者组成。
[0016]互连件14及16包括导电材料15。此导电材料可包括任何适合组合物或组合物的组合;且在一些实施例中可包括鹤、基本上由其组成或由其组成。
[0017]电介质材料12以及互连件14及16可由半导体基底(未展示)支撑。此基底可包括单晶硅,且可称为半导体衬底或称为半导体衬底的一部分。术语“半导电衬底”、“半导体构造”及“半导体衬底”意指包括半导电材料的任何构造,包含(但不限于):块体半导电材料,例如,半导电晶片(单独地或在包括其它材料的组合件中);及半导电材料层(单独地或在包括其它材料的组合件中)。术语“衬底”指代任何支撑结构,包含(但不限于)上文所描述的半导电衬底。
[0018]互连件14及16表示跨越半导体基底形成的大量互连件。最终,每一互连件连接到存储器阵列的存储器单元(其中实例存储器单元展示于图5中)。互连件14及16示意性地图解说明为分别电连接到电路18及20。此电路可包含用于在编程操作期间及读取操作期间将电输入提供到个别存储器单元的控制电路。所述电路还可包含将存储器单元电耦合到控制电路的存取/感测线(例如,字线及位线)。在一些实施例中,所图解说明的互连件14及16可耦合到共用存取/感测线,且在其它实施例中,所述互连件可耦合到单独存取/感测线。
[0019]经平面化表面17延伸跨越材料12及15。此经平面化表面可用任何适合处理来形成,举例来说,包含化学-机械抛光(CMP)。
[0020]加热器材料22跨越互连件14及16而形成。所述加热器材料最终图案化成PCM单元的加热器组件(如下文参考图3所描述),且可包括任何适合组合物或组合物的组合。在一些实施例中,加热器材料可包括钛及氮、基本上由其组成或由其组成。在一些实施例中,此加热器材料可包括TiN,其中所述化学式展示组合物的组分且不用来指示特定化学计量。举例来说,加热器材料可为TiN复合物、经掺杂TiN等。加热器材料可用任何适合处理来形成,举例来说,包含原子层沉积(ALD)、化学气相沉积(CVD)及物理气相沉积(PVD)中的一或多者。
[0021]在加热器材料上方形成硫族化物材料24。所述硫族化物材料可包括任何适合组合物。实例硫族化物材料包括锗、铺及締、基本上由其组成或由其组成,且可称为GST。在一些实施例中,所述硫族化物材料可对应于Ge2Sb2Te515可利用任何适合处理(举例来说,包含ALD、CVD及PVD中的一或多者)形成所述硫族化物材料。在一些实施例中,所述硫族化物材料可用作PCM单元中的存储器材料(其中实例PCM单元展示于图5中)。
[0022]参考图2,在硫族化物材料上方形成散热片材料26且在散热片材料上方形成导电帽盖材料28。在一些实施例中,材料28可称为顶部电极材料。
[0023]在一些实施例中,散热片材料26包括含有与硫族化物材料24相同的至少一种元素及与帽盖材料28相同的至少一种元素的组合物。
[0024]在一些实例实施例中,材料28包括钛、基本上由其组成或由其组成(例如,包括元素钛或氮化钛);硫族化物材料包括GST、基本上由其组成或由其组成,且散热片材料包括组合有締及铺的钛、基本上由其组成或由其组成。
[0025]作为另一实例,在一些实施例中,材料28包括钛、铝及氮的组合、基本上由其组成或由其组成(例如,可由化学式TiAlN来描述,其中此式展示组合物的组分且不用来指示特定化学计量);硫族化物材料包括GST、基本上由其组成或由其组成;且散热片材料包括组合有締及铺中的一者或两者的钛及招中的一者或两者、基本上由其组成或由其组成。
[0026]作为另一实例,在一些实施例中,材料28包括钽、基本上由其组成或由其组成(例如,包括元素钽或氮化钽);硫族化物材料包括GST、基本上由其组成或由其组成;且散热片材料包括组合有締及铺中的一者或两者的钽、基本上由其组成或由其组成。
[0027]作为另一实例,在一些实施例中,材料28包括钨、基本上由其组成或由其组成(例如,包括元素鹤或氮化鹤);硫族化物材料包括GST、基本上由其组成或由其组成;散热片材料包括组合有締及铺中的一者或两者的鹤、基本上由其组成或由其组成。
[0028]散热片材料26可用任何适合处理来形成,且在一些实施例中,可利用ALD、CVD及PVD中的一或多者来沉积。在图2的实施例中,散热片材料直接沉积到硫族化物材料24上。
[0029]散热片材料可改进存储器单元内的热耗散以减轻或防止上文在本发明的“【背景技术】”章节中论述的热扰动问题。
[0030]散热片材料可形成为任何适合厚度。在一些实施例中,散热片材料可保持极薄,使得其不实质上相对于缺少散热片材料的类似存储器单元变更个别存储器单元的编程特性。例如,散热片材料可形成为小于或等于约5纳米的厚度;且在一些实施例中,可形成为从约I纳米到约5纳米的厚度。散热片材料的此类薄区可足以减轻或防止热扰动问题,同时对个别存储器单元的编程特性具有很小影响。
[0031]导电帽盖材料28可用任何适合处理来形成,且在一些实施例中,可利用ALD、CVD及PVD中的一或多者来沉积。在图2的实施例中,导电帽盖材料28直接形成于散热片材料26的上部表面上。
[0032]参考图3,材料22、24、26及28被图案化成存储器单元30及32。存储器单元30直接在互连件14上方且与其电耦合;且存储器单元32直接在互连件16上方且与其电耦合。材料22、24、26及28可用任何适合处理来图案化。例如,可在材料28上方形成经图案化掩模(未展示);可用一或多个适合蚀刻将来自此掩模的图案转印到下伏材料22、24、26及28 ;且接着可移除掩模以留下图3中所展示的构造。经图案化掩模可包括任何适合组合物,例如,经光刻图案化的光致抗蚀剂及/或利用间距倍增方法图案化的一或多种材料。在一些实施例中,材料28可视为对应于存储器单元的顶部电极。
[0033]参考图4,电绝缘衬里34沿着且在存储器单元30及32之间形成,且电介质材料36形成于电绝缘衬里上方。所述衬里可包括任何适合组合物或组合物的组合,且在一些实施例中,可包括氮化硅、基本上由其组成或由其组成。电介质材料36可包括任何适合组合物或组合物的组合,且在一些实施例中,可包括二氧化硅及/或各种经掺杂硅酸盐玻璃中的任一者、基本上由其组成或由其组成。
[0034]参考图5,分别在存储器单元30及32上方形成导电结构38及40。所述导电结构可为相对于图5的横截面图延伸进出页面的线。在所展示的实施例中,所述导电结构中的每一者包括导电芯材料42及沿着所述芯材料的外围的势垒材料44。在一些实施例中,芯材料可包括铜、基本上由其组成或由其组成;且势垒材料可为对铜迁移的势垒。在此类实施例中,势垒材料可包括任何适合组合物,且举例来说,可包括含钌材料。在一些实施例中,除所展示材料42及44以外的其它导电材料可用于导电结构38及40中。如果导电芯材料42不包括迁移的组分,那么可忽略势垒材料44。
[0035]结构38及40展示为分别连接到电路46及48。在一些实施例中,结构38及44可对应于存取/感测线,且电路46及48可用于控制穿过此类存取/感测线的电流。存储器单元30及32可表示PCM阵列的大量单元,且此阵列的每一存储器单元可通过经由导电材料15连接到所述单元的所图解说明底部的存取/感测线与经由导电帽盖材料28连接到所述单元的所图解说明顶部的存取/感测线的组合来唯一地寻址。
[0036]散热片材料26可在编程期间相对于在不存在此散热片材料的情况下原本可发生的加热减小存储器单元内的加热,且因此可相对于在不存在散热片材料的情况下原本可发生的热扰动减轻或防止邻近存储器单元30及32之间的热扰动。相同情况适用于阵列中的沿垂直方向的单元(例如,在一些实施例中,连接到相同位线的存储器单元)。因此,将散热片材料26并入到存储器单元30及32中可有益地减轻或防止可与一些常规PCM阵列相关联的热扰动问题。
[0037]利用具有与硫族化物材料24及导电帽盖材料28两者相同的组分的散热片材料26会减轻原本可发生的热失配。具体来说,散热片材料的一个表面直接抵靠硫族化物材料,且散热片材料的另一表面直接抵靠导电帽盖材料。将散热片材料调配成具有与硫族化物材料相同的组分可减轻或防止原本可在散热片材料与硫族化物材料之间发生的热失配(举例来说,其中“热失配”包含在温度改变期间可导致邻近材料之间的剥离或分离的实质上不同热膨胀系数)。类似地,将散热片材料调配成具有与导电帽盖材料相同的组分可减轻或防止原本可在散热片材料与此导电帽盖材料之间发生的热失配。
[0038]在一些实施例中,利用具有与硫族化物材料24及导电帽盖材料28两者相同的组分的散热片材料26可改进硫族化物材料与帽盖材料之间的粘附性且具体来说与缺乏此散热片材料的结构相比可改进粘附性。
[0039]图5中所展示的存储器单元30及32的各种材料可包括任何适合厚度。例如,材料22可形成为至少约30纳米的厚度,材料24可形成为在从约30纳米到约50纳米的范围内的厚度,材料26可形成为在从约I纳米到约5纳米的范围内的厚度,且材料28可形成为在从约20纳米到约50纳米的范围内的厚度。
[0040]图1到5的实施例通过将散热片材料26直接沉积到硫族化物材料24上而在PCM单元内形成散热片。此为在PCM单元内形成散热片的许多方法中的一种。参考图6到8描述另一实例实施例方法。
[0041]参考图6,展示处于在图1的工艺阶段之后的工艺阶段的构造10a。所述构造包括直接形成于硫族化物材料24的上部表面上的前驱物材料50。所述前驱物材料最终与来自硫族化物材料24及/或来自导电帽盖材料28 (展示于图7中)的组分组合以形成包括与硫族化物材料及导电帽盖材料两者相同的组分的散热片。在一些实施例中,前驱物材料50可包括与帽盖材料相同的组分,且可经配置以与硫族化物材料24反应以形成散热片。例如,在一些实施例中,所述前驱物材料可包括钛、钽、钨及铝中的一或多者。前驱物材料可经配置以通过将离去基团并入到前驱物中而与硫族化物材料反应。例如,前驱物可包括金属有机物、金属卤化物等。
[0042]参考图7,直接在前驱物材料50上形成导电帽盖材料28。
[0043]参考图8,构造1a经受热处理,此将前驱物材料50 (图7)转换成包括与硫族化物材料24相同的组分及与导电帽盖材料28相同的组分的散热片材料52。举例来说,所述热处理可包括将前驱物材料50及硫族化物材料24加热到至少约400°C的温度以诱发前驱物材料与硫族化物材料的反应。例如,在一些实施例中,硫族化物材料可包括GST,前驱物材料可包括钛,且热处理可形成碲化钛。作为另一实例,在一些实施例中,硫族化物材料可包括GST,前驱物材料可包括钨,且热处理可形成碲化钨。
[0044]在各种实施例中,上述热处理可在形成导电帽盖材料28之前、期间及/或之后进行。例如,可在具有足够高温度以实现前驱物材料及硫族化物材料的热处理的条件下沉积导电帽盖材料。或者,可在沉积导电帽盖材料之前将前驱物材料及硫族化物材料加热到热处理温度。在其它实施例中,可在沉积导电帽盖材料之后将前驱物材料及硫族化物材料加热到热处理温度。
[0045]图8的构造1a可随后经受类似于上文参考图3到5所描述的处理的处理以从此构造形成存储器单元阵列。
[0046]参考图9及10来描述用于在PCM单元内形成散热片的另一实例实施例方法。
[0047]参考图9,展示处于在图1的工艺阶段之后的工艺阶段的构造10b。所述构造包括直接形成于硫族化物材料24的上部表面上的导电帽盖材料28。
[0048]参考图10,穿过导电帽盖材料植入一或多种离子(B卩,掺杂剂)且植入到帽盖材料与硫族化物材料的界面。所述离子导致跨越此界面的混合以形成包括组合有帽盖材料的一或多个组分的硫族化物材料的一或多个组分的散热片62。例如,在一些实施例中,导电帽盖材料包括氮化钛;硫族化物材料包括GST ;且散热片包括碲化钛。
[0049]图10的构造1b可随后经受类似于上文参考图3到5所描述的处理的处理,以从此构造形成存储器单元阵列。
[0050]上文所描述的实施例展示在各种实施例中散热片材料可通过众多方法中的任一种在导电帽盖材料与硫族化物材料之间形成;且可在形成导电帽盖材料之前、期间及/或之后形成。
[0051]上文所论述的存储器单元及阵列可并入到电子系统中。举例来说,此类电子系统可用于存储器模块、装置驱动器、功率模块、通信调制解调器、处理器模块及专用模块中,且可包含多层、多芯片模块。所述电子系统可为各种各样的系统(例如,时钟、电视、手机、个人计算机、汽车、工业控制系统、飞机等)中的任一者。
[0052]图式中的各种实施例的特定定向仅出于说明性目的,且可在一些应用中相对于所展示的定向旋转所述实施例。本文中所提供的描述及所附权利要求书涉及在各种特征之间具有所描述关系的任何结构,而不管所述结构是否处于所述图式的特定定向还是相对于此定向被旋转。
[0053]所附图解说明的横截面图仅展示横截面的平面内的特征,且为了简化所述图式未展示所述横截面的平面后面的材料。
[0054]当上文将一结构称为“在另一结构上”或“抵靠另一结构”时,其可直接位于另一结构上或者也可存在介入结构。相比之下,当将一结构称为“直接在另一结构上”或“直接抵靠另一结构”时,则不存在任何介入结构。当将一结构称为“连接”或“耦合”到另一结构时,其可直接连接或耦合到另一结构,或可存在介入结构。相比之下,当将一结构称为“直接连接”或“直接耦合”到另一结构时,不存在介入结构。
[0055]一些实施例包含一种集成装置,其包括:硫族化物材料;顶部电极,其在所述硫族化物材料上方;及夹层,其在所述顶部电极与所述硫族化物材料之间。相对于在不存在夹层的情况下将跨越顶部电极/硫族化物材料界面发生的热电阻,所述夹层降低装置中的热电阻。
[0056]一些实施例包含一种集成装置,其包括:硫族化物材料;导电材料,其在所述硫族化物材料上方;及夹层,其在所述导电材料与所述硫族化物材料之间。散热片直接抵靠导电材料及硫族化物材料。散热片包括包含与导电材料相同的元素且包含与硫族化物材料相同的元素的组合物。
[0057]一些实施例包含一种存储器单元,其包括:加热器材料;硫族化物材料,其在加热器材料上方;导电材料,其在硫族化物材料上方;及散热片,其在导电材料与硫族化物材料之间。散热片直接抵靠导电材料及硫族化物材料两者。散热片包括包含与导电材料相同的元素且包含与硫族化物材料相同的元素的组合物。
[0058]一些实施例包含一种形成存储器单元的方法。在加热器材料上方形成硫族化物材料。在硫族化物材料上方形成导电材料。在导电材料与硫族化物材料之间形成散热片。散热片直接抵靠导电材料及硫族化物材料。散热片包括包含与导电材料相同的元素且包含与硫族化物材料相同的元素的组合物。
【权利要求】
1.一种集成装置,其包括: 硫族化物材料; 顶部电极,其在所述硫族化物材料上方 '及 夹层,其在所述顶部电极与所述硫族化物材料之间,相对于在不存在所述夹层的情况下将跨越所述装置的顶部电极/硫族化 物材料界面发生的热电阻,所述夹层降低所述装置中的所述热电阻。
2.根据权利要求1所述的装置,其中所述夹层包括组合有碲及锑中的一者或两者的钛。
3.一种集成装置,其包括: 硫族化物材料; 导电材料,其在所述硫族化物材料上方;及 散热片,其在所述导电材料与所述硫族化物材料之间,所述散热片直接抵靠所述导电材料及所述硫族化物材料;所述散热片包括包含与所述导电材料相同的元素且包含与所述硫族化物材料相同的元素的组合物。
4.根据权利要求3所述的装置,其中: 所述硫族化物材料包括铺、締及锗; 所述导电材料包括钛;且 所述散热片包括组合有碲及锑中的一者或两者的钛。
5.根据权利要求3所述的装置,其中: 所述硫族化物材料包括铺、締及锗; 所述导电材料包括钛、铝及氮;且 所述散热片包括组合有钛及铝中的一者或两者的碲及锑中的一者或两者。
6.根据权利要求3所述的装置,其中: 所述硫族化物材料包括铺、締及锗; 所述导电材料包括钽;且 所述散热片包括组合有碲及锑中的一者或两者的钽。
7.根据权利要求3所述的装置,其中: 所述硫族化物材料包括铺、締及锗; 所述导电材料包括钨;且 所述散热片包括组合有碲及锑中的一者或两者的钨。
8.根据权利要求3所述的装置,其中所述散热片具有小于或等于约5纳米的厚度。
9.根据权利要求3所述的装置,其中所述散热片具有在从约I纳米到约5纳米的范围内的厚度。
10.一种存储器单元,其包括: 加热器材料; 硫族化物材料,其在所述加热器材料上方; 导电材料,其在所述硫族化物材料上方;及 散热片,其在所述导电材料与所述硫族化物材料之间,所述散热片直接抵靠所述导电材料及所述硫族化物材料;所述散热片包括包含与所述导电材料相同的元素且包含与所述硫族化物材料相同的元素的组合物。
11.根据权利要求10所述的存储器单元,其中所述硫族化物材料包括锑、碲及锗。
12.根据权利要求11所述的存储器单元,其中所述导电材料包括钛,且其中所述散热片包括组合有碲及锑中的一者或两者的钛。
13.根据权利要求11所述的存储器单元,其中所述导电材料包括钽,且其中所述散热片包括组合有碲及锑中的一者或两者的钽。
14.根据权利要求11所述的存储器单元,其中所述导电材料包括钨,且其中所述散热片包括组合有締及铺中的一者或两者的鹤。
15.根据权利要求11所述的存储器单元,其中所述导电材料包括钛、铝及氮;且其中所述散热片包括组合有钛及铝中的一者或两者的碲。
16.根据权利要求11所述的存储器单元,其中所述导电材料包括钛、铝及氮;且其中所述散热片包括组合有钛及铝中的一者或两者的锑。
17.一种形成存储器单元的方法,其包括: 在加热器材料上方形成硫族化物材料; 在所述硫族化物材料上方形成导电材料;及 在所述导电材料与所述硫族化物材料之间形成散热片,所述散热片直接抵靠所述导电材料及所述硫族化物材料;所述散热片包括包含与所述导电材料相同的元素且包含与所述硫族化物材料相同的元素的组合物。
18.根据权利要求17所述的方法,其中所述形成所述散热片包括: 将前驱物材料直接沉积到所述硫族化物材料上;及 对所述前驱物材料及所述硫族化物材料进行热处理以导致所述前驱物材料与所述硫族化物材料之间的反应且借此形成所述散热片。
19.根据权利要求18所述的方法,其中: 所述硫族化物材料包括锗、铺及締; 所述前驱物材料包括钛;且 所述散热片包括钛及碲。
20.根据权利要求19所述的方法,其中所述热处理包括将所述前驱物材料及所述硫族化物材料加热到至少约400°C的温度。
21.根据权利要求18所述的方法,其中: 所述硫族化物材料包括锗、铺及締; 所述前驱物材料包括钨;且 所述散热片包括钨及碲。
22.根据权利要求17所述的方法,其中在形成所述导电材料之前形成所述散热片。
23.根据权利要求22所述的方法,其中所述形成所述散热片包括将散热片材料直接沉积到所述硫族化物材料上。
24.根据权利要求17所述的方法,其中在形成所述导电材料之后形成所述散热片。
25.根据权利要求24所述的方法,其中所述形成所述散热片包括: 直接抵靠所述硫族化物材料形成所述导电材料;及 穿过所述导电材料将一或多种离子植入到所述导电材料与所述硫族化物材料的界面;所述植入导致所述硫族化物材料的一或多个组分与所述导电材料的一或多个组分的混合以借此形成所述散热片。
26.根据权利要求25所述的方法,其中: 所述导电材料包括氮化钛; 所述硫族化物材料包括锗、铺及締;且 所述散热片包括碲化钛。
27.根据权利要求 26所述的方法,其中所述一或多种离子包含锗、砷及氩中的一或多者。
【文档编号】H01L21/8247GK104081525SQ201280064400
【公开日】2014年10月1日 申请日期:2012年11月7日 优先权日:2011年11月17日
【发明者】安德烈亚·雷达埃利, 乌戈·鲁索, 阿戈斯蒂诺·皮罗瓦诺, 西蒙娜·拉维扎里 申请人:美光科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1