一种促进硅基磷灰石电解质材料致密化的方法

文档序号:6788662阅读:296来源:国知局
专利名称:一种促进硅基磷灰石电解质材料致密化的方法
技术领域
本发明涉及一种促进硅基磷灰石电解质材料致密化的方法,属于固体氧化物燃料电池领域。
背景技术
传统化石燃料的能量转换方法,例如直接燃烧等,不但会导致严重的环境污染,而且其能源利用效率非常低,这是导致全球能源与环境问题日益突出的原因之一。研究开发新的能量转换方式一直是人们不懈努力的方向之一。固体氧化物燃料电池(SOFC)凭借其能源利用率高、清洁无污染、燃料适应性强、全固态结构等优点引起了人们的广泛关注。电解质材料是SOFC的关键材料之一。理想的电解质材料应该具有以下特点:高的离子电导率(一般大于1X10_3 S/cm),可忽略的电子电导率;在工作的气氛下与连接的电极有好的热稳定性与化学稳定性;与电极材料以及连接材料之间有匹配的热膨胀系数;全密实结构以使电导率最大,反应物的交叉最少;制备工艺简单,以实现薄膜电解质(几十个微米级)的制备;成本低,环境友好等。基于传统电解质氧化钇稳定的氧化锆(YSZ)的SOFC所需的操作温度较高(800-1000 °C),高温下的长期操作易引起诸多问题,如多孔电极材料的致密化、以及由此引起的电极催化性能的下降,电极部件之间的化学互扩散,电池的密封问题等等,这对电池材料提出了苛刻的要求,大大增加了电池的成本,从而限制了 SOFC的大规模应用。电解质材料是制约SOFC运行温度的关键,因此,开发中温条件下(500-750 0C)符合要求的电解质材料是目前SOFC研究中的重点之一。硅基磷灰石电解质材料在中温条件下具有高的电导率和氧离子迁移数,温和的热膨胀系数,良好的掺杂特性和化学稳定性等。这些优良特性使其成为中温SOFC电解质材料的重要候选者之一。硅基磷灰石电解质材料目前的主要问题之一是难以致密化,用传统的固相法制备的粉体材料烧结活性差,其致密化温度需要1650°C以上,如此高的温度对设备提出了较高的要求,同时给电池的制备也带来了困难。人们在如何提高硅基磷灰石电解质材料烧结活性方面做了大量工作。文献中报道的降低硅基磷灰石致密化温度的方法主要是通过制备纳米粉体以获得较好的烧结活性,这主要包括溶胶-凝胶法(Celerier S,Laberty C,Ansart F,et al.New chemical route based on sol - gel process for the synthesisof oxyapatite La9 33Si6O26 [J].Ceramics International, 2006,32 (3): 271-276)、冷冻干燥法(Chesnaud A,Dezanneau E,Estournes C,et al.1nfluence of synthesisroute and composition on electrical properties of La9 33+sSi6026+3s/2 oxy-apatitecompounds [J].Solid State 1nics, 2008,179(33-34): 1929-1939)和柠檬酸-硝酸盐法(Zhou J,Ye X F, Li J L,et al.Synthesis and characterization of apatite-typeLa9 67Si6—xA1x026 5_s/2electrolytematerials and compatible cathode materials [J].Solid State 1nics, 2011,201 (I):81 - 86)等。这些方法虽然可以制备出具有较好烧结活性的纳米粉体,但是周期较长、制备工艺复杂或者对环境因素比较敏感等,这些问题限制了技术的大规模应用。化学共沉淀法因其制备工艺简单、成本低廉等优点在很多材料体系中获得了应用。Li 等(Li B,Liu ff, Pan ff.Synthesis and electrical properties of apatite-typeLa10Si6O27[J], Journal of Power Sources, 2010, 195 (8):2196-2201)采用化学共沉淀法制备了硅基磷灰石电解质材料,在1300 °(:可以得到95%左右的致密度。但是这个技术中包括酸洗的步骤,以得到纯相材料;在粉体的制备过程中需要超声分散,而且成型手段为冷等静压成型,这造成了较多的能源浪费同时对设备要求较高。因此,研究探索一种简单易行的促进硅基磷灰石电解质材料致密化的方法对于该电解质材料的发展至关重要。

发明内容
本发明的目的在于提供一种工艺简单、成本低廉、能够有效促进硅基磷灰石电解质材料致密化的方法。本发明通过在化学共沉淀法制备硅基磷灰石粉体材料的过程中引入分散剂,降低粉体的颗粒度,提高粉体的烧结活性,从而促进硅基磷灰石电解质材料的致密化。技术方案如下:
一种促进硅基磷灰石电解质材料致密化的方法,所述电解质材料的结构通式为La9.33+xSi6026+1.5x,其中0彡X彡0.67 ;所述电解质的粉体材料采用化学共沉淀法制备,通过在粉体材料的制备过程中引入分散剂,降低粉体颗粒度,有效提高粉体的烧结活性,进而促进电解质片的致密化。进一步的,所述电解质的致密材料制备方法包括步骤:
a)按照结构通式中的化学计量比称量所需摩尔量的氧化镧和正硅酸乙酯;将氧化镧溶于浓度为0.5 3mol/L的稀硝酸中,溶解Imol氧化镧所需的稀硝酸的体积为2 12 L,加入3飞倍稀硝酸体积的无水乙醇,然后将正硅酸乙酯和分散剂加入上述溶液,分散剂与正硅酸乙酯的体积比为疒7:1 ;
b)将浓度为28%的氨水用体积比为3飞:I的无水乙醇和去离子水稀释1(T30倍;然后将氨水的稀释液缓慢的滴加到步骤a的溶液中,滴定速度为12 36ml/h,氨水的稀释液完全滴入步骤a的溶液中后得到悬浮液;
c)对悬浮液进行离心,离心速率为5000-10000r/min,离心时间为5 10 min ;将离心得到的产物用无水乙醇洗涤之后在7(T100°C环境下干燥12 24 h得到前驱体;将前驱体研磨之后利用马弗炉煅烧4 10 h,从而得到所需的粉体材料;
d)将煅烧后得到的粉体材料研磨过筛(160目)、干压成型之后,在空气中高温烧结4-10 h得到致密的材料。
进一步的,所述电解质的致密材料制备方法包括步骤:
a)按照结构通式中的化学计量比称量所需摩尔量的氧化镧和正硅酸乙酯;将氧化镧溶于浓度为0.5^3 mol/L的稀硝酸中,溶解Imol氧化镧所需的稀硝酸的体积为2 12 L,加A 3飞倍稀硝酸体积的无水乙醇,然后将正硅酸乙酯加入上述溶液;
b)将浓度为28%的氨水用体积比为3飞:I的无水乙醇和去离子水稀释1(T30倍,加入与正硅酸乙酯的体积比为2 7:1的分散剂;然后 将步骤a的溶液缓慢的滴加到氨水的稀释液中,滴定速度为12 36ml/h,步骤a的溶液完全滴入氨水的稀释液中后得到悬浮液;c)对悬浮液进行离心,离心速率为5000-10000r/min,离心时间为5 10 min ;将离心得到的产物用无水乙醇洗涤之后在7(T100°C环境下干燥12 24 h得到前驱体;将前驱体研磨之后利用马弗炉煅烧4 10 h,从而得到所需的粉体材料;
d)将煅烧后得到的粉体材料研磨过筛(160目)、干压成型之后,在空气中高温烧结4-10 h得到致密的材料。进一步的,所述分散 剂为乙二醇、聚乙二醇200、聚乙二醇400、聚乙烯吡咯烷酮K30、聚乙烯吡咯烷酮K90等中的任一种。进一步的,所述氨水稀释液的pH=9 11。进一步的,所述前驱体的煅烧温度为800-1000°C ;材料的致密烧结温度为1400-1600°C。本发明利用化学共沉淀法可以制备出颗粒细小均匀、具有良好烧结活性的硅基磷灰石粉体材料。通过在制备过程中引入廉价的分散剂有效的促进了硅基磷灰石电解质材料的致密化。


图1为本发明实例I得到样品的断面扫描电镜图。图2为本发明实例I中900 0C煅烧得到粉体的扫描电镜图。图3为本发明实例I得到样品的XRD图谱。图4为本发明实例2得到样品的断面扫描电镜图。图5为本发明实例2中900 0C煅烧得到粉体的扫描电镜图。图6为本发明实例3得到样品的断面扫描电镜图。图7为本发明实例4得到样品的断面扫描电镜图。
具体实施例方式实例1:
本实例采用制备致密硅基磷灰石电解质材料“方法一”的制备过程,制备
La9.33+xSi6〇26+l.5x ( X_0 ):
a)将1.520 g氧化镧溶于30 ml浓度为0.5 mol/L的稀硝酸,加入120 ml无水乙醇。b)将1.250 g正硅酸乙酯和7 ml聚乙二醇200作为分散剂加入步骤a的溶液,磁力搅拌30 min,得到A溶液。c)将10 ml浓度为28%的氨水用20 ml去离子水和120 ml无水乙醇稀释,磁力搅拌30 min。得B溶液。d)将B溶液缓慢滴加到A溶液中,滴加速度为20 ml/h,滴定结束后得到悬浮液。e)对悬浮液进行离心,将离心得到的产物用无水乙醇洗涤之后放入烘箱,在80°C干燥12 h得到前驱体。将前驱体研磨之后放入马弗炉内煅烧,煅烧温度为900 °C,保温时间为9 h。f)将煅烧得到的粉体研磨、干压成型之后放入电炉,在1550°C、空气气氛下烧结10h得到最终的材料,通过阿基米德排水法测得材料的致密度为94.6%。实例2本实例采用制备致密硅基磷灰石电解质材料“方法二”的制备过程,制备
La9.33+xSi6〇26+l.5x ( X_0 ):
a)将1.520 g氧化镧溶于30 ml浓度为0.5 mol/L的稀硝酸,加入120 ml无水乙醇。b)将1.250 g正硅酸乙酯加入步骤a的溶液,磁力搅拌30 min,得到A溶液。c)将10 ml浓度为28%的氨水用20 ml去离子水和120 ml无水乙醇稀释,加入7 ml聚乙二醇200作为分散剂,磁力搅拌30 min。得B溶液。d)将A溶液缓慢滴加到B溶液中,滴加速度为20 ml/h,滴定结束后得到悬浮液。e)对悬浮液进行离心,将离心得到的产物用无水乙醇洗涤之后放入烘箱,在80°C干燥12 h得到前驱体。将前驱体研磨之后放入马弗炉内煅烧,煅烧温度为900 °C,保温时间为9 h。·f)将煅烧得到的粉体研磨、干压成型之后放入电炉,在1550°C、空气气氛下烧结10h得到最终的材料,通过阿基米德排水法测得材料的致密度为94.2%。
实例3:
本实例为了说明制备致密硅基磷灰石电解质材料“方法一”中分散剂对致密化的影响,特做一个不加分散剂的对比样。制备过程如下:
制备 La9 33+xSi6026+1 5x (x=0)
a)将1.520 g氧化镧溶于30 ml浓度为0.5 mol/L的稀硝酸,加入120 ml无水乙醇。b)将1.250 g正硅酸乙酯加入步骤a的溶液,磁力搅拌30 min,得到A溶液。c)将10 ml浓度为28%的氨水用20 ml去离子水和120 ml无水乙醇稀释,磁力搅拌30 min。得B溶液。d)将B溶液缓慢滴加到A溶液中,滴加速度为20 ml/h,滴定结束后得到悬浮液。e)对悬浮液进行离心,将离心得到的产物用无水乙醇洗涤之后放入烘箱,在80°C干燥12 h得到前驱体。将前驱体研磨之后放入马弗炉内煅烧,煅烧温度为900 °C,保温时间为9 h。f)将煅烧得到的粉体研磨、干压成型之后放入电炉,在1550°C、空气气氛下烧结10h得到最终的材料,通过阿基米德排水法测得材料的致密度为89.1 %。实例4
本实例为了说明制备致密硅基磷灰石电解质材料“方法二”中分散剂对致密化的影响,特做一个不加分散剂的对比样。制备过程如下:
制备 La9 33+xSi6026+1 5x (x=0)
a)将1.520 g氧化镧溶于30 ml浓度为0.5 mol/L的稀硝酸,加入120 ml无水乙醇。b)将1.250 g正硅酸乙酯加入步骤a的溶液,磁力搅拌30 min,得到A溶液。c)将10 ml浓度为28%的氨水用20 ml去离子水和120 ml无水乙醇稀释,磁力搅拌30 min。得B溶液。d)将A溶液缓慢滴加到B溶液中,滴加速度为20 ml/h,滴定结束后得到悬浮液。e)对悬浮液进行离心,将离心得到的产物用无水乙醇洗涤之后放入烘箱,在80°C干燥12 h得到前驱体。将前驱体研磨之后放入马弗炉内煅烧,煅烧温度为900 °C,保温时间为9 h。
将煅烧得到的粉体研磨、干压成型之后放入电炉,在1550°C、空气气氛下烧结10 h得到最终的材料,,通过阿基米德排水法测得材料的致密度为88.5%。
权利要求
1.一种促进硅基磷灰石电解质材料致密化的方法,其特征在于,所述电解质材料的结构通式为La9.33+xSi6026+1.5x,其中O彡X彡0.67 ;所述电解质的粉体材料采用化学共沉淀法制备,通过在粉体材料的制备过程中引入分散剂,降低粉体颗粒度,有效提高粉体的烧结活性,进而促进电解质片的致密化。
2.根据权利要求1所述的促进硅基磷灰石电解质材料致密化的方法,其特征在于,所述电解质的致密材料制备方法包括步骤: a)按照结构通式中的化学计量比称量所需摩尔量的氧化镧和正硅酸乙酯;将氧化镧溶于浓度为0.5 3mol/L的稀硝酸中,溶解Imol氧化镧所需的稀硝酸的体积为2 12 L,加入3飞倍稀硝酸体积的无水乙醇,然后将正硅酸乙酯和分散剂加入上述溶液,分散剂与正硅酸乙酯的体积比为疒7:1; b)将浓度为28%的氨水用体积比为3飞:I的无水乙醇和去离子水稀释1(T30倍;然后将氨水的稀释液缓慢的滴加到步骤a的溶液中,滴定速度为12 36ml/h,氨水的稀释液完全滴入步骤a的溶液中后得到悬浮液; c)对悬浮液进行离心,离心速率为5000-10000r/min,离心时间为5 10 min ;将离心得到的产物用无水乙醇洗涤之后在7(T100°C环境下干燥12 24 h得到前驱体;将前驱体研磨之后利用马弗炉煅烧4 10 h,从而得到所需的粉体材料; d)将煅烧后得到的粉体材料研磨过筛(160目)、干压成型之后,在空气中高温烧结4-10 h得到致密的材料。
3.根据权利要求1所述的促进硅基磷灰石电解质材料致密化的方法,其特征在于,所述电解质的致密材料制备方法包括步骤: a)按照结构通式中的化学计量比称量所需摩尔量的氧化镧和正硅酸乙酯;将氧化镧溶于浓度为0.5^3 mol/L的稀硝`酸中,溶解Imol氧化镧所需的稀硝酸的体积为2 12 L,加A 3飞倍稀硝酸体积的无水乙醇,然后将正硅酸乙酯加入上述溶液; b)将浓度为28%的氨水用体积比为:Te:1的无水乙醇和去离子水稀释1(T30倍,加入与正硅酸乙酯的体积比为2 7:1的分散剂;然后将步骤a的溶液缓慢的滴加到氨水的稀释液中,滴定速度为12 36ml/h,步骤a的溶液完全滴入氨水的稀释液中后得到悬浮液; c)对悬浮液进行离心,离心速率为5000-10000r/min,离心时间为5 10 min ;将离心得到的产物用无水乙醇洗涤之后在7(T100°C环境下干燥12 24 h得到前驱体;将前驱体研磨之后利用马弗炉煅烧4 10 h,从而得到所需的粉体材料; d)将煅烧后得到的粉体材料研磨过筛(160目)、干压成型之后,在空气中高温烧结4-10 h得到致密的材料。
4.根据权利要求2或3所述的促进硅基磷灰石电解质材料致密化的方法,其特征在于,所述分散剂为乙二醇、聚乙二醇200、聚乙二醇400、聚乙烯吡咯烷酮K30、聚乙烯吡咯烷酮K90等中的任一种。
5.根据权利要求2或3所述电解质的致密材料制备工艺,其特征在于,所述氨水稀释液^pH=9"ll0
6.根据权利要求2或3所述的促进硅基磷灰石电解质材料致密化的方法,其特征在于,所述前驱体的煅烧温度为800-1000°C ;材料的致密烧结温度为1400-1600°C。
全文摘要
一种促进硅基磷灰石电解质材料致密化的方法,属于固体氧化物燃料电池领域。本发明采用化学共沉淀法,通过引入分散剂,降低粉体颗粒度,有效促进硅基磷灰石电解质材料的致密化,在同等温度下烧结可提高致密度5%以上。本发明的优点在于材料制备工艺简单、制备的材料粉体颗粒细小均匀、致密化温度低,可以有效的解决用传统固相法合成时难以烧结致密的问题。
文档编号H01M8/10GK103107351SQ20131004284
公开日2013年5月15日 申请日期2013年2月2日 优先权日2013年2月2日
发明者赵海雷, 杨天让, 韩载浩, 杜志鸿, 卢瑶 申请人:北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1